3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_HARTMANN_ORLIN_H
20 #define LEMON_HARTMANN_ORLIN_H
22 /// \ingroup min_mean_cycle
25 /// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
29 #include <lemon/core.h>
30 #include <lemon/path.h>
31 #include <lemon/tolerance.h>
32 #include <lemon/connectivity.h>
36 /// \brief Default traits class of HartmannOrlin algorithm.
38 /// Default traits class of HartmannOrlin algorithm.
39 /// \tparam GR The type of the digraph.
40 /// \tparam LEN The type of the length map.
41 /// It must conform to the \ref concepts::Rea_data "Rea_data" concept.
43 template <typename GR, typename LEN>
45 template <typename GR, typename LEN,
46 bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
48 struct HartmannOrlinDefaultTraits
50 /// The type of the digraph
52 /// The type of the length map
53 typedef LEN LengthMap;
54 /// The type of the arc lengths
55 typedef typename LengthMap::Value Value;
57 /// \brief The large value type used for internal computations
59 /// The large value type used for internal computations.
60 /// It is \c long \c long if the \c Value type is integer,
61 /// otherwise it is \c double.
62 /// \c Value must be convertible to \c LargeValue.
63 typedef double LargeValue;
65 /// The tolerance type used for internal computations
66 typedef lemon::Tolerance<LargeValue> Tolerance;
68 /// \brief The path type of the found cycles
70 /// The path type of the found cycles.
71 /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 /// and it must have an \c addFront() function.
73 typedef lemon::Path<Digraph> Path;
76 // Default traits class for integer value types
77 template <typename GR, typename LEN>
78 struct HartmannOrlinDefaultTraits<GR, LEN, true>
81 typedef LEN LengthMap;
82 typedef typename LengthMap::Value Value;
83 #ifdef LEMON_HAVE_LONG_LONG
84 typedef long long LargeValue;
86 typedef long LargeValue;
88 typedef lemon::Tolerance<LargeValue> Tolerance;
89 typedef lemon::Path<Digraph> Path;
93 /// \addtogroup min_mean_cycle
96 /// \brief Implementation of the Hartmann-Orlin algorithm for finding
97 /// a minimum mean cycle.
99 /// This class implements the Hartmann-Orlin algorithm for finding
100 /// a directed cycle of minimum mean length (cost) in a digraph
101 /// \ref amo93networkflows, \ref dasdan98minmeancycle.
102 /// It is an improved version of \ref Karp "Karp"'s original algorithm,
103 /// it applies an efficient early termination scheme.
104 /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
106 /// \tparam GR The type of the digraph the algorithm runs on.
107 /// \tparam LEN The type of the length map. The default
108 /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
109 /// \tparam TR The traits class that defines various types used by the
110 /// algorithm. By default, it is \ref HartmannOrlinDefaultTraits
111 /// "HartmannOrlinDefaultTraits<GR, LEN>".
112 /// In most cases, this parameter should not be set directly,
113 /// consider to use the named template parameters instead.
115 template <typename GR, typename LEN, typename TR>
117 template < typename GR,
118 typename LEN = typename GR::template ArcMap<int>,
119 typename TR = HartmannOrlinDefaultTraits<GR, LEN> >
125 /// The type of the digraph
126 typedef typename TR::Digraph Digraph;
127 /// The type of the length map
128 typedef typename TR::LengthMap LengthMap;
129 /// The type of the arc lengths
130 typedef typename TR::Value Value;
132 /// \brief The large value type
134 /// The large value type used for internal computations.
135 /// By default, it is \c long \c long if the \c Value type is integer,
136 /// otherwise it is \c double.
137 typedef typename TR::LargeValue LargeValue;
139 /// The tolerance type
140 typedef typename TR::Tolerance Tolerance;
142 /// \brief The path type of the found cycles
144 /// The path type of the found cycles.
145 /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
146 /// it is \ref lemon::Path "Path<Digraph>".
147 typedef typename TR::Path Path;
149 /// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm
154 TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
156 // Data sturcture for path data
161 PathData(LargeValue d, Arc p = INVALID) :
165 typedef typename Digraph::template NodeMap<std::vector<PathData> >
170 // The digraph the algorithm runs on
172 // The length of the arcs
173 const LengthMap &_length;
175 // Data for storing the strongly connected components
177 typename Digraph::template NodeMap<int> _comp;
178 std::vector<std::vector<Node> > _comp_nodes;
179 std::vector<Node>* _nodes;
180 typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
182 // Data for the found cycles
183 bool _curr_found, _best_found;
184 LargeValue _curr_length, _best_length;
185 int _curr_size, _best_size;
186 Node _curr_node, _best_node;
187 int _curr_level, _best_level;
192 // Node map for storing path data
193 PathDataNodeMap _data;
194 // The processed nodes in the last round
195 std::vector<Node> _process;
197 Tolerance _tolerance;
200 const LargeValue INF;
204 /// \name Named Template Parameters
207 template <typename T>
208 struct SetLargeValueTraits : public Traits {
209 typedef T LargeValue;
210 typedef lemon::Tolerance<T> Tolerance;
213 /// \brief \ref named-templ-param "Named parameter" for setting
214 /// \c LargeValue type.
