1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_DIJKSTRA_H
20 #define LEMON_DIJKSTRA_H
22 ///\ingroup shortest_path
24 ///\brief Dijkstra algorithm.
27 #include <lemon/list_graph.h>
28 #include <lemon/bin_heap.h>
29 #include <lemon/bits/path_dump.h>
30 #include <lemon/core.h>
31 #include <lemon/error.h>
32 #include <lemon/maps.h>
33 #include <lemon/path.h>
37 /// \brief Default operation traits for the Dijkstra algorithm class.
39 /// This operation traits class defines all computational operations and
40 /// constants which are used in the Dijkstra algorithm.
41 template <typename Value>
42 struct DijkstraDefaultOperationTraits {
43 /// \brief Gives back the zero value of the type.
45 return static_cast<Value>(0);
47 /// \brief Gives back the sum of the given two elements.
48 static Value plus(const Value& left, const Value& right) {
51 /// \brief Gives back true only if the first value is less than the second.
52 static bool less(const Value& left, const Value& right) {
57 /// \brief Widest path operation traits for the Dijkstra algorithm class.
59 /// This operation traits class defines all computational operations and
60 /// constants which are used in the Dijkstra algorithm for widest path
63 /// \see DijkstraDefaultOperationTraits
64 template <typename Value>
65 struct DijkstraWidestPathOperationTraits {
66 /// \brief Gives back the maximum value of the type.
68 return std::numeric_limits<Value>::max();
70 /// \brief Gives back the minimum of the given two elements.
71 static Value plus(const Value& left, const Value& right) {
72 return std::min(left, right);
74 /// \brief Gives back true only if the first value is less than the second.
75 static bool less(const Value& left, const Value& right) {
80 ///Default traits class of Dijkstra class.
82 ///Default traits class of Dijkstra class.
83 ///\tparam GR The type of the digraph.
84 ///\tparam LM The type of the length map.
85 template<class GR, class LM>
86 struct DijkstraDefaultTraits
88 ///The type of the digraph the algorithm runs on.
91 ///The type of the map that stores the arc lengths.
93 ///The type of the map that stores the arc lengths.
94 ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
96 ///The type of the length of the arcs.
97 typedef typename LM::Value Value;
99 /// Operation traits for Dijkstra algorithm.
101 /// This class defines the operations that are used in the algorithm.
102 /// \see DijkstraDefaultOperationTraits
103 typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
105 /// The cross reference type used by the heap.
107 /// The cross reference type used by the heap.
108 /// Usually it is \c Digraph::NodeMap<int>.
109 typedef typename Digraph::template NodeMap<int> HeapCrossRef;
110 ///Instantiates a \ref HeapCrossRef.
112 ///This function instantiates a \ref HeapCrossRef.
113 /// \param g is the digraph, to which we would like to define the
114 /// \ref HeapCrossRef.
115 static HeapCrossRef *createHeapCrossRef(const Digraph &g)
117 return new HeapCrossRef(g);
120 ///The heap type used by the Dijkstra algorithm.
122 ///The heap type used by the Dijkstra algorithm.
126 typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap;
127 ///Instantiates a \ref Heap.
129 ///This function instantiates a \ref Heap.
130 static Heap *createHeap(HeapCrossRef& r)
135 ///\brief The type of the map that stores the predecessor
136 ///arcs of the shortest paths.
138 ///The type of the map that stores the predecessor
139 ///arcs of the shortest paths.
140 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
141 typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
142 ///Instantiates a \ref PredMap.
144 ///This function instantiates a \ref PredMap.
145 ///\param g is the digraph, to which we would like to define the
147 ///\todo The digraph alone may be insufficient for the initialization
148 static PredMap *createPredMap(const Digraph &g)
150 return new PredMap(g);
153 ///The type of the map that indicates which nodes are processed.
155 ///The type of the map that indicates which nodes are processed.
156 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
157 ///By default it is a NullMap.
158 ///\todo If it is set to a real map,
159 ///Dijkstra::processed() should read this.
160 typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
161 ///Instantiates a \ref ProcessedMap.
163 ///This function instantiates a \ref ProcessedMap.
164 ///\param g is the digraph, to which
165 ///we would like to define the \ref ProcessedMap
167 static ProcessedMap *createProcessedMap(const Digraph &g)
169 static ProcessedMap *createProcessedMap(const Digraph &)
172 return new ProcessedMap();
175 ///The type of the map that stores the distances of the nodes.
177 ///The type of the map that stores the distances of the nodes.
178 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
179 typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
180 ///Instantiates a \ref DistMap.
