alpar@209: /* -*- mode: C++; indent-tabs-mode: nil; -*- deba@57: * alpar@209: * This file is a part of LEMON, a generic C++ optimization library. deba@57: * alpar@440: * Copyright (C) 2003-2009 deba@57: * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport deba@57: * (Egervary Research Group on Combinatorial Optimization, EGRES). deba@57: * deba@57: * Permission to use, modify and distribute this software is granted deba@57: * provided that this copyright notice appears in all copies. For deba@57: * precise terms see the accompanying LICENSE file. deba@57: * deba@57: * This software is provided "AS IS" with no warranty of any kind, deba@57: * express or implied, and with no claim as to its suitability for any deba@57: * purpose. deba@57: * deba@57: */ deba@57: deba@529: #ifndef LEMON_CONCEPTS_DIGRAPH_H deba@529: #define LEMON_CONCEPTS_DIGRAPH_H deba@57: deba@57: ///\ingroup graph_concepts deba@57: ///\file deba@57: ///\brief The concept of directed graphs. deba@57: deba@220: #include deba@57: #include deba@57: #include deba@57: #include deba@57: deba@57: namespace lemon { deba@57: namespace concepts { deba@57: deba@57: /// \ingroup graph_concepts deba@57: /// deba@57: /// \brief Class describing the concept of directed graphs. deba@57: /// deba@57: /// This class describes the \ref concept "concept" of the deba@57: /// immutable directed digraphs. deba@57: /// deba@57: /// Note that actual digraph implementation like @ref ListDigraph or deba@57: /// @ref SmartDigraph may have several additional functionality. deba@57: /// deba@57: /// \sa concept deba@57: class Digraph { deba@57: private: deba@57: ///Digraphs are \e not copy constructible. Use DigraphCopy() instead. alpar@209: deba@57: ///Digraphs are \e not copy constructible. Use DigraphCopy() instead. deba@57: /// deba@57: Digraph(const Digraph &) {}; deba@57: ///\brief Assignment of \ref Digraph "Digraph"s to another ones are deba@57: ///\e not allowed. Use DigraphCopy() instead. alpar@209: deba@57: ///Assignment of \ref Digraph "Digraph"s to another ones are deba@57: ///\e not allowed. Use DigraphCopy() instead. deba@57: deba@57: void operator=(const Digraph &) {} deba@57: public: deba@57: ///\e deba@57: deba@57: /// Defalult constructor. deba@57: deba@57: /// Defalult constructor. deba@57: /// deba@57: Digraph() { } deba@57: /// Class for identifying a node of the digraph deba@57: deba@57: /// This class identifies a node of the digraph. It also serves deba@57: /// as a base class of the node iterators, deba@57: /// thus they will convert to this type. deba@57: class Node { deba@57: public: deba@57: /// Default constructor deba@57: deba@57: /// @warning The default constructor sets the iterator deba@57: /// to an undefined value. deba@57: Node() { } deba@57: /// Copy constructor. deba@57: deba@57: /// Copy constructor. deba@57: /// deba@57: Node(const Node&) { } deba@57: deba@57: /// Invalid constructor \& conversion. deba@57: deba@57: /// This constructor initializes the iterator to be invalid. deba@57: /// \sa Invalid for more details. deba@57: Node(Invalid) { } deba@57: /// Equality operator deba@57: deba@57: /// Two iterators are equal if and only if they point to the deba@57: /// same object or both are invalid. deba@57: bool operator==(Node) const { return true; } deba@57: deba@57: /// Inequality operator alpar@209: deba@57: /// \sa operator==(Node n) deba@57: /// deba@57: bool operator!=(Node) const { return true; } deba@57: alpar@209: /// Artificial ordering operator. alpar@209: alpar@209: /// To allow the use of digraph descriptors as key type in std::map or alpar@209: /// similar associative container we require this. alpar@209: /// alpar@209: /// \note This operator only have to define some strict ordering of alpar@209: /// the items; this order has nothing to do with the iteration alpar@209: /// ordering of the items. alpar@209: bool operator<(Node) const { return false; } deba@57: deba@57: }; alpar@209: deba@57: /// This iterator goes through each node. deba@57: deba@57: /// This iterator goes through each node. deba@57: /// Its usage is quite simple, for example you can count the number deba@57: /// of nodes in digraph \c g of type \c Digraph like this: deba@57: ///\code deba@57: /// int count=0; deba@57: /// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; deba@57: ///\endcode deba@57: class NodeIt : public Node { deba@57: public: deba@57: /// Default constructor deba@57: deba@57: /// @warning The default constructor sets the iterator deba@57: /// to an undefined value. deba@57: NodeIt() { } deba@57: /// Copy constructor. alpar@209: deba@57: /// Copy constructor. deba@57: /// deba@57: NodeIt(const NodeIt& n) : Node(n) { } deba@57: /// Invalid constructor \& conversion. deba@57: deba@57: /// Initialize the iterator to be invalid. deba@57: /// \sa Invalid for more details. deba@57: NodeIt(Invalid) { } deba@57: /// Sets the iterator to the first node. deba@57: deba@57: /// Sets the iterator to the first node of \c g. deba@57: /// deba@57: NodeIt(const Digraph&) { } deba@57: /// Node -> NodeIt conversion. deba@57: alpar@209: /// Sets the iterator to the node of \c the digraph pointed by alpar@209: /// the trivial iterator. alpar@209: /// This feature necessitates that each time we deba@57: /// iterate the arc-set, the iteration order is the same. deba@57: NodeIt(const Digraph&, const Node&) { } deba@57: /// Next node. deba@57: deba@57: /// Assign the iterator to the next node. deba@57: /// deba@57: NodeIt& operator++() { return *this; } deba@57: }; alpar@209: alpar@209: deba@57: /// Class for identifying an arc of the digraph deba@57: deba@57: /// This class identifies an arc of the digraph. It also serves deba@57: /// as a base class of the arc iterators, deba@57: /// thus they will convert to this type. deba@57: class Arc { deba@57: public: deba@57: /// Default constructor deba@57: deba@57: /// @warning The default constructor sets the iterator deba@57: /// to an undefined value. deba@57: Arc() { } deba@57: /// Copy constructor. deba@57: deba@57: /// Copy constructor. deba@57: /// deba@57: Arc(const Arc&) { } deba@57: /// Initialize the iterator to be invalid. deba@57: deba@57: /// Initialize the iterator to be invalid. deba@57: /// deba@57: Arc(Invalid) { } deba@57: /// Equality operator deba@57: deba@57: /// Two iterators are equal if and only if they point to the deba@57: /// same object or both are invalid. deba@57: bool operator==(Arc) const { return true; } deba@57: /// Inequality operator deba@57: deba@57: /// \sa operator==(Arc n) deba@57: /// deba@57: bool operator!=(Arc) const { return true; } deba@57: alpar@209: /// Artificial ordering operator. alpar@209: alpar@209: /// To allow the use of digraph descriptors as key type in std::map or alpar@209: /// similar associative container we require this. alpar@209: /// alpar@209: /// \note This operator only have to define some strict ordering of alpar@209: /// the items; this order has nothing to do with the iteration alpar@209: /// ordering of the items. alpar@209: bool operator<(Arc) const { return false; } deba@57: }; alpar@209: deba@57: /// This iterator goes trough the outgoing arcs of a node. deba@57: deba@57: /// This iterator goes trough the \e outgoing arcs of a certain node deba@57: /// of a digraph. deba@57: /// Its usage is quite simple, for example you can count the number deba@57: /// of outgoing arcs of a node \c n deba@57: /// in digraph \c g of type \c Digraph as follows. deba@57: ///\code deba@57: /// int count=0; deba@57: /// for (Digraph::OutArcIt e(g, n); e!=INVALID; ++e) ++count; deba@57: ///\endcode alpar@209: deba@57: class OutArcIt : public Arc { deba@57: public: deba@57: /// Default constructor deba@57: deba@57: /// @warning The default constructor sets the iterator deba@57: /// to an undefined value. deba@57: OutArcIt() { } deba@57: /// Copy constructor. deba@57: deba@57: /// Copy constructor. deba@57: /// deba@57: OutArcIt(const OutArcIt& e) : Arc(e) { } deba@57: /// Initialize the iterator to be invalid. deba@57: deba@57: /// Initialize the iterator to be invalid. deba@57: /// deba@57: OutArcIt(Invalid) { } deba@57: /// This constructor sets the iterator to the first outgoing arc. alpar@209: deba@57: /// This constructor sets the iterator to the first outgoing arc of deba@57: /// the node. deba@57: OutArcIt(const Digraph&, const Node&) { } deba@57: /// Arc -> OutArcIt conversion deba@57: deba@57: /// Sets the iterator to the value of the trivial iterator. alpar@209: /// This feature necessitates