216 /// \ref named-templ-param "Named parameter" for setting \c LargeValue
217 /// type. It is used for internal computations in the algorithm.
218 template <typename T>
220 : public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
221 typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create;
224 template <typename T>
225 struct SetPathTraits : public Traits {
229 /// \brief \ref named-templ-param "Named parameter" for setting
232 /// \ref named-templ-param "Named parameter" for setting the \c %Path
233 /// type of the found cycles.
234 /// It must conform to the \ref lemon::concepts::Path "Path" concept
235 /// and it must have an \c addFront() function.
236 template <typename T>
238 : public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
239 typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create;
250 /// \brief Constructor.
252 /// The constructor of the class.
254 /// \param digraph The digraph the algorithm runs on.
255 /// \param length The lengths (costs) of the arcs.
256 HartmannOrlin( const Digraph &digraph,
257 const LengthMap &length ) :
258 _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
259 _best_found(false), _best_length(0), _best_size(1),
260 _cycle_path(NULL), _local_path(false), _data(digraph),
261 INF(std::numeric_limits<LargeValue>::has_infinity ?
262 std::numeric_limits<LargeValue>::infinity() :
263 std::numeric_limits<LargeValue>::max())
268 if (_local_path) delete _cycle_path;
271 /// \brief Set the path structure for storing the found cycle.
273 /// This function sets an external path structure for storing the
276 /// If you don't call this function before calling \ref run() or
277 /// \ref findMinMean(), it will allocate a local \ref Path "path"
278 /// structure. The destuctor deallocates this automatically
279 /// allocated object, of course.
281 /// \note The algorithm calls only the \ref lemon::Path::addFront()
282 /// "addFront()" function of the given path structure.
284 /// \return <tt>(*this)</tt>
285 HartmannOrlin& cycle(Path &path) {
294 /// \brief Set the tolerance used by the algorithm.
296 /// This function sets the tolerance object used by the algorithm.
298 /// \return <tt>(*this)</tt>
299 HartmannOrlin& tolerance(const Tolerance& tolerance) {
300 _tolerance = tolerance;
304 /// \brief Return a const reference to the tolerance.
306 /// This function returns a const reference to the tolerance object
307 /// used by the algorithm.
308 const Tolerance& tolerance() const {
312 /// \name Execution control
313 /// The simplest way to execute the algorithm is to call the \ref run()
315 /// If you only need the minimum mean length, you may call
316 /// \ref findMinMean().
320 /// \brief Run the algorithm.
322 /// This function runs the algorithm.
323 /// It can be called more than once (e.g. if the underlying digraph
324 /// and/or the arc lengths have been modified).
326 /// \return \c true if a directed cycle exists in the digraph.
328 /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
330 /// return mmc.findMinMean() && mmc.findCycle();
333 return findMinMean() && findCycle();
336 /// \brief Find the minimum cycle mean.
338 /// This function finds the minimum mean length of the directed
339 /// cycles in the digraph.
341 /// \return \c true if a directed cycle exists in the digraph.
343 // Initialization and find strongly connected components
347 // Find the minimum cycle mean in the components
348 for (int comp = 0; comp < _comp_num; ++comp) {
349 if (!initComponent(comp)) continue;
352 // Update the best cycle (global minimum mean cycle)
353 if ( _curr_found && (!_best_found ||
354 _curr_length * _best_size < _best_length * _curr_size) ) {
356 _best_length = _curr_length;
357 _best_size = _curr_size;
358 _best_node = _curr_node;
359 _best_level = _curr_level;
365 /// \brief Find a minimum mean directed cycle.
367 /// This function finds a directed cycle of minimum mean length
368 /// in the digraph using the data computed by findMinMean().
370 /// \return \c true if a directed cycle exists in the digraph.
372 /// \pre \ref findMinMean() must be called before using this function.
374 if (!_best_found) return false;
375 IntNodeMap reached(_gr, -1);
376 int r = _best_level + 1;
378 while (reached[u] < 0) {
380 u = _gr.source(_data[u][r].pred);
383 Arc e = _data[u][r].pred;
384 _cycle_path->addFront(e);
385 _best_length = _length[e];
388 while ((v = _gr.source(e)) != u) {
389 e = _data[v][--r].pred;
390 _cycle_path->addFront(e);
391 _best_length += _length[e];
399 /// \name Query Functions
400 /// The results of the algorithm can be obtained using these
402 /// The algorithm should be executed before using them.
406 /// \brief Return the total length of the found cycle.
408 /// This function returns the total length of the found cycle.
410 /// \pre \ref run() or \ref findMinMean() must be called before
411 /// using this function.
412 Value cycleLength() const {
413 return static_cast<Value>(_best_length);
416 /// \brief Return the number of arcs on the found cycle.
418 /// This function returns the number of arcs on the found cycle.