182 ///This function instantiates a \ref DistMap.
183 ///\param g is the digraph, to which we would like to define
185 static DistMap *createDistMap(const Digraph &g)
187 return new DistMap(g);
191 ///%Dijkstra algorithm class.
193 /// \ingroup shortest_path
194 ///This class provides an efficient implementation of the %Dijkstra algorithm.
196 ///The arc lengths are passed to the algorithm using a
197 ///\ref concepts::ReadMap "ReadMap",
198 ///so it is easy to change it to any kind of length.
199 ///The type of the length is determined by the
200 ///\ref concepts::ReadMap::Value "Value" of the length map.
201 ///It is also possible to change the underlying priority heap.
203 ///There is also a \ref dijkstra() "function-type interface" for the
204 ///%Dijkstra algorithm, which is convenient in the simplier cases and
205 ///it can be used easier.
207 ///\tparam GR The type of the digraph the algorithm runs on.
208 ///The default value is \ref ListDigraph.
209 ///The value of GR is not used directly by \ref Dijkstra, it is only
210 ///passed to \ref DijkstraDefaultTraits.
211 ///\tparam LM A readable arc map that determines the lengths of the
212 ///arcs. It is read once for each arc, so the map may involve in
213 ///relatively time consuming process to compute the arc lengths if
214 ///it is necessary. The default map type is \ref
215 ///concepts::Digraph::ArcMap "Digraph::ArcMap<int>".
216 ///The value of LM is not used directly by \ref Dijkstra, it is only
217 ///passed to \ref DijkstraDefaultTraits.
218 ///\tparam TR Traits class to set various data types used by the algorithm.
219 ///The default traits class is \ref DijkstraDefaultTraits
220 ///"DijkstraDefaultTraits<GR,LM>". See \ref DijkstraDefaultTraits
221 ///for the documentation of a Dijkstra traits class.
223 template <typename GR, typename LM, typename TR>
225 template <typename GR=ListDigraph,
226 typename LM=typename GR::template ArcMap<int>,
227 typename TR=DijkstraDefaultTraits<GR,LM> >
231 ///\ref Exception for uninitialized parameters.
233 ///This error represents problems in the initialization of the
234 ///parameters of the algorithm.
235 class UninitializedParameter : public lemon::UninitializedParameter {
237 virtual const char* what() const throw() {
238 return "lemon::Dijkstra::UninitializedParameter";
242 ///The type of the digraph the algorithm runs on.
243 typedef typename TR::Digraph Digraph;
245 ///The type of the length of the arcs.
246 typedef typename TR::LengthMap::Value Value;
247 ///The type of the map that stores the arc lengths.
248 typedef typename TR::LengthMap LengthMap;
249 ///\brief The type of the map that stores the predecessor arcs of the
251 typedef typename TR::PredMap PredMap;
252 ///The type of the map that stores the distances of the nodes.
253 typedef typename TR::DistMap DistMap;
254 ///The type of the map that indicates which nodes are processed.
255 typedef typename TR::ProcessedMap ProcessedMap;
256 ///The type of the paths.
257 typedef PredMapPath<Digraph, PredMap> Path;
258 ///The cross reference type used for the current heap.
259 typedef typename TR::HeapCrossRef HeapCrossRef;
260 ///The heap type used by the algorithm.
261 typedef typename TR::Heap Heap;
262 ///The operation traits class.
263 typedef typename TR::OperationTraits OperationTraits;
270 typedef typename Digraph::Node Node;
271 typedef typename Digraph::NodeIt NodeIt;
272 typedef typename Digraph::Arc Arc;
273 typedef typename Digraph::OutArcIt OutArcIt;
275 //Pointer to the underlying digraph.
277 //Pointer to the length map.
278 const LengthMap *length;
279 //Pointer to the map of predecessors arcs.
281 //Indicates if _pred is locally allocated (true) or not.
283 //Pointer to the map of distances.
285 //Indicates if _dist is locally allocated (true) or not.
287 //Pointer to the map of processed status of the nodes.
288 ProcessedMap *_processed;
289 //Indicates if _processed is locally allocated (true) or not.
290 bool local_processed;
291 //Pointer to the heap cross references.
292 HeapCrossRef *_heap_cross_ref;
293 //Indicates if _heap_cross_ref is locally allocated (true) or not.
294 bool local_heap_cross_ref;
295 //Pointer to the heap.
297 //Indicates if _heap is locally allocated (true) or not.
300 ///Creates the maps if necessary.
301 ///\todo Better memory allocation (instead of new).
