Quote path names.
1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_KRUSKAL_H
20 #define LEMON_KRUSKAL_H
24 #include <lemon/unionfind.h>
25 // #include <lemon/graph_utils.h>
26 #include <lemon/maps.h>
28 // #include <lemon/radix_sort.h>
30 #include <lemon/bits/utility.h>
31 #include <lemon/bits/traits.h>
35 ///\brief Kruskal's algorithm to compute a minimum cost spanning tree
37 ///Kruskal's algorithm to compute a minimum cost spanning tree.
42 namespace _kruskal_bits {
44 // Kruskal for directed graphs.
46 template <typename Digraph, typename In, typename Out>
47 typename disable_if<lemon::UndirectedTagIndicator<Digraph>,
48 typename In::value_type::second_type >::type
49 kruskal(const Digraph& digraph, const In& in, Out& out,dummy<0> = 0) {
50 typedef typename In::value_type::second_type Value;
51 typedef typename Digraph::template NodeMap<int> IndexMap;
52 typedef typename Digraph::Node Node;
54 IndexMap index(digraph);
55 UnionFind<IndexMap> uf(index);
56 for (typename Digraph::NodeIt it(digraph); it != INVALID; ++it) {
61 for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) {
62 if (uf.join(digraph.target(it->first),digraph.source(it->first))) {
63 out.set(it->first, true);
64 tree_value += it->second;
67 out.set(it->first, false);
73 // Kruskal for undirected graphs.
75 template <typename Graph, typename In, typename Out>
76 typename enable_if<lemon::UndirectedTagIndicator<Graph>,
77 typename In::value_type::second_type >::type
78 kruskal(const Graph& graph, const In& in, Out& out,dummy<1> = 1) {
79 typedef typename In::value_type::second_type Value;
80 typedef typename Graph::template NodeMap<int> IndexMap;
81 typedef typename Graph::Node Node;
83 IndexMap index(graph);
84 UnionFind<IndexMap> uf(index);
85 for (typename Graph::NodeIt it(graph); it != INVALID; ++it) {
90 for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) {
91 if (uf.join(graph.u(it->first),graph.v(it->first))) {
92 out.set(it->first, true);
93 tree_value += it->second;
96 out.set(it->first, false);
103 template <typename Sequence>
105 typedef typename Sequence::value_type Value;
106 bool operator()(const Value& left, const Value& right) {
107 return left.second < right.second;
111 template <typename In, typename Enable = void>
112 struct SequenceInputIndicator {
113 static const bool value = false;
116 template <typename In>
117 struct SequenceInputIndicator<In,
118 typename exists<typename In::value_type::first_type>::type> {
119 static const bool value = true;
122 template <typename In, typename Enable = void>
123 struct MapInputIndicator {
124 static const bool value = false;
127 template <typename In>
128 struct MapInputIndicator<In,
129 typename exists<typename In::Value>::type> {
130 static const bool value = true;
133 template <typename In, typename Enable = void>
134 struct SequenceOutputIndicator {
135 static const bool value = false;
138 template <typename Out>
139 struct SequenceOutputIndicator<Out,
140 typename exists<typename Out::value_type>::type> {
141 static const bool value = true;
144 template <typename Out, typename Enable = void>
145 struct MapOutputIndicator {
146 static const bool value = false;
149 template <typename Out>
150 struct MapOutputIndicator<Out,
151 typename exists<typename Out::Value>::type> {
152 static const bool value = true;
155 template <typename In, typename InEnable = void>
156 struct KruskalValueSelector {};
158 template <typename In>
159 struct KruskalValueSelector<In,
160 typename enable_if<SequenceInputIndicator<In>, void>::type>
162 typedef typename In::value_type::second_type Value;
165 template <typename In>
166 struct KruskalValueSelector<In,
167 typename enable_if<MapInputIndicator<In>, void>::type>
169 typedef typename In::Value Value;
172 template <typename Graph, typename In, typename Out,
173 typename InEnable = void>
174 struct KruskalInputSelector {};
176 template <typename Graph, typename In, typename Out,
177 typename InEnable = void>
178 struct KruskalOutputSelector {};
180 template <typename Graph, typename In, typename Out>
181 struct KruskalInputSelector<Graph, In, Out,
182 typename enable_if<SequenceInputIndicator<In>, void>::type >
184 typedef typename In::value_type::second_type Value;
186 static Value kruskal(const Graph& graph, const In& in, Out& out) {
187 return KruskalOutputSelector<Graph, In, Out>::
188 kruskal(graph, in, out);
193 template <typename Graph, typename In, typename Out>