that each time we deba@57: /// iterate the arc-set, the iteration order is the same. deba@57: OutArcIt(const Digraph&, const Arc&) { } deba@57: ///Next outgoing arc alpar@209: alpar@209: /// Assign the iterator to the next deba@57: /// outgoing arc of the corresponding node. deba@57: OutArcIt& operator++() { return *this; } deba@57: }; deba@57: deba@57: /// This iterator goes trough the incoming arcs of a node. deba@57: deba@57: /// This iterator goes trough the \e incoming arcs of a certain node deba@57: /// of a digraph. deba@57: /// Its usage is quite simple, for example you can count the number deba@57: /// of outgoing arcs of a node \c n deba@57: /// in digraph \c g of type \c Digraph as follows. deba@57: ///\code deba@57: /// int count=0; deba@57: /// for(Digraph::InArcIt e(g, n); e!=INVALID; ++e) ++count; deba@57: ///\endcode deba@57: deba@57: class InArcIt : public Arc { deba@57: public: deba@57: /// Default constructor deba@57: deba@57: /// @warning The default constructor sets the iterator deba@57: /// to an undefined value. deba@57: InArcIt() { } deba@57: /// Copy constructor. deba@57: deba@57: /// Copy constructor. deba@57: /// deba@57: InArcIt(const InArcIt& e) : Arc(e) { } deba@57: /// Initialize the iterator to be invalid. deba@57: deba@57: /// Initialize the iterator to be invalid. deba@57: /// deba@57: InArcIt(Invalid) { } deba@57: /// This constructor sets the iterator to first incoming arc. alpar@209: deba@57: /// This constructor set the iterator to the first incoming arc of deba@57: /// the node. deba@57: InArcIt(const Digraph&, const Node&) { } deba@57: /// Arc -> InArcIt conversion deba@57: deba@57: /// Sets the iterator to the value of the trivial iterator \c e. alpar@209: /// This feature necessitates that each time we deba@57: /// iterate the arc-set, the iteration order is the same. deba@57: InArcIt(const Digraph&, const Arc&) { } deba@57: /// Next incoming arc deba@57: deba@57: /// Assign the iterator to the next inarc of the corresponding node. deba@57: /// deba@57: InArcIt& operator++() { return *this; } deba@57: }; deba@57: /// This iterator goes through each arc. deba@57: deba@57: /// This iterator goes through each arc of a digraph. deba@57: /// Its usage is quite simple, for example you can count the number deba@57: /// of arcs in a digraph \c g of type \c Digraph as follows: deba@57: ///\code deba@57: /// int count=0; deba@57: /// for(Digraph::ArcIt e(g); e!=INVALID; ++e) ++count; deba@57: ///\endcode deba@57: class ArcIt : public Arc { deba@57: public: deba@57: /// Default constructor deba@57: deba@57: /// @warning The default constructor sets the iterator deba@57: /// to an undefined value. deba@57: ArcIt() { } deba@57: /// Copy constructor. deba@57: deba@57: /// Copy constructor. deba@57: /// deba@57: ArcIt(const ArcIt& e) : Arc(e) { } deba@57: /// Initialize the iterator to be invalid. deba@57: deba@57: /// Initialize the iterator to be invalid. deba@57: /// deba@57: ArcIt(Invalid) { } deba@57: /// This constructor sets the iterator to the first arc. alpar@209: deba@57: /// This constructor sets the iterator to the first arc of \c g. deba@57: ///@param g the digraph alpar@982: ArcIt(const Digraph& g) { ::lemon::ignore_unused_variable_warning(g); } deba@57: /// Arc -> ArcIt conversion deba@57: deba@57: /// Sets the iterator to the value of the trivial iterator \c e. alpar@209: /// This feature necessitates that each time we deba@57: /// iterate the arc-set, the iteration order is the same. alpar@209: ArcIt(const Digraph&, const Arc&) { } deba@57: ///Next arc alpar@209: deba@57: /// Assign the iterator to the next arc. deba@57: ArcIt& operator++() { return *this; } deba@57: }; deba@57: ///Gives back the target node of an arc. deba@57: deba@57: ///Gives back the target node of an arc. deba@57: /// deba@57: Node target(Arc) const { return INVALID; } deba@57: ///Gives back the source node of an arc. deba@57: deba@57: ///Gives back the source node of an arc. deba@57: /// deba@57: Node source(Arc) const { return INVALID; } deba@57: deba@61: /// \brief Returns the ID of the node. alpar@209: int id(Node) const { return -1; } deba@61: deba@61: /// \brief Returns the ID of the arc. alpar@209: int id(Arc) const { return -1; } deba@61: deba@61: /// \brief