alpar@100: /* -*- C++ -*-
alpar@100:  *
alpar@100:  * This file is a part of LEMON, a generic C++ optimization library
alpar@100:  *
alpar@100:  * Copyright (C) 2003-2008
alpar@100:  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@100:  * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@100:  *
alpar@100:  * Permission to use, modify and distribute this software is granted
alpar@100:  * provided that this copyright notice appears in all copies. For
alpar@100:  * precise terms see the accompanying LICENSE file.
alpar@100:  *
alpar@100:  * This software is provided "AS IS" with no warranty of any kind,
alpar@100:  * express or implied, and with no claim as to its suitability for any
alpar@100:  * purpose.
alpar@100:  *
alpar@100:  */
alpar@100: 
alpar@100: #ifndef LEMON_GRAPH_UTILS_H
alpar@100: #define LEMON_GRAPH_UTILS_H
alpar@100: 
alpar@100: #include <iterator>
alpar@100: #include <vector>
alpar@100: #include <map>
alpar@100: #include <cmath>
alpar@100: #include <algorithm>
alpar@100: 
alpar@100: #include <lemon/bits/invalid.h>
alpar@100: #include <lemon/bits/utility.h>
alpar@100: #include <lemon/maps.h>
alpar@100: #include <lemon/bits/traits.h>
alpar@100: 
alpar@100: #include <lemon/bits/alteration_notifier.h>
alpar@100: #include <lemon/bits/default_map.h>
alpar@100: 
alpar@100: ///\ingroup gutils
alpar@100: ///\file
deba@139: ///\brief Graph utilities.
alpar@100: 
alpar@100: namespace lemon {
alpar@100: 
alpar@100:   /// \addtogroup gutils
alpar@100:   /// @{
alpar@100: 
alpar@100:   ///Creates convenience typedefs for the digraph types and iterators
alpar@100: 
alpar@100:   ///This \c \#define creates convenience typedefs for the following types
alpar@100:   ///of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
deba@139:   ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap, 
deba@148:   ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
deba@148:   ///
deba@148:   ///\note If the graph type is a dependent type, ie. the graph type depend
deba@148:   ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
deba@148:   ///macro.
deba@139: #define DIGRAPH_TYPEDEFS(Digraph)					\
deba@148:   typedef Digraph::Node Node;						\
deba@148:   typedef Digraph::NodeIt NodeIt;					\
deba@148:   typedef Digraph::Arc Arc;						\
deba@148:   typedef Digraph::ArcIt ArcIt;						\
deba@148:   typedef Digraph::InArcIt InArcIt;					\
deba@148:   typedef Digraph::OutArcIt OutArcIt;					\
deba@148:   typedef Digraph::NodeMap<bool> BoolNodeMap;				\
deba@148:   typedef Digraph::NodeMap<int> IntNodeMap;				\
deba@148:   typedef Digraph::NodeMap<double> DoubleNodeMap;			\
deba@148:   typedef Digraph::ArcMap<bool> BoolArcMap;				\
deba@148:   typedef Digraph::ArcMap<int> IntArcMap;				\
deba@148:   typedef Digraph::ArcMap<double> DoubleArcMap
deba@140: 
deba@148:   ///Creates convenience typedefs for the digraph types and iterators
alpar@100: 
deba@148:   ///\see DIGRAPH_TYPEDEFS
deba@148:   ///
deba@148:   ///\note Use this macro, if the graph type is a dependent type,
deba@148:   ///ie. the graph type depend on a template parameter.
deba@148: #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)				\
deba@148:   typedef typename Digraph::Node Node;					\
deba@148:   typedef typename Digraph::NodeIt NodeIt;				\
deba@148:   typedef typename Digraph::Arc Arc;					\
deba@148:   typedef typename Digraph::ArcIt ArcIt;				\
deba@148:   typedef typename Digraph::InArcIt InArcIt;				\
deba@148:   typedef typename Digraph::OutArcIt OutArcIt;				\
deba@148:   typedef typename Digraph::template NodeMap<bool> BoolNodeMap;		\
deba@148:   typedef typename Digraph::template NodeMap<int> IntNodeMap;		\
deba@148:   typedef typename Digraph::template NodeMap<double> DoubleNodeMap;	\
deba@148:   typedef typename Digraph::template ArcMap<bool> BoolArcMap;		\
deba@148:   typedef typename Digraph::template ArcMap<int> IntArcMap;		\
deba@148:   typedef typename Digraph::template ArcMap<double> DoubleArcMap
deba@148:   
alpar@100:   ///Creates convenience typedefs for the graph types and iterators
alpar@100: 
deba@139:   ///This \c \#define creates the same convenience typedefs as defined
deba@139:   ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
deba@139:   ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
deba@139:   ///\c DoubleEdgeMap.
deba@148:   ///
deba@148:   ///\note If the graph type is a dependent type, ie. the graph type depend
deba@148:   ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
deba@148:   ///macro.
deba@139: #define GRAPH_TYPEDEFS(Graph)						\
deba@139:   DIGRAPH_TYPEDEFS(Graph);						\
deba@148:   typedef Graph::Edge Edge;						\
deba@148:   typedef Graph::EdgeIt EdgeIt;						\
deba@148:   typedef Graph::IncEdgeIt IncEdgeIt;					\
deba@148:   typedef Graph::EdgeMap<bool> BoolEdgeMap;				\
deba@148:   typedef Graph::EdgeMap<int> IntEdgeMap;				\
deba@148:   typedef Graph::EdgeMap<double> DoubleEdgeMap
deba@140: 
deba@148:   ///Creates convenience typedefs for the graph types and iterators
deba@148: 
deba@148:   ///\see GRAPH_TYPEDEFS
deba@148:   ///
deba@148:   ///\note Use this macro, if the graph type is a dependent type,
deba@148:   ///ie. the graph type depend on a template parameter.
deba@148: #define TEMPLATE_GRAPH_TYPEDEFS(Graph)					\
deba@148:   TEMPLATE_DIGRAPH_TYPEDEFS(Graph);					\
deba@148:   typedef typename Graph::Edge Edge;					\
deba@148:   typedef typename Graph::EdgeIt EdgeIt;				\
deba@148:   typedef typename Graph::IncEdgeIt IncEdgeIt;				\
deba@148:   typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;		\
deba@148:   typedef typename Graph::template EdgeMap<int> IntEdgeMap;		\
deba@148:   typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
deba@139: 
deba@139:   /// \brief Function to count the items in the graph.
alpar@100:   ///
deba@139:   /// This function counts the items (nodes, arcs etc) in the graph.
alpar@100:   /// The complexity of the function is O(n) because
alpar@100:   /// it iterates on all of the items.
deba@139:   template <typename Graph, typename Item>
deba@139:   inline int countItems(const Graph& g) {
deba@139:     typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
alpar@100:     int num = 0;
alpar@100:     for (ItemIt it(g); it != INVALID; ++it) {
alpar@100:       ++num;
alpar@100:     }
alpar@100:     return num;
alpar@100:   }
alpar@100: 
alpar@100:   // Node counting:
alpar@100: 
deba@139:   namespace _graph_utils_bits {
alpar@100:     
deba@139:     template <typename Graph, typename Enable = void>
alpar@100:     struct CountNodesSelector {
deba@139:       static int count(const Graph &g) {
deba@139:         return countItems<Graph, typename Graph::Node>(g);
alpar@100:       }
alpar@100:     };
alpar@100: 
deba@139:     template <typename Graph>
alpar@100:     struct CountNodesSelector<
deba@139:       Graph, typename 
deba@139:       enable_if<typename Graph::NodeNumTag, void>::type> 
alpar@100:     {
deba@139:       static int count(const Graph &g) {
alpar@100:         return g.nodeNum();
alpar@100:       }
alpar@100:     };    
alpar@100:   }
alpar@100: 
deba@139:   /// \brief Function to count the nodes in the graph.
alpar@100:   ///
deba@139:   /// This function counts the nodes in the graph.
alpar@100:   /// The complexity of the function is O(n) but for some
deba@139:   /// graph structures it is specialized to run in O(1).
alpar@100:   ///
deba@139:   /// If the graph contains a \e nodeNum() member function and a 
alpar@100:   /// \e NodeNumTag tag then this function calls directly the member
alpar@100:   /// function to query the cardinality of the node set.
deba@139:   template <typename Graph>
deba@139:   inline int countNodes(const Graph& g) {
deba@139:     return _graph_utils_bits::CountNodesSelector<Graph>::count(g);
alpar@100:   }
alpar@100: 
deba@139:   // Arc counting:
deba@139: 
deba@139:   namespace _graph_utils_bits {
alpar@100:     
deba@139:     template <typename Graph, typename Enable = void>
deba@139:     struct CountArcsSelector {
deba@139:       static int count(const Graph &g) {
deba@139:         return countItems<Graph, typename Graph::Arc>(g);
alpar@100:       }
alpar@100:     };
alpar@100: 
deba@139:     template <typename Graph>
deba@139:     struct CountArcsSelector<
deba@139:       Graph, 
deba@139:       typename enable_if<typename Graph::ArcNumTag, void>::type> 
alpar@100:     {
deba@139:       static int count(const Graph &g) {
alpar@100:         return g.arcNum();
alpar@100:       }
alpar@100:     };    
alpar@100:   }
alpar@100: 
deba@139:   /// \brief Function to count the arcs in the graph.
alpar@100:   ///
deba@139:   /// This function counts the arcs in the graph.
alpar@100:   /// The complexity of the function is O(e) but for some
deba@139:   /// graph structures it is specialized to run in O(1).
alpar@100:   ///
deba@139:   /// If the graph contains a \e arcNum() member function and a 
deba@139:   /// \e EdgeNumTag tag then this function calls directly the member
alpar@100:   /// function to query the cardinality of the arc set.