420 /// \pre \ref run() or \ref findMinMean() must be called before
421 /// using this function.
422 int cycleArcNum() const {
426 /// \brief Return the mean length of the found cycle.
428 /// This function returns the mean length of the found cycle.
430 /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
433 /// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
436 /// \pre \ref run() or \ref findMinMean() must be called before
437 /// using this function.
438 double cycleMean() const {
439 return static_cast<double>(_best_length) / _best_size;
442 /// \brief Return the found cycle.
444 /// This function returns a const reference to the path structure
445 /// storing the found cycle.
447 /// \pre \ref run() or \ref findCycle() must be called before using
449 const Path& cycle() const {
461 _cycle_path = new Path;
463 _cycle_path->clear();
467 _cycle_path->clear();
468 for (NodeIt u(_gr); u != INVALID; ++u)
472 // Find strongly connected components and initialize _comp_nodes
474 void findComponents() {
475 _comp_num = stronglyConnectedComponents(_gr, _comp);
476 _comp_nodes.resize(_comp_num);
477 if (_comp_num == 1) {
478 _comp_nodes[0].clear();
479 for (NodeIt n(_gr); n != INVALID; ++n) {
480 _comp_nodes[0].push_back(n);
481 _out_arcs[n].clear();
482 for (OutArcIt a(_gr, n); a != INVALID; ++a) {
483 _out_arcs[n].push_back(a);
487 for (int i = 0; i < _comp_num; ++i)
488 _comp_nodes[i].clear();
489 for (NodeIt n(_gr); n != INVALID; ++n) {
491 _comp_nodes[k].push_back(n);
492 _out_arcs[n].clear();
493 for (OutArcIt a(_gr, n); a != INVALID; ++a) {
494 if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
500 // Initialize path data for the current component
501 bool initComponent(int comp) {
502 _nodes = &(_comp_nodes[comp]);
503 int n = _nodes->size();
504 if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
507 for (int i = 0; i < n; ++i) {
508 _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
513 // Process all rounds of computing path data for the current component.
514 // _data[v][k] is the length of a shortest directed walk from the root
515 // node to node v containing exactly k arcs.
516 void processRounds() {
517 Node start = (*_nodes)[0];
518 _data[start][0] = PathData(0);
520 _process.push_back(start);
522 int k, n = _nodes->size();
524 bool terminate = false;
525 for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
526 processNextBuildRound(k);
527 if (k == next_check || k == n) {
528 terminate = checkTermination(k);
529 next_check = next_check * 3 / 2;
532 for ( ; k <= n && !terminate; ++k) {
533 processNextFullRound(k);
534 if (k == next_check || k == n) {
535 terminate = checkTermination(k);
536 next_check = next_check * 3 / 2;
541 // Process one round and rebuild _process
542 void processNextBuildRound(int k) {
543 std::vector<Node> next;
547 for (int i = 0; i < int(_process.size()); ++i) {
549 for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
552 d = _data[u][k-1].dist + _length[e];
553 if (_tolerance.less(d, _data[v][k].dist)) {
554 if (_data[v][k].dist == INF) next.push_back(v);
555 _data[v][k] = PathData(d, e);
562 // Process one round using _nodes instead of _process
563 void processNextFullRound(int k) {
567 for (int i = 0; i < int(_nodes->size()); ++i) {
569 for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
572 d = _data[u][k-1].dist + _length[e];
573 if (_tolerance.less(d, _data[v][k].dist)) {
574 _data[v][k] = PathData(d, e);
580 // Check early termination
581 bool checkTermination(int k) {
582 typedef std::pair<int, int> Pair;
583 typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
584 typename GR::template NodeMap<LargeValue> pi(_gr);
585 int n = _nodes->size();
590 // Search for cycles that are already found
592 for (int i = 0; i < n; ++i) {
594 if (_data[u][k].dist == INF) continue;
595 for (int j = k; j >= 0; --j) {
596 if (level[u].first == i && level[u].second > 0) {
598 length = _data[u][level[u].second].dist - _data[u][j].dist;
599 size = level[u].second - j;
600 if (!_curr_found || length * _curr_size < _curr_length * size) {
601 _curr_length = length;
604 _curr_level = level[u].second;
608 level[u] = Pair(i, j);
610 u = _gr.source(_data[u][j].pred);
615 // If at least one cycle is found, check the optimality condition
617 if (_curr_found && k < n) {
618 // Find node potentials
619 for (int i = 0; i < n; ++i) {
622 for (int j = 0; j <= k; ++j) {
623 if (_data[u][j].dist < INF) {
624 d = _data[u][j].dist * _curr_size - j * _curr_length;
625 if (_tolerance.less(d, pi[u])) pi[u] = d;
630 // Check the optimality condition for all arcs
632 for (ArcIt a(_gr); a != INVALID; ++a) {
633 if (_tolerance.less(_length[a] * _curr_size - _curr_length,
634 pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
644 }; //class HartmannOrlin
650 #endif //LEMON_HARTMANN_ORLIN_H