306 _pred = Traits::createPredMap(*G);
310 _dist = Traits::createDistMap(*G);
313 local_processed = true;
314 _processed = Traits::createProcessedMap(*G);
316 if (!_heap_cross_ref) {
317 local_heap_cross_ref = true;
318 _heap_cross_ref = Traits::createHeapCrossRef(*G);
322 _heap = Traits::createHeap(*_heap_cross_ref);
328 typedef Dijkstra Create;
330 ///\name Named template parameters
335 struct SetPredMapTraits : public Traits {
337 static PredMap *createPredMap(const Digraph &)
339 throw UninitializedParameter();
342 ///\brief \ref named-templ-param "Named parameter" for setting
343 ///\ref PredMap type.
345 ///\ref named-templ-param "Named parameter" for setting
346 ///\ref PredMap type.
349 : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
350 typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;
354 struct SetDistMapTraits : public Traits {
356 static DistMap *createDistMap(const Digraph &)
358 throw UninitializedParameter();
361 ///\brief \ref named-templ-param "Named parameter" for setting
362 ///\ref DistMap type.
364 ///\ref named-templ-param "Named parameter" for setting
365 ///\ref DistMap type.
368 : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
369 typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;
373 struct SetProcessedMapTraits : public Traits {
374 typedef T ProcessedMap;
375 static ProcessedMap *createProcessedMap(const Digraph &)
377 throw UninitializedParameter();
380 ///\brief \ref named-templ-param "Named parameter" for setting
381 ///\ref ProcessedMap type.
383 ///\ref named-templ-param "Named parameter" for setting
384 ///\ref ProcessedMap type.
386 struct SetProcessedMap
387 : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
388 typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;
391 struct SetStandardProcessedMapTraits : public Traits {
392 typedef typename Digraph::template NodeMap<bool> ProcessedMap;
393 static ProcessedMap *createProcessedMap(const Digraph &g)
395 return new ProcessedMap(g);
398 ///\brief \ref named-templ-param "Named parameter" for setting
399 ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
401 ///\ref named-templ-param "Named parameter" for setting
402 ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
403 ///If you don't set it explicitly, it will be automatically allocated.
404 struct SetStandardProcessedMap
405 : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
406 typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits >
410 template <class H, class CR>
411 struct SetHeapTraits : public Traits {
412 typedef CR HeapCrossRef;
414 static HeapCrossRef *createHeapCrossRef(const Digraph &) {
415 throw UninitializedParameter();
417 static Heap *createHeap(HeapCrossRef &)
419 throw UninitializedParameter();
422 ///\brief \ref named-templ-param "Named parameter" for setting
423 ///heap and cross reference type
425 ///\ref named-templ-param "Named parameter" for setting heap and cross
427 template <class H, class CR = typename Digraph::template NodeMap<int> >
429 : public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
430 typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create;
433 template <class H, class CR>
434 struct SetStandardHeapTraits : public Traits {
435 typedef CR HeapCrossRef;
437 static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
438 return new HeapCrossRef(G);
440 static Heap *createHeap(HeapCrossRef &R)
445 ///\brief \ref named-templ-param "Named parameter" for setting
446 ///heap and cross reference type with automatic allocation
448 ///\ref named-templ-param "Named parameter" for setting heap and cross
449 ///reference type. It can allocate the heap and the cross reference
450 ///object if the cross reference's constructor waits for the digraph as
451 ///parameter and the heap's constructor waits for the cross reference.
452 template <class H, class CR = typename Digraph::template NodeMap<int> >
453 struct SetStandardHeap
454 : public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
455 typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> >
460 struct SetOperationTraitsTraits : public Traits {
461 typedef T OperationTraits;
464 /// \brief \ref named-templ-param "Named parameter" for setting
465 ///\ref OperationTraits type
467 ///\ref named-templ-param "Named parameter" for setting
468 ///\ref OperationTraits type.
470 struct SetOperationTraits
471 : public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
472 typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> >
487 ///\param _g The digraph the algorithm runs on.
488 ///\param _length The length map used by the algorithm.
489 Dijkstra(const Digraph& _g, const LengthMap& _length) :
490 G(&_g), length(&_length),
491 _pred(NULL), local_pred(false),
492 _dist(NULL), local_dist(false),
493 _processed(NULL), local_processed(false),
494 _heap_cross_ref(NULL), local_heap_cross_ref(false),
495 _heap(NULL), local_heap(false)
501 if(local_pred) delete _pred;
502 if(local_dist) delete _dist;
503 if(local_processed) delete _processed;
504 if(local_heap_cross_ref) delete _heap_cross_ref;
505 if(local_heap) delete _heap;
508 ///Sets the length map.