deba@139:   template <typename Graph>
deba@139:   inline int countArcs(const Graph& g) {
deba@139:     return _graph_utils_bits::CountArcsSelector<Graph>::count(g);
alpar@100:   }
alpar@100: 
deba@139:   // Edge counting:
deba@139:   namespace _graph_utils_bits {
alpar@100:     
deba@139:     template <typename Graph, typename Enable = void>
alpar@100:     struct CountEdgesSelector {
deba@139:       static int count(const Graph &g) {
deba@139:         return countItems<Graph, typename Graph::Edge>(g);
alpar@100:       }
alpar@100:     };
alpar@100: 
deba@139:     template <typename Graph>
alpar@100:     struct CountEdgesSelector<
deba@139:       Graph, 
deba@139:       typename enable_if<typename Graph::EdgeNumTag, void>::type> 
alpar@100:     {
deba@139:       static int count(const Graph &g) {
alpar@100:         return g.edgeNum();
alpar@100:       }
alpar@100:     };    
alpar@100:   }
alpar@100: 
deba@139:   /// \brief Function to count the edges in the graph.
alpar@100:   ///
deba@139:   /// This function counts the edges in the graph.
deba@139:   /// The complexity of the function is O(m) but for some
deba@139:   /// graph structures it is specialized to run in O(1).
alpar@100:   ///
deba@139:   /// If the graph contains a \e edgeNum() member function and a 
deba@139:   /// \e EdgeNumTag tag then this function calls directly the member
alpar@100:   /// function to query the cardinality of the edge set.
deba@139:   template <typename Graph>
deba@139:   inline int countEdges(const Graph& g) {
deba@139:     return _graph_utils_bits::CountEdgesSelector<Graph>::count(g);
alpar@100: 
alpar@100:   }
alpar@100: 
alpar@100: 
deba@139:   template <typename Graph, typename DegIt>
deba@139:   inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
alpar@100:     int num = 0;
alpar@100:     for (DegIt it(_g, _n); it != INVALID; ++it) {
alpar@100:       ++num;
alpar@100:     }
alpar@100:     return num;
alpar@100:   }
alpar@100: 
alpar@100:   /// \brief Function to count the number of the out-arcs from node \c n.
alpar@100:   ///
alpar@100:   /// This function counts the number of the out-arcs from node \c n
deba@139:   /// in the graph.  
deba@139:   template <typename Graph>
deba@139:   inline int countOutArcs(const Graph& _g,  const typename Graph::Node& _n) {
deba@139:     return countNodeDegree<Graph, typename Graph::OutArcIt>(_g, _n);
alpar@100:   }
alpar@100: 
alpar@100:   /// \brief Function to count the number of the in-arcs to node \c n.
alpar@100:   ///
alpar@100:   /// This function counts the number of the in-arcs to node \c n
deba@139:   /// in the graph.  
deba@139:   template <typename Graph>
deba@139:   inline int countInArcs(const Graph& _g,  const typename Graph::Node& _n) {
deba@139:     return countNodeDegree<Graph, typename Graph::InArcIt>(_g, _n);
alpar@100:   }
alpar@100: 
deba@139:   /// \brief Function to count the number of the inc-edges to node \c n.
alpar@100:   ///
deba@139:   /// This function counts the number of the inc-edges to node \c n
deba@139:   /// in the graph.  
deba@139:   template <typename Graph>
deba@139:   inline int countIncEdges(const Graph& _g,  const typename Graph::Node& _n) {
deba@139:     return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n);
alpar@100:   }
alpar@100: 
deba@139:   namespace _graph_utils_bits {
alpar@100:     
deba@139:     template <typename Graph, typename Enable = void>
alpar@100:     struct FindArcSelector {
deba@139:       typedef typename Graph::Node Node;
deba@139:       typedef typename Graph::Arc Arc;
deba@139:       static Arc find(const Graph &g, Node u, Node v, Arc e) {
alpar@100:         if (e == INVALID) {
alpar@100:           g.firstOut(e, u);
alpar@100:         } else {
alpar@100:           g.nextOut(e);
alpar@100:         }
alpar@100:         while (e != INVALID && g.target(e) != v) {
alpar@100:           g.nextOut(e);
alpar@100:         }
alpar@100:         return e;
alpar@100:       }
alpar@100:     };
alpar@100: 
deba@139:     template <typename Graph>
alpar@100:     struct FindArcSelector<
deba@139:       Graph, 
deba@139:       typename enable_if<typename Graph::FindEdgeTag, void>::type> 
alpar@100:     {
deba@139:       typedef typename Graph::Node Node;
deba@139:       typedef typename Graph::Arc Arc;
deba@139:       static Arc find(const Graph &g, Node u, Node v, Arc prev) {
alpar@100:         return g.findArc(u, v, prev);
alpar@100:       }
alpar@100:     };    
alpar@100:   }
alpar@100: 
deba@139:   /// \brief Finds an arc between two nodes of a graph.
alpar@100:   ///
deba@139:   /// Finds an arc from node \c u to node \c v in graph \c g.
alpar@100:   ///
alpar@100:   /// If \c prev is \ref INVALID (this is the default value), then
alpar@100:   /// it finds the first arc from \c u to \c v. Otherwise it looks for
alpar@100:   /// the next arc from \c u to \c v after \c prev.
alpar@100:   /// \return The found arc or \ref INVALID if there is no such an arc.
alpar@100:   ///
alpar@100:   /// Thus you can iterate through each arc from \c u to \c v as it follows.
alpar@100:   ///\code
alpar@100:   /// for(Arc e=findArc(g,u,v);e!=INVALID;e=findArc(g,u,v,e)) {
alpar@100:   ///   ...
alpar@100:   /// }
alpar@100:   ///\endcode
alpar@100:   ///
alpar@100:   ///\sa ArcLookUp
alpar@100:   ///\sa AllArcLookUp
alpar@100:   ///\sa DynArcLookUp
alpar@100:   ///\sa ConArcIt
deba@139:   template <typename Graph>
deba@139:   inline typename Graph::Arc 
deba@139:   findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
deba@139:            typename Graph::Arc prev = INVALID) {
deba@139:     return _graph_utils_bits::FindArcSelector<Graph>::find(g, u, v, prev);
alpar@100:   }
alpar@100: 
alpar@100:   /// \brief Iterator for iterating on arcs connected the same nodes.
alpar@100:   ///
alpar@100:   /// Iterator for iterating on arcs connected the same nodes. It is 
alpar@100:   /// higher level interface for the findArc() function. You can
alpar@100:   /// use it the following way:
alpar@100:   ///\code
deba@139:   /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
alpar@100:   ///   ...
alpar@100:   /// }
alpar@100:   ///\endcode
alpar@100:   /// 
alpar@100:   ///\sa findArc()
alpar@100:   ///\sa ArcLookUp
alpar@100:   ///\sa AllArcLookUp
alpar@100:   ///\sa DynArcLookUp
deba@139:   template <typename _Graph>
deba@139:   class ConArcIt : public _Graph::Arc {
alpar@100:   public:
alpar@100: 
deba@139:     typedef _Graph Graph;
deba@139:     typedef typename Graph::Arc Parent;
alpar@100: 
deba@139:     typedef typename Graph::Arc Arc;
deba@139:     typedef typename Graph::Node Node;
alpar@100: 
alpar@100:     /// \brief Constructor.
alpar@100:     ///
alpar@100:     /// Construct a new ConArcIt iterating on the arcs which
alpar@100:     /// connects the \c u and \c v node.
deba@139:     ConArcIt(const Graph& g, Node u, Node v) : _graph(g) {
deba@139:       Parent::operator=(findArc(_graph, u, v));
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Constructor.
alpar@100:     ///
alpar@100:     /// Construct a new ConArcIt which continues the iterating from 
alpar@100:     /// the \c e arc.
deba@139:     ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {}
alpar@100:     
alpar@100:     /// \brief Increment operator.
alpar@100:     ///
alpar@100:     /// It increments the iterator and gives back the next arc.
alpar@100:     ConArcIt& operator++() {
deba@139:       Parent::operator=(findArc(_graph, _graph.source(*this), 
deba@139: 				_graph.target(*this), *this));
alpar@100:       return *this;
alpar@100:     }
alpar@100:   private:
deba@139:     const Graph& _graph;
alpar@100:   };
alpar@100: 
deba@139:   namespace _graph_utils_bits {
alpar@100:     
deba@139:     template <typename Graph, typename Enable = void>
alpar@100:     struct FindEdgeSelector {
deba@139:       typedef typename Graph::Node Node;
deba@139:       typedef typename Graph::Edge Edge;
deba@139:       static Edge find(const Graph &g, Node u, Node v, Edge e) {
alpar@100:         bool b;
alpar@100:         if (u != v) {
alpar@100:           if (e == INVALID) {
alpar@100:             g.firstInc(e, b, u);
alpar@100:           } else {
kpeter@169:             b = g.u(e) == u;
alpar@100:             g.nextInc(e, b);
alpar@100:           }
kpeter@169:           while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
alpar@100:             g.nextInc(e, b);
alpar@100:           }
alpar@100:         } else {
alpar@100:           if (e == INVALID) {
alpar@100:             g.firstInc(e, b, u);
alpar@100:           } else {
alpar@100:             b = true;
alpar@100:             g.nextInc(e, b);
alpar@100:           }
kpeter@169:           while (e != INVALID && (!b || g.v(e) != v)) {
alpar@100:             g.nextInc(e, b);
alpar@100:           }
alpar@100:         }
alpar@100:         return e;
alpar@100:       }
alpar@100:     };
alpar@100: 
deba@139:     template <typename Graph>
alpar@100:     struct FindEdgeSelector<
deba@139:       Graph, 
deba@139:       typename enable_if<typename Graph::FindEdgeTag, void>::type> 
alpar@100:     {
deba@139:       typedef typename Graph::Node Node;
deba@139:       typedef typename Graph::Edge Edge;
deba@139:       static Edge find(const Graph &g, Node u, Node v, Edge prev) {
alpar@100:         return g.findEdge(u, v, prev);
alpar@100:       }
alpar@100:     };    
alpar@100:   }
alpar@100: 
deba@139:   /// \brief Finds an edge between two nodes of a graph.