194 struct KruskalInputSelector<Graph, In, Out,
195 typename enable_if<MapInputIndicator<In>, void>::type >
197 typedef typename In::Value Value;
198 static Value kruskal(const Graph& graph, const In& in, Out& out) {
199 typedef typename In::Key MapArc;
200 typedef typename In::Value Value;
201 typedef typename ItemSetTraits<Graph, MapArc>::ItemIt MapArcIt;
202 typedef std::vector<std::pair<MapArc, Value> > Sequence;
205 for (MapArcIt it(graph); it != INVALID; ++it) {
206 seq.push_back(std::make_pair(it, in[it]));
209 std::sort(seq.begin(), seq.end(), PairComp<Sequence>());
210 return KruskalOutputSelector<Graph, Sequence, Out>::
211 kruskal(graph, seq, out);
215 template <typename T>
220 template <typename T>
221 struct RemoveConst<const T> {
225 template <typename Graph, typename In, typename Out>
226 struct KruskalOutputSelector<Graph, In, Out,
227 typename enable_if<SequenceOutputIndicator<Out>, void>::type >
229 typedef typename In::value_type::second_type Value;
231 static Value kruskal(const Graph& graph, const In& in, Out& out) {
232 typedef LoggerBoolMap<typename RemoveConst<Out>::type> Map;
234 return _kruskal_bits::kruskal(graph, in, map);
239 template <typename Graph, typename In, typename Out>
240 struct KruskalOutputSelector<Graph, In, Out,
241 typename enable_if<MapOutputIndicator<Out>, void>::type >
243 typedef typename In::value_type::second_type Value;
245 static Value kruskal(const Graph& graph, const In& in, Out& out) {
246 return _kruskal_bits::kruskal(graph, in, out);
252 /// \ingroup spantree
254 /// \brief Kruskal algorithm to find a minimum cost spanning tree of
257 /// This function runs Kruskal's algorithm to find a minimum cost
259 /// Due to some C++ hacking, it accepts various input and output types.
261 /// \param g The graph the algorithm runs on.
262 /// It can be either \ref concepts::Digraph "directed" or
263 /// \ref concepts::Graph "undirected".
264 /// If the graph is directed, the algorithm consider it to be
265 /// undirected by disregarding the direction of the arcs.
267 /// \param in This object is used to describe the arc/edge costs.
268 /// It can be one of the following choices.
269 /// - An STL compatible 'Forward Container' with
270 /// <tt>std::pair<GR::Arc,X></tt> or
271 /// <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>, where
272 /// \c X is the type of the costs. The pairs indicates the arcs/edges
273 /// along with the assigned cost. <em>They must be in a
274 /// cost-ascending order.</em>
275 /// - Any readable arc/edge map. The values of the map indicate the
278 /// \retval out Here we also have a choice.
279 /// - It can be a writable \c bool arc/edge map. After running the
280 /// algorithm it will contain the found minimum cost spanning
281 /// tree: the value of an arc/edge will be set to \c true if it belongs
282 /// to the tree, otherwise it will be set to \c false. The value of
283 /// each arc/edge will be set exactly once.
284 /// - It can also be an iteraror of an STL Container with
285 /// <tt>GR::Arc</tt> or <tt>GR::Edge</tt> as its
286 /// <tt>value_type</tt>. The algorithm copies the elements of the
287 /// found tree into this sequence. For example, if we know that the
288 /// spanning tree of the graph \c g has say 53 arcs, then we can
289 /// put its arcs into an STL vector \c tree with a code like this.
291 /// std::vector<Arc> tree(53);
292 /// kruskal(g,cost,tree.begin());
294 /// Or if we don't know in advance the size of the tree, we can
297 /// std::vector<Arc> tree;
298 /// kruskal(g,cost,std::back_inserter(tree));
301 /// \return The total cost of the found spanning tree.
303 /// \note If the input graph is not (weakly) connected, a spanning
304 /// forest is calculated instead of a spanning tree.
307 template <class Graph, class In, class Out>
308 Value kruskal(GR const& g, const In& in, Out& out)
310 template <class Graph, class In, class Out>
311 inline typename _kruskal_bits::KruskalValueSelector<In>::Value
312 kruskal(const Graph& graph, const In& in, Out& out)
315 return _kruskal_bits::KruskalInputSelector<Graph, In, Out>::
316 kruskal(graph, in, out);
322 template <class Graph, class In, class Out>
323 inline typename _kruskal_bits::KruskalValueSelector<In>::Value
324 kruskal(const Graph& graph, const In& in, const Out& out)
326 return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>::
327 kruskal(graph, in, out);
332 #endif //LEMON_KRUSKAL_H