510 ///Sets the length map.
511 ///\return <tt> (*this) </tt>
512 Dijkstra &lengthMap(const LengthMap &m)
518 ///Sets the map that stores the predecessor arcs.
520 ///Sets the map that stores the predecessor arcs.
521 ///If you don't use this function before calling \ref run(),
522 ///it will allocate one. The destructor deallocates this
523 ///automatically allocated map, of course.
524 ///\return <tt> (*this) </tt>
525 Dijkstra &predMap(PredMap &m)
535 ///Sets the map that indicates which nodes are processed.
537 ///Sets the map that indicates which nodes are processed.
538 ///If you don't use this function before calling \ref run(),
539 ///it will allocate one. The destructor deallocates this
540 ///automatically allocated map, of course.
541 ///\return <tt> (*this) </tt>
542 Dijkstra &processedMap(ProcessedMap &m)
544 if(local_processed) {
546 local_processed=false;
552 ///Sets the map that stores the distances of the nodes.
554 ///Sets the map that stores the distances of the nodes calculated by the
556 ///If you don't use this function before calling \ref run(),
557 ///it will allocate one. The destructor deallocates this
558 ///automatically allocated map, of course.
559 ///\return <tt> (*this) </tt>
560 Dijkstra &distMap(DistMap &m)
570 ///Sets the heap and the cross reference used by algorithm.
572 ///Sets the heap and the cross reference used by algorithm.
573 ///If you don't use this function before calling \ref run(),
574 ///it will allocate one. The destructor deallocates this
575 ///automatically allocated heap and cross reference, of course.
576 ///\return <tt> (*this) </tt>
577 Dijkstra &heap(Heap& hp, HeapCrossRef &cr)
579 if(local_heap_cross_ref) {
580 delete _heap_cross_ref;
581 local_heap_cross_ref=false;
583 _heap_cross_ref = &cr;
594 void finalizeNodeData(Node v,Value dst)
596 _processed->set(v,true);
602 ///\name Execution control
603 ///The simplest way to execute the algorithm is to use one of the
604 ///member functions called \ref lemon::Dijkstra::run() "run()".
606 ///If you need more control on the execution, first you must call
607 ///\ref lemon::Dijkstra::init() "init()", then you can add several
608 ///source nodes with \ref lemon::Dijkstra::addSource() "addSource()".
609 ///Finally \ref lemon::Dijkstra::start() "start()" will perform the
610 ///actual path computation.
614 ///Initializes the internal data structures.
616 ///Initializes the internal data structures.
622 for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
623 _pred->set(u,INVALID);
624 _processed->set(u,false);
625 _heap_cross_ref->set(u,Heap::PRE_HEAP);
629 ///Adds a new source node.
631 ///Adds a new source node to the priority heap.
632 ///The optional second parameter is the initial distance of the node.
634 ///The function checks if the node has already been added to the heap and
635 ///it is pushed to the heap only if either it was not in the heap
636 ///or the shortest path found till then is shorter than \c dst.
637 void addSource(Node s,Value dst=OperationTraits::zero())
639 if(_heap->state(s) != Heap::IN_HEAP) {
641 } else if(OperationTraits::less((*_heap)[s], dst)) {
643 _pred->set(s,INVALID);
647 ///Processes the next node in the priority heap
649 ///Processes the next node in the priority heap.
651 ///\return The processed node.
653 ///\warning The priority heap must not be empty.
654 Node processNextNode()
657 Value oldvalue=_heap->prio();
659 finalizeNodeData(v,oldvalue);
661 for(OutArcIt e(*G,v); e!=INVALID; ++e) {
663 switch(_heap->state(w)) {
665 _heap->push(w,OperationTraits::plus(oldvalue, (*length)[e]));
670 Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]);
671 if ( OperationTraits::less(newvalue, (*_heap)[w]) ) {
672 _heap->decrease(w, newvalue);
677 case Heap::POST_HEAP:
684 ///The next node to be processed.
686 ///Returns the next node to be processed or \c INVALID if the
687 ///priority heap is empty.
688 Node nextNode() const
690 return !_heap->empty()?_heap->top():INVALID;
693 ///\brief Returns \c false if there are nodes
696 ///Returns \c false if there are nodes
697 ///to be processed in the priority heap.
698 bool emptyQueue() const { return _heap->empty(); }
700 ///Returns the number of the nodes to be processed in the priority heap
702 ///Returns the number of the nodes to be processed in the priority heap.