alpar@100:   ///
deba@139:   /// Finds an edge from node \c u to node \c v in graph \c g.
deba@139:   /// If the node \c u and node \c v is equal then each loop edge
deba@139:   /// will be enumerated once.
alpar@100:   ///
alpar@100:   /// If \c prev is \ref INVALID (this is the default value), then
alpar@100:   /// it finds the first arc from \c u to \c v. Otherwise it looks for
alpar@100:   /// the next arc from \c u to \c v after \c prev.
alpar@100:   /// \return The found arc or \ref INVALID if there is no such an arc.
alpar@100:   ///
alpar@100:   /// Thus you can iterate through each arc from \c u to \c v as it follows.
alpar@100:   ///\code
alpar@100:   /// for(Edge e = findEdge(g,u,v); e != INVALID; 
alpar@100:   ///     e = findEdge(g,u,v,e)) {
alpar@100:   ///   ...
alpar@100:   /// }
alpar@100:   ///\endcode
alpar@100:   ///
kpeter@169:   ///\sa ConEdgeIt
alpar@100: 
deba@139:   template <typename Graph>
deba@139:   inline typename Graph::Edge 
deba@139:   findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
deba@139:             typename Graph::Edge p = INVALID) {
deba@139:     return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
alpar@100:   }
alpar@100: 
alpar@100:   /// \brief Iterator for iterating on edges connected the same nodes.
alpar@100:   ///
alpar@100:   /// Iterator for iterating on edges connected the same nodes. It is 
alpar@100:   /// higher level interface for the findEdge() function. You can
alpar@100:   /// use it the following way:
alpar@100:   ///\code
deba@139:   /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
alpar@100:   ///   ...
alpar@100:   /// }
alpar@100:   ///\endcode
alpar@100:   ///
alpar@100:   ///\sa findEdge()
deba@139:   template <typename _Graph>
deba@139:   class ConEdgeIt : public _Graph::Edge {
alpar@100:   public:
alpar@100: 
deba@139:     typedef _Graph Graph;
deba@139:     typedef typename Graph::Edge Parent;
alpar@100: 
deba@139:     typedef typename Graph::Edge Edge;
deba@139:     typedef typename Graph::Node Node;
alpar@100: 
alpar@100:     /// \brief Constructor.
alpar@100:     ///
deba@139:     /// Construct a new ConEdgeIt iterating on the edges which
alpar@100:     /// connects the \c u and \c v node.
deba@139:     ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) {
deba@139:       Parent::operator=(findEdge(_graph, u, v));
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Constructor.
alpar@100:     ///
alpar@100:     /// Construct a new ConEdgeIt which continues the iterating from 
deba@139:     /// the \c e edge.
deba@139:     ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {}
alpar@100:     
alpar@100:     /// \brief Increment operator.
alpar@100:     ///
deba@139:     /// It increments the iterator and gives back the next edge.
alpar@100:     ConEdgeIt& operator++() {
kpeter@169:       Parent::operator=(findEdge(_graph, _graph.u(*this), 
kpeter@169: 				 _graph.v(*this), *this));
alpar@100:       return *this;
alpar@100:     }
alpar@100:   private:
deba@139:     const Graph& _graph;
alpar@100:   };
alpar@100: 
deba@139:   namespace _graph_utils_bits {
alpar@100: 
alpar@100:     template <typename Digraph, typename Item, typename RefMap>
alpar@100:     class MapCopyBase {
alpar@100:     public:
alpar@100:       virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
alpar@100:       
alpar@100:       virtual ~MapCopyBase() {}
alpar@100:     };
alpar@100: 
alpar@100:     template <typename Digraph, typename Item, typename RefMap, 
alpar@100:               typename ToMap, typename FromMap>
alpar@100:     class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
alpar@100:     public:
alpar@100: 
alpar@100:       MapCopy(ToMap& tmap, const FromMap& map) 
alpar@100:         : _tmap(tmap), _map(map) {}
alpar@100:       
alpar@100:       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
alpar@100:         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
alpar@100:         for (ItemIt it(digraph); it != INVALID; ++it) {
alpar@100:           _tmap.set(refMap[it], _map[it]);
alpar@100:         }
alpar@100:       }
alpar@100: 
alpar@100:     private:
alpar@100:       ToMap& _tmap;
alpar@100:       const FromMap& _map;
alpar@100:     };
alpar@100: 
alpar@100:     template <typename Digraph, typename Item, typename RefMap, typename It>
alpar@100:     class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
alpar@100:     public:
alpar@100: 
alpar@100:       ItemCopy(It& it, const Item& item) : _it(it), _item(item) {}
alpar@100:       
alpar@100:       virtual void copy(const Digraph&, const RefMap& refMap) {
alpar@100:         _it = refMap[_item];
alpar@100:       }
alpar@100: 
alpar@100:     private:
alpar@100:       It& _it;
alpar@100:       Item _item;
alpar@100:     };
alpar@100: 
alpar@100:     template <typename Digraph, typename Item, typename RefMap, typename Ref>
alpar@100:     class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
alpar@100:     public:
alpar@100: 
alpar@100:       RefCopy(Ref& map) : _map(map) {}
alpar@100:       
alpar@100:       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
alpar@100:         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
alpar@100:         for (ItemIt it(digraph); it != INVALID; ++it) {
alpar@100:           _map.set(it, refMap[it]);
alpar@100:         }
alpar@100:       }
alpar@100: 
alpar@100:     private:
alpar@100:       Ref& _map;
alpar@100:     };
alpar@100: 
alpar@100:     template <typename Digraph, typename Item, typename RefMap, 
alpar@100:               typename CrossRef>
alpar@100:     class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
alpar@100:     public:
alpar@100: 
alpar@100:       CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
alpar@100:       
alpar@100:       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
alpar@100:         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
alpar@100:         for (ItemIt it(digraph); it != INVALID; ++it) {
alpar@100:           _cmap.set(refMap[it], it);
alpar@100:         }
alpar@100:       }
alpar@100: 
alpar@100:     private:
alpar@100:       CrossRef& _cmap;
alpar@100:     };
alpar@100: 
alpar@100:     template <typename Digraph, typename Enable = void>
alpar@100:     struct DigraphCopySelector {
alpar@100:       template <typename From, typename NodeRefMap, typename ArcRefMap>
alpar@100:       static void copy(Digraph &to, const From& from,
alpar@100:                        NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
alpar@100:         for (typename From::NodeIt it(from); it != INVALID; ++it) {
alpar@100:           nodeRefMap[it] = to.addNode();
alpar@100:         }
alpar@100:         for (typename From::ArcIt it(from); it != INVALID; ++it) {
alpar@100:           arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)], 
alpar@100:                                           nodeRefMap[from.target(it)]);
alpar@100:         }
alpar@100:       }
alpar@100:     };
alpar@100: 
alpar@100:     template <typename Digraph>
alpar@100:     struct DigraphCopySelector<
alpar@100:       Digraph, 
alpar@100:       typename enable_if<typename Digraph::BuildTag, void>::type> 
alpar@100:     {
alpar@100:       template <typename From, typename NodeRefMap, typename ArcRefMap>
alpar@100:       static void copy(Digraph &to, const From& from,
alpar@100:                        NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
alpar@100:         to.build(from, nodeRefMap, arcRefMap);
alpar@100:       }
alpar@100:     };
alpar@100: 
alpar@100:     template <typename Graph, typename Enable = void>
alpar@100:     struct GraphCopySelector {
alpar@100:       template <typename From, typename NodeRefMap, typename EdgeRefMap>
alpar@100:       static void copy(Graph &to, const From& from,
alpar@100:                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
alpar@100:         for (typename From::NodeIt it(from); it != INVALID; ++it) {
alpar@100:           nodeRefMap[it] = to.addNode();
alpar@100:         }
alpar@100:         for (typename From::EdgeIt it(from); it != INVALID; ++it) {
alpar@100:           edgeRefMap[it] = to.addArc(nodeRefMap[from.source(it)], 
alpar@100: 				       nodeRefMap[from.target(it)]);
alpar@100:         }
alpar@100:       }
alpar@100:     };
alpar@100: 
alpar@100:     template <typename Graph>
alpar@100:     struct GraphCopySelector<
alpar@100:       Graph, 
alpar@100:       typename enable_if<typename Graph::BuildTag, void>::type> 
alpar@100:     {
alpar@100:       template <typename From, typename NodeRefMap, typename EdgeRefMap>
alpar@100:       static void copy(Graph &to, const From& from,
alpar@100:                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
alpar@100:         to.build(from, nodeRefMap, edgeRefMap);
alpar@100:       }
alpar@100:     };
alpar@100: 
alpar@100:   }
alpar@100: 
alpar@100:   /// \brief Class to copy a digraph.
alpar@100:   ///
alpar@100:   /// Class to copy a digraph to another digraph (duplicate a digraph). The
alpar@100:   /// simplest way of using it is through the \c copyDigraph() function.
deba@139:   ///
deba@139:   /// This class not just make a copy of a graph, but it can create
deba@139:   /// references and cross references between the nodes and arcs of
deba@139:   /// the two graphs, it can copy maps for use with the newly created
deba@139:   /// graph and copy nodes and arcs.
deba@139:   ///
deba@139:   /// To make a copy from a graph, first an instance of DigraphCopy
deba@139:   /// should be created, then the data belongs to the graph should
deba@139:   /// assigned to copy. In the end, the \c run() member should be
deba@139:   /// called.