Returns the node with the given ID. deba@61: /// deba@61: /// \pre The argument should be a valid node ID in the graph. alpar@209: Node nodeFromId(int) const { return INVALID; } deba@61: deba@61: /// \brief Returns the arc with the given ID. deba@61: /// deba@61: /// \pre The argument should be a valid arc ID in the graph. alpar@209: Arc arcFromId(int) const { return INVALID; } deba@61: deba@61: /// \brief Returns an upper bound on the node IDs. alpar@209: int maxNodeId() const { return -1; } deba@61: deba@61: /// \brief Returns an upper bound on the arc IDs. alpar@209: int maxArcId() const { return -1; } deba@61: deba@57: void first(Node&) const {} deba@57: void next(Node&) const {} deba@57: deba@57: void first(Arc&) const {} deba@57: void next(Arc&) const {} deba@57: deba@57: deba@57: void firstIn(Arc&, const Node&) const {} deba@57: void nextIn(Arc&) const {} deba@57: deba@57: void firstOut(Arc&, const Node&) const {} deba@57: void nextOut(Arc&) const {} deba@57: deba@61: // The second parameter is dummy. deba@61: Node fromId(int, Node) const { return INVALID; } deba@61: // The second parameter is dummy. deba@61: Arc fromId(int, Arc) const { return INVALID; } deba@61: deba@61: // Dummy parameter. alpar@209: int maxId(Node) const { return -1; } deba@61: // Dummy parameter. alpar@209: int maxId(Arc) const { return -1; } deba@61: deba@57: /// \brief The base node of the iterator. deba@57: /// deba@57: /// Gives back the base node of the iterator. deba@57: /// It is always the target of the pointed arc. deba@57: Node baseNode(const InArcIt&) const { return INVALID; } deba@57: deba@57: /// \brief The running node of the iterator. deba@57: /// deba@57: /// Gives back the running node of the iterator. deba@57: /// It is always the source of the pointed arc. deba@57: Node runningNode(const InArcIt&) const { return INVALID; } deba@57: deba@57: /// \brief The base node of the iterator. deba@57: /// deba@57: /// Gives back the base node of the iterator. deba@57: /// It is always the source of the pointed arc. deba@57: Node baseNode(const OutArcIt&) const { return INVALID; } deba@57: deba@57: /// \brief The running node of the iterator. deba@57: /// deba@57: /// Gives back the running node of the iterator. deba@57: /// It is always the target of the pointed arc. deba@57: Node runningNode(const OutArcIt&) const { return INVALID; } deba@57: deba@57: /// \brief The opposite node on the given arc. deba@57: /// deba@57: /// Gives back the opposite node on the given arc. deba@57: Node oppositeNode(const Node&, const Arc&) const { return INVALID; } deba@57: kpeter@580: /// \brief Reference map of the nodes to type \c T. alpar@209: /// kpeter@580: /// Reference map of the nodes to type \c T. alpar@209: template kpeter@580: class NodeMap : public ReferenceMap { deba@57: public: deba@57: deba@57: ///\e deba@57: NodeMap(const Digraph&) { } deba@57: ///\e deba@57: NodeMap(const Digraph&, T) { } deba@57: kpeter@263: private: deba@57: ///Copy constructor kpeter@580: NodeMap(const NodeMap& nm) : kpeter@580: ReferenceMap(nm) { } deba@57: ///Assignment operator deba@57: template alpar@209: NodeMap& operator=(const CMap&) { deba@57: checkConcept, CMap>(); alpar@209: return *this; deba@57: } deba@57: }; deba@57: kpeter@580: /// \brief Reference map of the arcs to type \c T. deba@57: /// deba@57: /// Reference map of the arcs to type \c T. alpar@209: template kpeter@580: class ArcMap : public ReferenceMap { deba@57: public: deba@57: deba@57: ///\e deba@57: ArcMap(const Digraph&) { } deba@57: ///\e deba@57: ArcMap(const Digraph&, T) { } kpeter@263: private: deba@57: ///Copy constructor kpeter@580: ArcMap(const ArcMap& em) : kpeter@580: ReferenceMap(em) { } deba@57: ///Assignment operator deba@57: template alpar@209: ArcMap& operator=(const CMap&) { deba@57: checkConcept, CMap>(); alpar@209: return *this; deba@57: } deba@57: }; deba@57: deba@125: template deba@57: struct Constraints { deba@57: void constraints() { kpeter@580: checkConcept(); deba@125: checkConcept, _Digraph>(); alpar@209: checkConcept, _Digraph>(); deba@125: checkConcept, _Digraph>(); deba@57: } deba@57: }; deba@57: deba@57: }; alpar@209: alpar@209: } //namespace concepts deba@57: } //namespace lemon deba@57: deba@57: deba@57: deba@529: #endif