704 int queueSize() const { return _heap->size(); }
706 ///Executes the algorithm.
708 ///Executes the algorithm.
710 ///This method runs the %Dijkstra algorithm from the root node(s)
711 ///in order to compute the shortest path to each node.
713 ///The algorithm computes
714 ///- the shortest path tree (forest),
715 ///- the distance of each node from the root(s).
717 ///\pre init() must be called and at least one root node should be
718 ///added with addSource() before using this function.
720 ///\note <tt>d.start()</tt> is just a shortcut of the following code.
722 /// while ( !d.emptyQueue() ) {
723 /// d.processNextNode();
728 while ( !emptyQueue() ) processNextNode();
731 ///Executes the algorithm until the given target node is reached.
733 ///Executes the algorithm until the given target node is reached.
735 ///This method runs the %Dijkstra algorithm from the root node(s)
736 ///in order to compute the shortest path to \c dest.
738 ///The algorithm computes
739 ///- the shortest path to \c dest,
740 ///- the distance of \c dest from the root(s).
742 ///\pre init() must be called and at least one root node should be
743 ///added with addSource() before using this function.
744 void start(Node dest)
746 while ( !_heap->empty() && _heap->top()!=dest ) processNextNode();
747 if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
750 ///Executes the algorithm until a condition is met.
752 ///Executes the algorithm until a condition is met.
754 ///This method runs the %Dijkstra algorithm from the root node(s) in
755 ///order to compute the shortest path to a node \c v with
756 /// <tt>nm[v]</tt> true, if such a node can be found.
758 ///\param nm A \c bool (or convertible) node map. The algorithm
759 ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
761 ///\return The reached node \c v with <tt>nm[v]</tt> true or
762 ///\c INVALID if no such node was found.
764 ///\pre init() must be called and at least one root node should be
765 ///added with addSource() before using this function.
766 template<class NodeBoolMap>
767 Node start(const NodeBoolMap &nm)
769 while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
770 if ( _heap->empty() ) return INVALID;
771 finalizeNodeData(_heap->top(),_heap->prio());
775 ///Runs the algorithm from the given node.
777 ///This method runs the %Dijkstra algorithm from node \c s
778 ///in order to compute the shortest path to each node.
780 ///The algorithm computes
781 ///- the shortest path tree,
782 ///- the distance of each node from the root.
784 ///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
796 ///Finds the shortest path between \c s and \c t.
798 ///This method runs the %Dijkstra algorithm from node \c s
799 ///in order to compute the shortest path to \c t.
801 ///\return The length of the shortest <tt>s</tt>--<tt>t</tt> path,
802 ///if \c t is reachable form \c s, \c 0 otherwise.
804 ///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a
805 ///shortcut of the following code.
811 Value run(Node s,Node t) {
815 return (*_pred)[t]==INVALID?OperationTraits::zero():(*_dist)[t];
820 ///\name Query Functions
821 ///The result of the %Dijkstra algorithm can be obtained using these
823 ///Either \ref lemon::Dijkstra::run() "run()" or
824 ///\ref lemon::Dijkstra::start() "start()" must be called before
829 ///The shortest path to a node.
831 ///Returns the shortest path to a node.
833 ///\warning \c t should be reachable from the root(s).
835 ///\pre Either \ref run() or \ref start() must be called before
836 ///using this function.
837 Path path(Node t) const { return Path(*G, *_pred, t); }
839 ///The distance of a node from the root(s).
841 ///Returns the distance of a node from the root(s).
843 ///\warning If node \c v is not reachable from the root(s), then
844 ///the return value of this function is undefined.
846 ///\pre Either \ref run() or \ref start() must be called before
847 ///using this function.
848 Value dist(Node v) const { return (*_dist)[v]; }
850 ///Returns the 'previous arc' of the shortest path tree for a node.
852 ///This function returns the 'previous arc' of the shortest path
853 ///tree for the node \c v, i.e. it returns the last arc of a
854 ///shortest path from the root(s) to \c v. It is \c INVALID if \c v
855 ///is not reachable from the root(s) or if \c v is a root.
857 ///The shortest path tree used here is equal to the shortest path
858 ///tree used in \ref predNode().
860 ///\pre Either \ref run() or \ref start() must be called before
861 ///using this function.
862 Arc predArc(Node v) const { return (*_pred)[v]; }
864 ///Returns the 'previous node' of the shortest path tree for a node.
866 ///This function returns the 'previous node' of the shortest path
867 ///tree for the node \c v, i.e. it returns the last but one node
868 ///from a shortest path from the root(s) to \c v. It is \c INVALID
869 ///if \c v is not reachable from the root(s) or if \c v is a root.