deba@139:   ///
deba@139:   /// The next code copies a graph with several data:
deba@139:   ///\code
deba@139:   ///  DigraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph);
deba@139:   ///  // create a reference for the nodes
deba@139:   ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
deba@139:   ///  dc.nodeRef(nr);
deba@139:   ///  // create a cross reference (inverse) for the arcs
deba@139:   ///  NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
deba@139:   ///  dc.arcCrossRef(acr);
deba@139:   ///  // copy an arc map
deba@139:   ///  OrigGraph::ArcMap<double> oamap(orig_graph);
deba@139:   ///  NewGraph::ArcMap<double> namap(new_graph);
deba@139:   ///  dc.arcMap(namap, oamap);
deba@139:   ///  // copy a node
deba@139:   ///  OrigGraph::Node on;
deba@139:   ///  NewGraph::Node nn;
deba@139:   ///  dc.node(nn, on);
deba@139:   ///  // Executions of copy
deba@139:   ///  dc.run();
deba@139:   ///\endcode
alpar@100:   template <typename To, typename From>
alpar@100:   class DigraphCopy {
alpar@100:   private:
alpar@100: 
alpar@100:     typedef typename From::Node Node;
alpar@100:     typedef typename From::NodeIt NodeIt;
alpar@100:     typedef typename From::Arc Arc;
alpar@100:     typedef typename From::ArcIt ArcIt;
alpar@100: 
alpar@100:     typedef typename To::Node TNode;
alpar@100:     typedef typename To::Arc TArc;
alpar@100: 
alpar@100:     typedef typename From::template NodeMap<TNode> NodeRefMap;
alpar@100:     typedef typename From::template ArcMap<TArc> ArcRefMap;
alpar@100:     
alpar@100:     
alpar@100:   public: 
alpar@100: 
alpar@100: 
alpar@100:     /// \brief Constructor for the DigraphCopy.
alpar@100:     ///
alpar@100:     /// It copies the content of the \c _from digraph into the
alpar@100:     /// \c _to digraph.
deba@139:     DigraphCopy(To& to, const From& from) 
deba@139:       : _from(from), _to(to) {}
alpar@100: 
alpar@100:     /// \brief Destructor of the DigraphCopy
alpar@100:     ///
alpar@100:     /// Destructor of the DigraphCopy
alpar@100:     ~DigraphCopy() {
deba@139:       for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@139:         delete _node_maps[i];
alpar@100:       }
deba@139:       for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@139:         delete _arc_maps[i];
alpar@100:       }
alpar@100: 
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Copies the node references into the given map.
alpar@100:     ///
deba@139:     /// Copies the node references into the given map. The parameter
deba@139:     /// should be a map, which key type is the Node type of the source
deba@139:     /// graph, while the value type is the Node type of the
deba@139:     /// destination graph.
alpar@100:     template <typename NodeRef>
alpar@100:     DigraphCopy& nodeRef(NodeRef& map) {
deba@139:       _node_maps.push_back(new _graph_utils_bits::RefCopy<From, Node, 
deba@139: 			   NodeRefMap, NodeRef>(map));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Copies the node cross references into the given map.
alpar@100:     ///
alpar@100:     ///  Copies the node cross references (reverse references) into
deba@139:     ///  the given map. The parameter should be a map, which key type
deba@139:     ///  is the Node type of the destination graph, while the value type is
deba@139:     ///  the Node type of the source graph.
alpar@100:     template <typename NodeCrossRef>
alpar@100:     DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
deba@139:       _node_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Node,
deba@139: 			   NodeRefMap, NodeCrossRef>(map));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Make copy of the given map.
alpar@100:     ///
deba@139:     /// Makes copy of the given map for the newly created digraph.
deba@139:     /// The new map's key type is the destination graph's node type,
deba@139:     /// and the copied map's key type is the source graph's node type.
alpar@100:     template <typename ToMap, typename FromMap>
alpar@100:     DigraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
deba@139:       _node_maps.push_back(new _graph_utils_bits::MapCopy<From, Node, 
deba@139: 			   NodeRefMap, ToMap, FromMap>(tmap, map));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Make a copy of the given node.
alpar@100:     ///
alpar@100:     /// Make a copy of the given node.
alpar@100:     DigraphCopy& node(TNode& tnode, const Node& snode) {
deba@139:       _node_maps.push_back(new _graph_utils_bits::ItemCopy<From, Node, 
deba@139: 			   NodeRefMap, TNode>(tnode, snode));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Copies the arc references into the given map.
alpar@100:     ///
alpar@100:     /// Copies the arc references into the given map.
alpar@100:     template <typename ArcRef>
alpar@100:     DigraphCopy& arcRef(ArcRef& map) {
deba@139:       _arc_maps.push_back(new _graph_utils_bits::RefCopy<From, Arc, 
deba@139: 			  ArcRefMap, ArcRef>(map));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Copies the arc cross references into the given map.
alpar@100:     ///
alpar@100:     ///  Copies the arc cross references (reverse references) into
alpar@100:     ///  the given map.
alpar@100:     template <typename ArcCrossRef>
alpar@100:     DigraphCopy& arcCrossRef(ArcCrossRef& map) {
deba@139:       _arc_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Arc,
deba@139: 			  ArcRefMap, ArcCrossRef>(map));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Make copy of the given map.
alpar@100:     ///
alpar@100:     /// Makes copy of the given map for the newly created digraph. 
alpar@100:     /// The new map's key type is the to digraph's arc type,
alpar@100:     /// and the copied map's key type is the from digraph's arc
alpar@100:     /// type.  
alpar@100:     template <typename ToMap, typename FromMap>
alpar@100:     DigraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
deba@139:       _arc_maps.push_back(new _graph_utils_bits::MapCopy<From, Arc, 
deba@139: 			  ArcRefMap, ToMap, FromMap>(tmap, map));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Make a copy of the given arc.
alpar@100:     ///
alpar@100:     /// Make a copy of the given arc.
alpar@100:     DigraphCopy& arc(TArc& tarc, const Arc& sarc) {
deba@139:       _arc_maps.push_back(new _graph_utils_bits::ItemCopy<From, Arc, 
deba@139: 			  ArcRefMap, TArc>(tarc, sarc));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Executes the copies.
alpar@100:     ///
alpar@100:     /// Executes the copies.
alpar@100:     void run() {
deba@139:       NodeRefMap nodeRefMap(_from);
deba@139:       ArcRefMap arcRefMap(_from);
deba@139:       _graph_utils_bits::DigraphCopySelector<To>::
deba@139:         copy(_to, _from, nodeRefMap, arcRefMap);
deba@139:       for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@139:         _node_maps[i]->copy(_from, nodeRefMap);
alpar@100:       }
deba@139:       for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@139:         _arc_maps[i]->copy(_from, arcRefMap);
alpar@100:       }      
alpar@100:     }
alpar@100: 
alpar@100:   protected:
alpar@100: 
alpar@100: 
deba@139:     const From& _from;
deba@139:     To& _to;
alpar@100: 
deba@139:     std::vector<_graph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* > 
deba@139:     _node_maps;
alpar@100: 
deba@139:     std::vector<_graph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* > 
deba@139:     _arc_maps;
alpar@100: 
alpar@100:   };
alpar@100: 
alpar@100:   /// \brief Copy a digraph to another digraph.
alpar@100:   ///
deba@139:   /// Copy a digraph to another digraph. The complete usage of the
deba@139:   /// function is detailed in the DigraphCopy class, but a short
deba@139:   /// example shows a basic work:
alpar@100:   ///\code
alpar@100:   /// copyDigraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run();
alpar@100:   ///\endcode
alpar@100:   /// 
alpar@100:   /// After the copy the \c nr map will contain the mapping from the
alpar@100:   /// nodes of the \c from digraph to the nodes of the \c to digraph and
alpar@100:   /// \c ecr will contain the mapping from the arcs of the \c to digraph
alpar@100:   /// to the arcs of the \c from digraph.
alpar@100:   ///
alpar@100:   /// \see DigraphCopy 
alpar@100:   template <typename To, typename From>
alpar@100:   DigraphCopy<To, From> copyDigraph(To& to, const From& from) {
alpar@100:     return DigraphCopy<To, From>(to, from);
alpar@100:   }
alpar@100: 
deba@139:   /// \brief Class to copy a graph.
alpar@100:   ///
deba@139:   /// Class to copy a graph to another graph (duplicate a graph). The
deba@139:   /// simplest way of using it is through the \c copyGraph() function.
deba@139:   ///
deba@139:   /// This class not just make a copy of a graph, but it can create
deba@139:   /// references and cross references between the nodes, edges and arcs of
deba@139:   /// the two graphs, it can copy maps for use with the newly created
deba@139:   /// graph and copy nodes, edges and arcs.
deba@139:   ///
deba@139:   /// To make a copy from a graph, first an instance of GraphCopy
deba@139:   /// should be created, then the data belongs to the graph should
deba@139:   /// assigned to copy. In the end, the \c run() member should be
deba@139:   /// called.
deba@139:   ///
deba@139:   /// The next code copies a graph with several data:
deba@139:   ///\code
deba@139:   ///  GraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph);
deba@139:   ///  // create a reference for the nodes
deba@139:   ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
deba@139:   ///  dc.nodeRef(nr);
deba@139:   ///  // create a cross reference (inverse) for the edges
deba@139:   ///  NewGraph::EdgeMap<OrigGraph::Arc> ecr(new_graph);
deba@139:   ///  dc.edgeCrossRef(ecr);
deba@139:   ///  // copy an arc map
deba@139:   ///  OrigGraph::ArcMap<double> oamap(orig_graph);
deba@139:   ///  NewGraph::ArcMap<double> namap(new_graph);
deba@139:   ///  dc.arcMap(namap, oamap);
deba@139:   ///  // copy a node
deba@139:   ///  OrigGraph::Node on;
deba@139:   ///  NewGraph::Node nn;
deba@139:   ///  dc.node(nn, on);
deba@139:   ///  // Executions of copy
deba@139:   ///  dc.run();
deba@139:   ///\endcode
alpar@100:   template <typename To, typename From>
alpar@100:   class GraphCopy {
alpar@100:   private:
alpar@100: 
alpar@100:     typedef typename From::Node Node;
alpar@100:     typedef typename From::NodeIt NodeIt;
alpar@100:     typedef typename From::Arc Arc;
alpar@100:     typedef typename From::ArcIt ArcIt;
alpar@100:     typedef typename From::Edge Edge;
alpar@100:     typedef typename From::EdgeIt EdgeIt;
alpar@100: 
alpar@100:     typedef typename To::Node TNode;
alpar@100:     typedef typename To::Arc TArc;
alpar@100:     typedef typename To::Edge TEdge;
alpar@100: 
alpar@100:     typedef typename From::template NodeMap<TNode> NodeRefMap;
alpar@100:     typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
alpar@100: 
alpar@100:     struct ArcRefMap {
deba@139:       ArcRefMap(const To& to, const From& from,
deba@139: 		const EdgeRefMap& edge_ref, const NodeRefMap& node_ref) 
deba@139:         : _to(to), _from(from), 
deba@139:           _edge_ref(edge_ref), _node_ref(node_ref) {}
alpar@100: 
alpar@100:       typedef typename From::Arc Key;
alpar@100:       typedef typename To::Arc Value;
alpar@100: 
alpar@100:       Value operator[](const Key& key) const {
alpar@100:         bool forward = 
deba@139:           (_from.direction(key) == 
deba@139: 	   (_node_ref[_from.source(key)] == _to.source(_edge_ref[key])));
deba@139: 	return _to.direct(_edge_ref[key], forward); 
alpar@100:       }
alpar@100:       
deba@139:       const To& _to;
deba@139:       const From& _from;
deba@139:       const EdgeRefMap& _edge_ref;
deba@139:       const NodeRefMap& _node_ref;
alpar@100:     };
alpar@100: 
alpar@100:     
alpar@100:   public: 
alpar@100: 
alpar@100: 
deba@139:     /// \brief Constructor for the GraphCopy.
alpar@100:     ///
deba@139:     /// It copies the content of the \c _from graph into the
deba@139:     /// \c _to graph.
deba@139:     GraphCopy(To& to, const From& from) 
deba@139:       : _from(from), _to(to) {}
alpar@100: 
deba@139:     /// \brief Destructor of the GraphCopy
alpar@100:     ///
deba@139:     /// Destructor of the GraphCopy
alpar@100:     ~GraphCopy() {
deba@139:       for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@139:         delete _node_maps[i];
alpar@100:       }
deba@139:       for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@139:         delete _arc_maps[i];
alpar@100:       }
deba@139:       for (int i = 0; i < int(_edge_maps.size()); ++i) {
deba@139:         delete _edge_maps[i];
alpar@100:       }
alpar@100: 
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Copies the node references into the given map.
alpar@100:     ///
alpar@100:     /// Copies the node references into the given map.
alpar@100:     template <typename NodeRef>
alpar@100:     GraphCopy& nodeRef(NodeRef& map) {
deba@139:       _node_maps.push_back(new _graph_utils_bits::RefCopy<From, Node, 
deba@139: 			   NodeRefMap, NodeRef>(map));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Copies the node cross references into the given map.
alpar@100:     ///
alpar@100:     ///  Copies the node cross references (reverse references) into
alpar@100:     ///  the given map.
alpar@100:     template <typename NodeCrossRef>
alpar@100:     GraphCopy& nodeCrossRef(NodeCrossRef& map) {
deba@139:       _node_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Node,
deba@139: 			   NodeRefMap, NodeCrossRef>(map));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Make copy of the given map.
alpar@100:     ///
deba@139:     /// Makes copy of the given map for the newly created graph. 
deba@139:     /// The new map's key type is the to graph's node type,
deba@139:     /// and the copied map's key type is the from graph's node
alpar@100:     /// type.  
alpar@100:     template <typename ToMap, typename FromMap>
alpar@100:     GraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
deba@139:       _node_maps.push_back(new _graph_utils_bits::MapCopy<From, Node, 
deba@139: 			   NodeRefMap, ToMap, FromMap>(tmap, map));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Make a copy of the given node.
alpar@100:     ///
alpar@100:     /// Make a copy of the given node.
alpar@100:     GraphCopy& node(TNode& tnode, const Node& snode) {
deba@139:       _node_maps.push_back(new _graph_utils_bits::ItemCopy<From, Node, 
deba@139: 			   NodeRefMap, TNode>(tnode, snode));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Copies the arc references into the given map.
alpar@100:     ///
alpar@100:     /// Copies the arc references into the given map.
alpar@100:     template <typename ArcRef>
alpar@100:     GraphCopy& arcRef(ArcRef& map) {
deba@139:       _arc_maps.push_back(new _graph_utils_bits::RefCopy<From, Arc, 
deba@139: 			  ArcRefMap, ArcRef>(map));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Copies the arc cross references into the given map.
alpar@100:     ///
alpar@100:     ///  Copies the arc cross references (reverse references) into
alpar@100:     ///  the given map.
alpar@100:     template <typename ArcCrossRef>
alpar@100:     GraphCopy& arcCrossRef(ArcCrossRef& map) {
deba@139:       _arc_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Arc,
deba@139: 			  ArcRefMap, ArcCrossRef>(map));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Make copy of the given map.
alpar@100:     ///
deba@139:     /// Makes copy of the given map for the newly created graph. 
deba@139:     /// The new map's key type is the to graph's arc type,
deba@139:     /// and the copied map's key type is the from graph's arc
alpar@100:     /// type.  
alpar@100:     template <typename ToMap, typename FromMap>
alpar@100:     GraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
deba@139:       _arc_maps.push_back(new _graph_utils_bits::MapCopy<From, Arc, 
deba@139: 			  ArcRefMap, ToMap, FromMap>(tmap, map));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Make a copy of the given arc.
alpar@100:     ///
alpar@100:     /// Make a copy of the given arc.
alpar@100:     GraphCopy& arc(TArc& tarc, const Arc& sarc) {
deba@139:       _arc_maps.push_back(new _graph_utils_bits::ItemCopy<From, Arc, 
deba@139: 			  ArcRefMap, TArc>(tarc, sarc));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Copies the edge references into the given map.
alpar@100:     ///
alpar@100:     /// Copies the edge references into the given map.
alpar@100:     template <typename EdgeRef>
alpar@100:     GraphCopy& edgeRef(EdgeRef& map) {
deba@139:       _edge_maps.push_back(new _graph_utils_bits::RefCopy<From, Edge, 
deba@139: 			   EdgeRefMap, EdgeRef>(map));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Copies the edge cross references into the given map.
alpar@100:     ///
alpar@100:     /// Copies the edge cross references (reverse
alpar@100:     /// references) into the given map.
alpar@100:     template <typename EdgeCrossRef>
alpar@100:     GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
deba@139:       _edge_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, 
deba@139: 			   Edge, EdgeRefMap, EdgeCrossRef>(map));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Make copy of the given map.
alpar@100:     ///
deba@139:     /// Makes copy of the given map for the newly created graph. 
deba@139:     /// The new map's key type is the to graph's edge type,
deba@139:     /// and the copied map's key type is the from graph's edge
alpar@100:     /// type.  
alpar@100:     template <typename ToMap, typename FromMap>
alpar@100:     GraphCopy& edgeMap(ToMap& tmap, const FromMap& map) {
deba@139:       _edge_maps.push_back(new _graph_utils_bits::MapCopy<From, Edge, 
deba@139: 			   EdgeRefMap, ToMap, FromMap>(tmap, map));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Make a copy of the given edge.
alpar@100:     ///
alpar@100:     /// Make a copy of the given edge.
alpar@100:     GraphCopy& edge(TEdge& tedge, const Edge& sedge) {
deba@139:       _edge_maps.push_back(new _graph_utils_bits::ItemCopy<From, Edge, 
deba@139: 			   EdgeRefMap, TEdge>(tedge, sedge));
alpar@100:       return *this;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Executes the copies.
alpar@100:     ///
alpar@100:     /// Executes the copies.
alpar@100:     void run() {
deba@139:       NodeRefMap nodeRefMap(_from);
deba@139:       EdgeRefMap edgeRefMap(_from);
deba@139:       ArcRefMap arcRefMap(_to, _from, edgeRefMap, nodeRefMap);
deba@139:       _graph_utils_bits::GraphCopySelector<To>::
deba@139:         copy(_to, _from, nodeRefMap, edgeRefMap);
deba@139:       for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@139:         _node_maps[i]->copy(_from, nodeRefMap);
alpar@100:       }
deba@139:       for (int i = 0; i < int(_edge_maps.size()); ++i) {
deba@139:         _edge_maps[i]->copy(_from, edgeRefMap);
alpar@100:       }
deba@139:       for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@139:         _arc_maps[i]->copy(_from, arcRefMap);
alpar@100:       }
alpar@100:     }
alpar@100: 
alpar@100:   private:
alpar@100:     
deba@139:     const From& _from;
deba@139:     To& _to;
alpar@100: 
deba@139:     std::vector<_graph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* > 
deba@139:     _node_maps;
alpar@100: 
deba@139:     std::vector<_graph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* > 
deba@139:     _arc_maps;
alpar@100: 
deba@139:     std::vector<_graph_utils_bits::MapCopyBase<From, Edge, EdgeRefMap>* > 
deba@139:     _edge_maps;
alpar@100: 
alpar@100:   };
alpar@100: 
deba@139:   /// \brief Copy a graph to another graph.
alpar@100:   ///
deba@139:   /// Copy a graph to another graph. The complete usage of the
deba@139:   /// function is detailed in the GraphCopy class, but a short
deba@139:   /// example shows a basic work:
alpar@100:   ///\code
alpar@100:   /// copyGraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run();
alpar@100:   ///\endcode
alpar@100:   /// 
alpar@100:   /// After the copy the \c nr map will contain the mapping from the
deba@139:   /// nodes of the \c from graph to the nodes of the \c to graph and
deba@139:   /// \c ecr will contain the mapping from the arcs of the \c to graph
deba@139:   /// to the arcs of the \c from graph.
alpar@100:   ///
alpar@100:   /// \see GraphCopy 
alpar@100:   template <typename To, typename From>
alpar@100:   GraphCopy<To, From> 
alpar@100:   copyGraph(To& to, const From& from) {
alpar@100:     return GraphCopy<To, From>(to, from);
alpar@100:   }
alpar@100: 
alpar@100:   /// @}
alpar@100: 
deba@139:   /// \addtogroup graph_maps
alpar@100:   /// @{
alpar@100: 
deba@139:   /// Provides an immutable and unique id for each item in the graph.