871 ///The shortest path tree used here is equal to the shortest path
872 ///tree used in \ref predArc().
874 ///\pre Either \ref run() or \ref start() must be called before
875 ///using this function.
876 Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
877 G->source((*_pred)[v]); }
879 ///\brief Returns a const reference to the node map that stores the
880 ///distances of the nodes.
882 ///Returns a const reference to the node map that stores the distances
883 ///of the nodes calculated by the algorithm.
885 ///\pre Either \ref run() or \ref init()
886 ///must be called before using this function.
887 const DistMap &distMap() const { return *_dist;}
889 ///\brief Returns a const reference to the node map that stores the
892 ///Returns a const reference to the node map that stores the predecessor
893 ///arcs, which form the shortest path tree.
895 ///\pre Either \ref run() or \ref init()
896 ///must be called before using this function.
897 const PredMap &predMap() const { return *_pred;}
899 ///Checks if a node is reachable from the root(s).
901 ///Returns \c true if \c v is reachable from the root(s).
902 ///\pre Either \ref run() or \ref start()
903 ///must be called before using this function.
904 bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
907 ///Checks if a node is processed.
909 ///Returns \c true if \c v is processed, i.e. the shortest
910 ///path to \c v has already found.
911 ///\pre Either \ref run() or \ref start()
912 ///must be called before using this function.
913 bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
916 ///The current distance of a node from the root(s).
918 ///Returns the current distance of a node from the root(s).
919 ///It may be decreased in the following processes.
920 ///\pre \c v should be reached but not processed.
921 Value currentDist(Node v) const { return (*_heap)[v]; }
927 ///Default traits class of dijkstra() function.
929 ///Default traits class of dijkstra() function.
930 ///\tparam GR The type of the digraph.
931 ///\tparam LM The type of the length map.
932 template<class GR, class LM>
933 struct DijkstraWizardDefaultTraits
935 ///The type of the digraph the algorithm runs on.
937 ///The type of the map that stores the arc lengths.
939 ///The type of the map that stores the arc lengths.
940 ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
941 typedef LM LengthMap;
942 ///The type of the length of the arcs.
943 typedef typename LM::Value Value;
945 /// Operation traits for Dijkstra algorithm.
947 /// This class defines the operations that are used in the algorithm.
948 /// \see DijkstraDefaultOperationTraits
949 typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
951 /// The cross reference type used by the heap.
953 /// The cross reference type used by the heap.
954 /// Usually it is \c Digraph::NodeMap<int>.
955 typedef typename Digraph::template NodeMap<int> HeapCrossRef;
956 ///Instantiates a \ref HeapCrossRef.
958 ///This function instantiates a \ref HeapCrossRef.
959 /// \param g is the digraph, to which we would like to define the
961 /// \todo The digraph alone may be insufficient for the initialization
962 static HeapCrossRef *createHeapCrossRef(const Digraph &g)
964 return new HeapCrossRef(g);
967 ///The heap type used by the Dijkstra algorithm.
969 ///The heap type used by the Dijkstra algorithm.
973 typedef BinHeap<Value, typename Digraph::template NodeMap<int>,
974 std::less<Value> > Heap;
976 ///Instantiates a \ref Heap.
978 ///This function instantiates a \ref Heap.
979 /// \param r is the HeapCrossRef which is used.
980 static Heap *createHeap(HeapCrossRef& r)
985 ///\brief The type of the map that stores the predecessor
986 ///arcs of the shortest paths.
988 ///The type of the map that stores the predecessor
989 ///arcs of the shortest paths.
990 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
991 typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
992 ///Instantiates a \ref PredMap.
994 ///This function instantiates a \ref PredMap.
995 ///\param g is the digraph, to which we would like to define the
997 ///\todo The digraph alone may be insufficient to initialize
998 static PredMap *createPredMap(const Digraph &g)
1000 return new PredMap(g);
1003 ///The type of the map that indicates which nodes are processed.
1005 ///The type of the map that indicates which nodes are processed.
1006 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
1007 ///By default it is a NullMap.
1008 ///\todo If it is set to a real map,
1009 ///Dijkstra::processed() should read this.
1010 ///\todo named parameter to set this type, function to read and write.
1011 typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
1012 ///Instantiates a \ref ProcessedMap.
1014 ///This function instantiates a \ref ProcessedMap.
1015 ///\param g is the digraph, to which
1016 ///we would like to define the \ref ProcessedMap.