alpar@100: 
alpar@100:   /// The IdMap class provides a unique and immutable id for each item of the
deba@139:   /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
alpar@100:   /// different items (nodes) get different ids <li>\b immutable: the id of an
alpar@100:   /// item (node) does not change (even if you delete other nodes).  </ul>
alpar@100:   /// Through this map you get access (i.e. can read) the inner id values of
deba@139:   /// the items stored in the graph. This map can be inverted with its member
deba@139:   /// class \c InverseMap or with the \c operator() member.
alpar@100:   ///
deba@139:   template <typename _Graph, typename _Item>
alpar@100:   class IdMap {
alpar@100:   public:
deba@139:     typedef _Graph Graph;
alpar@100:     typedef int Value;
alpar@100:     typedef _Item Item;
alpar@100:     typedef _Item Key;
alpar@100: 
alpar@100:     /// \brief Constructor.
alpar@100:     ///
alpar@100:     /// Constructor of the map.
deba@139:     explicit IdMap(const Graph& graph) : _graph(&graph) {}
alpar@100: 
alpar@100:     /// \brief Gives back the \e id of the item.
alpar@100:     ///
alpar@100:     /// Gives back the immutable and unique \e id of the item.
deba@139:     int operator[](const Item& item) const { return _graph->id(item);}
alpar@100: 
alpar@100:     /// \brief Gives back the item by its id.
alpar@100:     ///
alpar@100:     /// Gives back the item by its id.
deba@139:     Item operator()(int id) { return _graph->fromId(id, Item()); }
alpar@100: 
alpar@100:   private:
deba@139:     const Graph* _graph;
alpar@100: 
alpar@100:   public:
alpar@100: 
alpar@100:     /// \brief The class represents the inverse of its owner (IdMap).
alpar@100:     ///
alpar@100:     /// The class represents the inverse of its owner (IdMap).
alpar@100:     /// \see inverse()
alpar@100:     class InverseMap {
alpar@100:     public:
alpar@100: 
alpar@100:       /// \brief Constructor.
alpar@100:       ///
alpar@100:       /// Constructor for creating an id-to-item map.
deba@139:       explicit InverseMap(const Graph& graph) : _graph(&graph) {}
alpar@100: 
alpar@100:       /// \brief Constructor.
alpar@100:       ///
alpar@100:       /// Constructor for creating an id-to-item map.
deba@139:       explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
alpar@100: 
alpar@100:       /// \brief Gives back the given item from its id.
alpar@100:       ///
alpar@100:       /// Gives back the given item from its id.
alpar@100:       /// 
deba@139:       Item operator[](int id) const { return _graph->fromId(id, Item());}
alpar@100: 
alpar@100:     private:
deba@139:       const Graph* _graph;
alpar@100:     };
alpar@100: 
alpar@100:     /// \brief Gives back the inverse of the map.
alpar@100:     ///
alpar@100:     /// Gives back the inverse of the IdMap.
deba@139:     InverseMap inverse() const { return InverseMap(*_graph);} 
alpar@100: 
alpar@100:   };
alpar@100: 
alpar@100:   
deba@139:   /// \brief General invertable graph-map type.
alpar@100: 
deba@139:   /// This type provides simple invertable graph-maps. 
alpar@100:   /// The InvertableMap wraps an arbitrary ReadWriteMap 
alpar@100:   /// and if a key is set to a new value then store it
alpar@100:   /// in the inverse map.
alpar@100:   ///
alpar@100:   /// The values of the map can be accessed
alpar@100:   /// with stl compatible forward iterator.
alpar@100:   ///
kpeter@157:   /// \tparam _Graph The graph type.
kpeter@157:   /// \tparam _Item The item type of the graph.
kpeter@157:   /// \tparam _Value The value type of the map.
alpar@100:   ///
alpar@100:   /// \see IterableValueMap
deba@139:   template <typename _Graph, typename _Item, typename _Value>
deba@139:   class InvertableMap : protected DefaultMap<_Graph, _Item, _Value> {
alpar@100:   private:
alpar@100:     
deba@139:     typedef DefaultMap<_Graph, _Item, _Value> Map;
deba@139:     typedef _Graph Graph;
alpar@100: 
alpar@100:     typedef std::map<_Value, _Item> Container;
deba@139:     Container _inv_map;    
alpar@100: 
alpar@100:   public:
alpar@100:  
alpar@100:     /// The key type of InvertableMap (Node, Arc, Edge).
alpar@100:     typedef typename Map::Key Key;
alpar@100:     /// The value type of the InvertableMap.
alpar@100:     typedef typename Map::Value Value;
alpar@100: 
alpar@100: 
alpar@100: 
alpar@100:     /// \brief Constructor.
alpar@100:     ///
deba@139:     /// Construct a new InvertableMap for the graph.
alpar@100:     ///
deba@139:     explicit InvertableMap(const Graph& graph) : Map(graph) {} 
alpar@100: 
alpar@100:     /// \brief Forward iterator for values.
alpar@100:     ///
alpar@100:     /// This iterator is an stl compatible forward
alpar@100:     /// iterator on the values of the map. The values can
alpar@100:     /// be accessed in the [beginValue, endValue) range.
alpar@100:     ///
alpar@100:     class ValueIterator 
alpar@100:       : public std::iterator<std::forward_iterator_tag, Value> {
alpar@100:       friend class InvertableMap;
alpar@100:     private:
alpar@100:       ValueIterator(typename Container::const_iterator _it) 
alpar@100:         : it(_it) {}
alpar@100:     public:
alpar@100:       
alpar@100:       ValueIterator() {}
alpar@100: 
alpar@100:       ValueIterator& operator++() { ++it; return *this; }
alpar@100:       ValueIterator operator++(int) { 
alpar@100:         ValueIterator tmp(*this); 
alpar@100:         operator++();
alpar@100:         return tmp; 
alpar@100:       }
alpar@100: 
alpar@100:       const Value& operator*() const { return it->first; }
alpar@100:       const Value* operator->() const { return &(it->first); }
alpar@100: 
alpar@100:       bool operator==(ValueIterator jt) const { return it == jt.it; }
alpar@100:       bool operator!=(ValueIterator jt) const { return it != jt.it; }
alpar@100:       
alpar@100:     private:
alpar@100:       typename Container::const_iterator it;
alpar@100:     };
alpar@100: 
alpar@100:     /// \brief Returns an iterator to the first value.
alpar@100:     ///
alpar@100:     /// Returns an stl compatible iterator to the 
alpar@100:     /// first value of the map. The values of the
alpar@100:     /// map can be accessed in the [beginValue, endValue)
alpar@100:     /// range.
alpar@100:     ValueIterator beginValue() const {
deba@139:       return ValueIterator(_inv_map.begin());
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Returns an iterator after the last value.
alpar@100:     ///
alpar@100:     /// Returns an stl compatible iterator after the 
alpar@100:     /// last value of the map. The values of the
alpar@100:     /// map can be accessed in the [beginValue, endValue)
alpar@100:     /// range.
alpar@100:     ValueIterator endValue() const {
deba@139:       return ValueIterator(_inv_map.end());
alpar@100:     }
alpar@100:     
alpar@100:     /// \brief The setter function of the map.
alpar@100:     ///
alpar@100:     /// Sets the mapped value.
alpar@100:     void set(const Key& key, const Value& val) {
alpar@100:       Value oldval = Map::operator[](key);
deba@139:       typename Container::iterator it = _inv_map.find(oldval);
deba@139:       if (it != _inv_map.end() && it->second == key) {
deba@139: 	_inv_map.erase(it);
alpar@100:       }      
deba@139:       _inv_map.insert(make_pair(val, key));
alpar@100:       Map::set(key, val);
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief The getter function of the map.
alpar@100:     ///
alpar@100:     /// It gives back the value associated with the key.
alpar@100:     typename MapTraits<Map>::ConstReturnValue 
alpar@100:     operator[](const Key& key) const {
alpar@100:       return Map::operator[](key);
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Gives back the item by its value.
alpar@100:     ///
alpar@100:     /// Gives back the item by its value.
alpar@100:     Key operator()(const Value& key) const {
deba@139:       typename Container::const_iterator it = _inv_map.find(key);
deba@139:       return it != _inv_map.end() ? it->second : INVALID;
alpar@100:     }
alpar@100: 
alpar@100:   protected:
alpar@100: 
alpar@100:     /// \brief Erase the key from the map.
alpar@100:     ///
alpar@100:     /// Erase the key to the map. It is called by the
alpar@100:     /// \c AlterationNotifier.
alpar@100:     virtual void erase(const Key& key) {
alpar@100:       Value val = Map::operator[](key);
deba@139:       typename Container::iterator it = _inv_map.find(val);
deba@139:       if (it != _inv_map.end() && it->second == key) {
deba@139: 	_inv_map.erase(it);
alpar@100:       }
alpar@100:       Map::erase(key);
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Erase more keys from the map.
alpar@100:     ///
alpar@100:     /// Erase more keys from the map. It is called by the
alpar@100:     /// \c AlterationNotifier.
alpar@100:     virtual void erase(const std::vector<Key>& keys) {
alpar@100:       for (int i = 0; i < int(keys.size()); ++i) {
alpar@100: 	Value val = Map::operator[](keys[i]);
deba@139: 	typename Container::iterator it = _inv_map.find(val);
deba@139: 	if (it != _inv_map.end() && it->second == keys[i]) {
deba@139: 	  _inv_map.erase(it);
alpar@100: 	}
alpar@100:       }
alpar@100:       Map::erase(keys);
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Clear the keys from the map and inverse map.
alpar@100:     ///
alpar@100:     /// Clear the keys from the map and inverse map. It is called by the
alpar@100:     /// \c AlterationNotifier.
alpar@100:     virtual void clear() {
deba@139:       _inv_map.clear();
alpar@100:       Map::clear();
alpar@100:     }
alpar@100: 
alpar@100:   public:
alpar@100: 
alpar@100:     /// \brief The inverse map type.
alpar@100:     ///
alpar@100:     /// The inverse of this map. The subscript operator of the map
alpar@100:     /// gives back always the item what was last assigned to the value. 
alpar@100:     class InverseMap {
alpar@100:     public:
alpar@100:       /// \brief Constructor of the InverseMap.
alpar@100:       ///
alpar@100:       /// Constructor of the InverseMap.
deba@139:       explicit InverseMap(const InvertableMap& inverted) 
deba@139:         : _inverted(inverted) {}
alpar@100: 
alpar@100:       /// The value type of the InverseMap.
alpar@100:       typedef typename InvertableMap::Key Value;
alpar@100:       /// The key type of the InverseMap.
alpar@100:       typedef typename InvertableMap::Value Key; 
alpar@100: 
alpar@100:       /// \brief Subscript operator. 
alpar@100:       ///
alpar@100:       /// Subscript operator. It gives back always the item 
alpar@100:       /// what was last assigned to the value.
alpar@100:       Value operator[](const Key& key) const {
deba@139: 	return _inverted(key);
alpar@100:       }
alpar@100:       
alpar@100:     private:
deba@139:       const InvertableMap& _inverted;
alpar@100:     };
alpar@100: 
alpar@100:     /// \brief It gives back the just readable inverse map.
alpar@100:     ///
alpar@100:     /// It gives back the just readable inverse map.
alpar@100:     InverseMap inverse() const {
alpar@100:       return InverseMap(*this);
alpar@100:     } 
alpar@100: 
alpar@100: 
alpar@100:     
alpar@100:   };
alpar@100: 
alpar@100:   /// \brief Provides a mutable, continuous and unique descriptor for each 
deba@139:   /// item in the graph.
alpar@100:   ///
alpar@100:   /// The DescriptorMap class provides a unique and continuous (but mutable)
alpar@100:   /// descriptor (id) for each item of the same type (e.g. node) in the
deba@139:   /// graph. This id is <ul><li>\b unique: different items (nodes) get
alpar@100:   /// different ids <li>\b continuous: the range of the ids is the set of
alpar@100:   /// integers between 0 and \c n-1, where \c n is the number of the items of
alpar@100:   /// this type (e.g. nodes) (so the id of a node can change if you delete an
alpar@100:   /// other node, i.e. this id is mutable).  </ul> This map can be inverted
deba@139:   /// with its member class \c InverseMap, or with the \c operator() member.
alpar@100:   ///
kpeter@157:   /// \tparam _Graph The graph class the \c DescriptorMap belongs to.
kpeter@157:   /// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or 
alpar@100:   /// Edge.
deba@139:   template <typename _Graph, typename _Item>
deba@139:   class DescriptorMap : protected DefaultMap<_Graph, _Item, int> {
alpar@100: 
alpar@100:     typedef _Item Item;
deba@139:     typedef DefaultMap<_Graph, _Item, int> Map;
alpar@100: 
alpar@100:   public:
deba@139:     /// The graph class of DescriptorMap.
deba@139:     typedef _Graph Graph;
alpar@100: 
alpar@100:     /// The key type of DescriptorMap (Node, Arc, Edge).
alpar@100:     typedef typename Map::Key Key;
alpar@100:     /// The value type of DescriptorMap.
alpar@100:     typedef typename Map::Value Value;
alpar@100: 
alpar@100:     /// \brief Constructor.
alpar@100:     ///
alpar@100:     /// Constructor for descriptor map.
deba@139:     explicit DescriptorMap(const Graph& _graph) : Map(_graph) {
alpar@100:       Item it;
alpar@100:       const typename Map::Notifier* nf = Map::notifier(); 
alpar@100:       for (nf->first(it); it != INVALID; nf->next(it)) {
deba@139: 	Map::set(it, _inv_map.size());
deba@139: 	_inv_map.push_back(it);	
alpar@100:       }      
alpar@100:     }
alpar@100: 
alpar@100:   protected:
alpar@100: 
alpar@100:     /// \brief Add a new key to the map.
alpar@100:     ///
alpar@100:     /// Add a new key to the map. It is called by the
alpar@100:     /// \c AlterationNotifier.
alpar@100:     virtual void add(const Item& item) {
alpar@100:       Map::add(item);
deba@139:       Map::set(item, _inv_map.size());
deba@139:       _inv_map.push_back(item);
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Add more new keys to the map.
alpar@100:     ///
alpar@100:     /// Add more new keys to the map. It is called by the
alpar@100:     /// \c AlterationNotifier.
alpar@100:     virtual void add(const std::vector<Item>& items) {
alpar@100:       Map::add(items);
alpar@100:       for (int i = 0; i < int(items.size()); ++i) {
deba@139: 	Map::set(items[i], _inv_map.size());
deba@139: 	_inv_map.push_back(items[i]);
alpar@100:       }
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Erase the key from the map.
alpar@100:     ///
alpar@100:     /// Erase the key from the map. It is called by the
alpar@100:     /// \c AlterationNotifier.
alpar@100:     virtual void erase(const Item& item) {
deba@139:       Map::set(_inv_map.back(), Map::operator[](item));
deba@139:       _inv_map[Map::operator[](item)] = _inv_map.back();
deba@139:       _inv_map.pop_back();
alpar@100:       Map::erase(item);
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Erase more keys from the map.
alpar@100:     ///
alpar@100:     /// Erase more keys from the map. It is called by the
alpar@100:     /// \c AlterationNotifier.
alpar@100:     virtual void erase(const std::vector<Item>& items) {
alpar@100:       for (int i = 0; i < int(items.size()); ++i) {
deba@139: 	Map::set(_inv_map.back(), Map::operator[](items[i]));
deba@139: 	_inv_map[Map::operator[](items[i])] = _inv_map.back();
deba@139: 	_inv_map.pop_back();
alpar@100:       }
alpar@100:       Map::erase(items);
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Build the unique map.
alpar@100:     ///
alpar@100:     /// Build the unique map. It is called by the
alpar@100:     /// \c AlterationNotifier.
alpar@100:     virtual void build() {
alpar@100:       Map::build();
alpar@100:       Item it;
alpar@100:       const typename Map::Notifier* nf = Map::notifier(); 
alpar@100:       for (nf->first(it); it != INVALID; nf->next(it)) {
deba@139: 	Map::set(it, _inv_map.size());
deba@139: 	_inv_map.push_back(it);	
alpar@100:       }      
alpar@100:     }
alpar@100:     
alpar@100:     /// \brief Clear the keys from the map.
alpar@100:     ///
alpar@100:     /// Clear the keys from the map. It is called by the
alpar@100:     /// \c AlterationNotifier.
alpar@100:     virtual void clear() {
deba@139:       _inv_map.clear();
alpar@100:       Map::clear();
alpar@100:     }
alpar@100: 
alpar@100:   public:
alpar@100: 
alpar@100:     /// \brief Returns the maximal value plus one.
alpar@100:     ///
alpar@100:     /// Returns the maximal value plus one in the map.
alpar@100:     unsigned int size() const {
deba@139:       return _inv_map.size();
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Swaps the position of the two items in the map.
alpar@100:     ///
alpar@100:     /// Swaps the position of the two items in the map.
alpar@100:     void swap(const Item& p, const Item& q) {
alpar@100:       int pi = Map::operator[](p);
alpar@100:       int qi = Map::operator[](q);
alpar@100:       Map::set(p, qi);
deba@139:       _inv_map[qi] = p;
alpar@100:       Map::set(q, pi);
deba@139:       _inv_map[pi] = q;
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Gives back the \e descriptor of the item.
alpar@100:     ///
alpar@100:     /// Gives back the mutable and unique \e descriptor of the map.
alpar@100:     int operator[](const Item& item) const {
alpar@100:       return Map::operator[](item);
alpar@100:     }
alpar@100: 
alpar@100:     /// \brief Gives back the item by its descriptor.
alpar@100:     ///
alpar@100:     /// Gives back th item by its descriptor.
alpar@100:     Item operator()(int id) const {
deba@139:       return _inv_map[id];
alpar@100:     }
alpar@100:     
alpar@100:   private:
alpar@100: 
alpar@100:     typedef std::vector<Item> Container;
deba@139:     Container _inv_map;
alpar@100: 
alpar@100:   public:
alpar@100:     /// \brief The inverse map type of DescriptorMap.
alpar@100:     ///
alpar@100:     /// The inverse map type of DescriptorMap.
alpar@100:     class InverseMap {
alpar@100:     public:
alpar@100:       /// \brief Constructor of the InverseMap.
alpar@100:       ///
alpar@100:       /// Constructor of the InverseMap.
deba@139:       explicit InverseMap(const DescriptorMap& inverted) 
deba@139: 	: _inverted(inverted) {}
alpar@100: 
alpar@100: 
alpar@100:       /// The value type of the InverseMap.
alpar@100:       typedef typename DescriptorMap::Key Value;
alpar@100:       /// The key type of the InverseMap.
alpar@100:       typedef typename DescriptorMap::Value Key; 
alpar@100: 
alpar@100:       /// \brief Subscript operator. 
alpar@100:       ///
alpar@100:       /// Subscript operator. It gives back the item 
alpar@100:       /// that the descriptor belongs to currently.
alpar@100:       Value operator[](const Key& key) const {
deba@139: 	return _inverted(key);
alpar@100:       }
alpar@100: 
alpar@100:       /// \brief Size of the map.
alpar@100:       ///
alpar@100:       /// Returns the size of the map.
alpar@100:       unsigned int size() const {
deba@139: 	return _inverted.size();
alpar@100:       }
alpar@100:       
alpar@100:     private:
deba@139:       const DescriptorMap& _inverted;
alpar@100:     };
alpar@100: 
alpar@100:     /// \brief Gives back the inverse of the map.
alpar@100:     ///
alpar@100:     /// Gives back the inverse of the map.