1018 static ProcessedMap *createProcessedMap(const Digraph &g)
1020 static ProcessedMap *createProcessedMap(const Digraph &)
1023 return new ProcessedMap();
1026 ///The type of the map that stores the distances of the nodes.
1028 ///The type of the map that stores the distances of the nodes.
1029 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
1030 typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
1031 ///Instantiates a \ref DistMap.
1033 ///This function instantiates a \ref DistMap.
1034 ///\param g is the digraph, to which we would like to define
1036 static DistMap *createDistMap(const Digraph &g)
1038 return new DistMap(g);
1041 ///The type of the shortest paths.
1043 ///The type of the shortest paths.
1044 ///It must meet the \ref concepts::Path "Path" concept.
1045 typedef lemon::Path<Digraph> Path;
1048 /// Default traits class used by \ref DijkstraWizard
1050 /// To make it easier to use Dijkstra algorithm
1051 /// we have created a wizard class.
1052 /// This \ref DijkstraWizard class needs default traits,
1053 /// as well as the \ref Dijkstra class.
1054 /// The \ref DijkstraWizardBase is a class to be the default traits of the
1055 /// \ref DijkstraWizard class.
1056 /// \todo More named parameters are required...
1057 template<class GR,class LM>
1058 class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
1060 typedef DijkstraWizardDefaultTraits<GR,LM> Base;
1062 //The type of the nodes in the digraph.
1063 typedef typename Base::Digraph::Node Node;
1065 //Pointer to the digraph the algorithm runs on.
1067 //Pointer to the length map.
1069 //Pointer to the map of processed nodes.
1071 //Pointer to the map of predecessors arcs.
1073 //Pointer to the map of distances.
1075 //Pointer to the shortest path to the target node.
1077 //Pointer to the distance of the target node.
1083 /// This constructor does not require parameters, therefore it initiates
1084 /// all of the attributes to \c 0.
1085 DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0),
1086 _dist(0), _path(0), _di(0) {}
1090 /// This constructor requires two parameters,
1091 /// others are initiated to \c 0.
1092 /// \param g The digraph the algorithm runs on.
1093 /// \param l The length map.
1094 DijkstraWizardBase(const GR &g,const LM &l) :
1095 _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
1096 _length(reinterpret_cast<void*>(const_cast<LM*>(&l))),
1097 _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
1101 /// Auxiliary class for the function-type interface of Dijkstra algorithm.
1103 /// This auxiliary class is created to implement the
1104 /// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm.
1105 /// It does not have own \ref run() method, it uses the functions
1106 /// and features of the plain \ref Dijkstra.
1108 /// This class should only be used through the \ref dijkstra() function,
1109 /// which makes it easier to use the algorithm.
1111 class DijkstraWizard : public TR
1115 ///The type of the digraph the algorithm runs on.
1116 typedef typename TR::Digraph Digraph;
1118 typedef typename Digraph::Node Node;
1119 typedef typename Digraph::NodeIt NodeIt;
1120 typedef typename Digraph::Arc Arc;
1121 typedef typename Digraph::OutArcIt OutArcIt;
1123 ///The type of the map that stores the arc lengths.
1124 typedef typename TR::LengthMap LengthMap;
1125 ///The type of the length of the arcs.
1126 typedef typename LengthMap::Value Value;
1127 ///\brief The type of the map that stores the predecessor
1128 ///arcs of the shortest paths.
1129 typedef typename TR::PredMap PredMap;
1130 ///The type of the map that stores the distances of the nodes.
1131 typedef typename TR::DistMap DistMap;
1132 ///The type of the map that indicates which nodes are processed.
1133 typedef typename TR::ProcessedMap ProcessedMap;
1134 ///The type of the shortest paths
1135 typedef typename TR::Path Path;
1136 ///The heap type used by the dijkstra algorithm.
1137 typedef typename TR::Heap Heap;
1142 DijkstraWizard() : TR() {}
1144 /// Constructor that requires parameters.
1146 /// Constructor that requires parameters.
1147 /// These parameters will be the default values for the traits class.
1148 /// \param g The digraph the algorithm runs on.
1149 /// \param l The length map.
1150 DijkstraWizard(const Digraph &g, const LengthMap &l) :
1154 DijkstraWizard(const TR &b) : TR(b) {}
1156 ~DijkstraWizard() {}
1158 ///Runs Dijkstra algorithm from the given source node.
1160 ///This method runs %Dijkstra algorithm from the given source node
1161 ///in order to compute the shortest path to each node.
1164 if (s==INVALID) throw UninitializedParameter();
1165 Dijkstra<Digraph,LengthMap,TR>
1166 dijk(*reinterpret_cast<const Digraph*>(Base::_g),
1167 *reinterpret_cast<const LengthMap*>(Base::_length));
1169 dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1171 dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1172 if (Base::_processed)
1173 dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1177 ///Finds the shortest path between \c s and \c t.
1179 ///This method runs the %Dijkstra algorithm from node \c s
1180 ///in order to compute the shortest path to node \c t
1181 ///(it stops searching when \c t is processed).
1183 ///\return \c true if \c t is reachable form \c s.
1184 bool run(Node s, Node t)
1186 if (s==INVALID || t==INVALID) throw UninitializedParameter();
1187 Dijkstra<Digraph,LengthMap,TR>
1188 dijk(*reinterpret_cast<const Digraph*>(Base::_g),
1189 *reinterpret_cast<const LengthMap*>(Base::_length));
1191 dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1193 dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1194 if (Base::_processed)
1195 dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1198 *reinterpret_cast<Path*>(Base::_path) = dijk.path(t);
1200 *reinterpret_cast<Value*>(Base::_di) = dijk.dist(t);
1201 return dijk.reached(t);
1205 struct SetPredMapBase : public Base {
1207 static PredMap *createPredMap(const Digraph &) { return 0; };
1208 SetPredMapBase(const TR &b) : TR(b) {}
1210 ///\brief \ref named-func-param "Named parameter"
1211 ///for setting \ref PredMap object.
1213 ///\ref named-func-param "Named parameter"
1214 ///for setting \ref PredMap object.
1216 DijkstraWizard<SetPredMapBase<T> > predMap(const T &t)
1218 Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1219 return DijkstraWizard<SetPredMapBase<T> >(*this);
1223 struct SetDistMapBase : public Base {
1225 static DistMap *createDistMap(const Digraph &) { return 0; };
1226 SetDistMapBase(const TR &b) : TR(b) {}
1228 ///\brief \ref named-func-param "Named parameter"
1229 ///for setting \ref DistMap object.
1231 ///\ref named-func-param "Named parameter"
1232 ///for setting \ref DistMap object.
1234 DijkstraWizard<SetDistMapBase<T> > distMap(const T &t)
1236 Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1237 return DijkstraWizard<SetDistMapBase<T> >(*this);
1241 struct SetProcessedMapBase : public Base {
1242 typedef T ProcessedMap;
1243 static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1244 SetProcessedMapBase(const TR &b) : TR(b) {}
1246 ///\brief \ref named-func-param "Named parameter"
1247 ///for setting \ref ProcessedMap object.
1249 /// \ref named-func-param "Named parameter"
1250 ///for setting \ref ProcessedMap object.
1252 DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t)
1254 Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1255 return DijkstraWizard<SetProcessedMapBase<T> >(*this);
1259 struct SetPathBase : public Base {
1261 SetPathBase(const TR &b) : TR(b) {}
1263 ///\brief \ref named-func-param "Named parameter"
1264 ///for getting the shortest path to the target node.
1266 ///\ref named-func-param "Named parameter"
1267 ///for getting the shortest path to the target node.
1269 DijkstraWizard<SetPathBase<T> > path(const T &t)
1271 Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
1272 return DijkstraWizard<SetPathBase<T> >(*this);
1275 ///\brief \ref named-func-param "Named parameter"
1276 ///for getting the distance of the target node.
1278 ///\ref named-func-param "Named parameter"
1279 ///for getting the distance of the target node.
1280 DijkstraWizard dist(const Value &d)
1282 Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
1288 ///Function-type interface for Dijkstra algorithm.
1290 /// \ingroup shortest_path
1291 ///Function-type interface for Dijkstra algorithm.
1293 ///This function also has several \ref named-func-param "named parameters",
1294 ///they are declared as the members of class \ref DijkstraWizard.
1295 ///The following examples show how to use these parameters.
1297 /// // Compute shortest path from node s to each node
1298 /// dijkstra(g,length).predMap(preds).distMap(dists).run(s);
1300 /// // Compute shortest path from s to t
1301 /// bool reached = dijkstra(g,length).path(p).dist(d).run(s,t);
1303 ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
1304 ///to the end of the parameter list.
1305 ///\sa DijkstraWizard
1307 template<class GR, class LM>
1308 DijkstraWizard<DijkstraWizardBase<GR,LM> >
1309 dijkstra(const GR &digraph, const LM &length)
1311 return DijkstraWizard<DijkstraWizardBase<GR,LM> >(digraph,length);
1314 } //END OF NAMESPACE LEMON