alpar@100:     const InverseMap inverse() const {
alpar@100:       return InverseMap(*this);
alpar@100:     }
alpar@100:   };
alpar@100: 
alpar@100:   /// \brief Returns the source of the given arc.
alpar@100:   ///
alpar@100:   /// The SourceMap gives back the source Node of the given arc. 
alpar@100:   /// \see TargetMap
alpar@100:   template <typename Digraph>
alpar@100:   class SourceMap {
alpar@100:   public:
alpar@100: 
alpar@100:     typedef typename Digraph::Node Value;
alpar@100:     typedef typename Digraph::Arc Key;
alpar@100: 
alpar@100:     /// \brief Constructor
alpar@100:     ///
alpar@100:     /// Constructor
alpar@100:     /// \param _digraph The digraph that the map belongs to.
deba@139:     explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {}
alpar@100: 
alpar@100:     /// \brief The subscript operator.
alpar@100:     ///
alpar@100:     /// The subscript operator.
alpar@100:     /// \param arc The arc 
alpar@100:     /// \return The source of the arc 
alpar@100:     Value operator[](const Key& arc) const {
deba@139:       return _digraph.source(arc);
alpar@100:     }
alpar@100: 
alpar@100:   private:
deba@139:     const Digraph& _digraph;
alpar@100:   };
alpar@100: 
alpar@100:   /// \brief Returns a \ref SourceMap class.
alpar@100:   ///
alpar@100:   /// This function just returns an \ref SourceMap class.
alpar@100:   /// \relates SourceMap
alpar@100:   template <typename Digraph>
alpar@100:   inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
alpar@100:     return SourceMap<Digraph>(digraph);
alpar@100:   } 
alpar@100: 
alpar@100:   /// \brief Returns the target of the given arc.
alpar@100:   ///
alpar@100:   /// The TargetMap gives back the target Node of the given arc. 
alpar@100:   /// \see SourceMap
alpar@100:   template <typename Digraph>
alpar@100:   class TargetMap {
alpar@100:   public:
alpar@100: 
alpar@100:     typedef typename Digraph::Node Value;
alpar@100:     typedef typename Digraph::Arc Key;
alpar@100: 
alpar@100:     /// \brief Constructor
alpar@100:     ///
alpar@100:     /// Constructor
alpar@100:     /// \param _digraph The digraph that the map belongs to.
deba@139:     explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {}
alpar@100: 
alpar@100:     /// \brief The subscript operator.
alpar@100:     ///
alpar@100:     /// The subscript operator.
alpar@100:     /// \param e The arc 
alpar@100:     /// \return The target of the arc 
alpar@100:     Value operator[](const Key& e) const {
deba@139:       return _digraph.target(e);
alpar@100:     }
alpar@100: 
alpar@100:   private:
deba@139:     const Digraph& _digraph;
alpar@100:   };
alpar@100: 
alpar@100:   /// \brief Returns a \ref TargetMap class.
alpar@100:   ///
alpar@100:   /// This function just returns a \ref TargetMap class.
alpar@100:   /// \relates TargetMap
alpar@100:   template <typename Digraph>
alpar@100:   inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
alpar@100:     return TargetMap<Digraph>(digraph);
alpar@100:   }
alpar@100: 
alpar@100:   /// \brief Returns the "forward" directed arc view of an edge.
alpar@100:   ///
alpar@100:   /// Returns the "forward" directed arc view of an edge.
alpar@100:   /// \see BackwardMap
deba@139:   template <typename Graph>
alpar@100:   class ForwardMap {
alpar@100:   public:
alpar@100: 
deba@139:     typedef typename Graph::Arc Value;
deba@139:     typedef typename Graph::Edge Key;
alpar@100: 
alpar@100:     /// \brief Constructor
alpar@100:     ///
alpar@100:     /// Constructor
deba@139:     /// \param _graph The graph that the map belongs to.
deba@139:     explicit ForwardMap(const Graph& graph) : _graph(graph) {}
alpar@100: 
alpar@100:     /// \brief The subscript operator.
alpar@100:     ///
alpar@100:     /// The subscript operator.
alpar@100:     /// \param key An edge 
alpar@100:     /// \return The "forward" directed arc view of edge 
alpar@100:     Value operator[](const Key& key) const {
deba@139:       return _graph.direct(key, true);
alpar@100:     }
alpar@100: 
alpar@100:   private:
deba@139:     const Graph& _graph;
alpar@100:   };
alpar@100: 
alpar@100:   /// \brief Returns a \ref ForwardMap class.
alpar@100:   ///
alpar@100:   /// This function just returns an \ref ForwardMap class.
alpar@100:   /// \relates ForwardMap
deba@139:   template <typename Graph>
deba@139:   inline ForwardMap<Graph> forwardMap(const Graph& graph) {
deba@139:     return ForwardMap<Graph>(graph);
alpar@100:   }
alpar@100: 
alpar@100:   /// \brief Returns the "backward" directed arc view of an edge.
alpar@100:   ///
alpar@100:   /// Returns the "backward" directed arc view of an edge.
alpar@100:   /// \see ForwardMap
deba@139:   template <typename Graph>
alpar@100:   class BackwardMap {
alpar@100:   public:
alpar@100: 
deba@139:     typedef typename Graph::Arc Value;
deba@139:     typedef typename Graph::Edge Key;
alpar@100: 
alpar@100:     /// \brief Constructor
alpar@100:     ///
alpar@100:     /// Constructor
deba@139:     /// \param _graph The graph that the map belongs to.
deba@139:     explicit BackwardMap(const Graph& graph) : _graph(graph) {}
alpar@100: 
alpar@100:     /// \brief The subscript operator.
alpar@100:     ///
alpar@100:     /// The subscript operator.
alpar@100:     /// \param key An edge 
alpar@100:     /// \return The "backward" directed arc view of edge 
alpar@100:     Value operator[](const Key& key) const {
deba@139:       return _graph.direct(key, false);
alpar@100:     }
alpar@100: 
alpar@100:   private:
deba@139:     const Graph& _graph;
alpar@100:   };
alpar@100: 
alpar@100:   /// \brief Returns a \ref BackwardMap class
alpar@100: 
alpar@100:   /// This function just returns a \ref BackwardMap class.
alpar@100:   /// \relates BackwardMap
deba@139:   template <typename Graph>
deba@139:   inline BackwardMap<Graph> backwardMap(const Graph& graph) {
deba@139:     return BackwardMap<Graph>(graph);
alpar@100:   }
alpar@100: 
alpar@100:   /// \brief Potential difference map
alpar@100:   ///
alpar@100:   /// If there is an potential map on the nodes then we
alpar@100:   /// can get an arc map as we get the substraction of the
alpar@100:   /// values of the target and source.
alpar@100:   template <typename Digraph, typename NodeMap>
alpar@100:   class PotentialDifferenceMap {
alpar@100:   public:
alpar@100:     typedef typename Digraph::Arc Key;
alpar@100:     typedef typename NodeMap::Value Value;
alpar@100: 
alpar@100:     /// \brief Constructor
alpar@100:     ///
alpar@100:     /// Contructor of the map
deba@139:     explicit PotentialDifferenceMap(const Digraph& digraph, 
deba@139:                                     const NodeMap& potential) 
deba@139:       : _digraph(digraph), _potential(potential) {}
alpar@100: 
alpar@100:     /// \brief Const subscription operator
alpar@100:     ///
alpar@100:     /// Const subscription operator
alpar@100:     Value operator[](const Key& arc) const {
deba@139:       return _potential[_digraph.target(arc)] - 
deba@139: 	_potential[_digraph.source(arc)];
alpar@100:     }
alpar@100: 
alpar@100:   private:
deba@139:     const Digraph& _digraph;
deba@139:     const NodeMap& _potential;
alpar@100:   };
alpar@100: 
alpar@100:   /// \brief Returns a PotentialDifferenceMap.
alpar@100:   ///
alpar@100:   /// This function just returns a PotentialDifferenceMap.
alpar@100:   /// \relates PotentialDifferenceMap
alpar@100:   template <typename Digraph, typename NodeMap>
alpar@100:   PotentialDifferenceMap<Digraph, NodeMap> 
alpar@100:   potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) {
alpar@100:     return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential);
alpar@100:   }
alpar@100: 
alpar@100:   /// \brief Map of the node in-degrees.
alpar@100:   ///
alpar@100:   /// This map returns the in-degree of a node. Once it is constructed,
alpar@100:   /// the degrees are stored in a standard NodeMap, so each query is done
alpar@100:   /// in constant time. On the other hand, the values are updated automatically
alpar@100:   /// whenever the digraph changes.
alpar@100:   ///
alpar@100:   /// \warning Besides addNode() and addArc(), a digraph structure may provide
alpar@100:   /// alternative ways to modify the digraph. The correct behavior of InDegMap
alpar@100:   /// is not guarantied if these additional features are used. For example
alpar@100:   /// the functions \ref ListDigraph::changeSource() "changeSource()",
alpar@100:   /// \ref ListDigraph::changeTarget() "changeTarget()" and
alpar@100:   /// \ref ListDigraph::reverseArc() "reverseArc()"
alpar@100:   /// of \ref ListDigraph will \e not update the degree values correctly.
alpar@100:   ///
alpar@100:   /// \sa OutDegMap
alpar@100: 
alpar@100:   template <typename _Digraph>
alpar@100:   class InDegMap  
alpar@100:     : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
alpar@100:       ::ItemNotifier::ObserverBase {
alpar@100: 
alpar@100:   public:
alpar@100:     
alpar@100:     typedef _Digraph Digraph;
alpar@100:     typedef int Value;
alpar@100:     typedef typename Digraph::Node Key;
alpar@100: 
deba@139:     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
alpar@100:     ::ItemNotifier::ObserverBase Parent;
alpar@100: 
alpar@100:   private:
alpar@100: 
deba@139:     class AutoNodeMap : public DefaultMap<Digraph, Key, int> {
alpar@100:     public:
alpar@100: 
deba@139:       typedef DefaultMap<Digraph, Key, int> Parent;
alpar@100: 
alpar@100:       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
alpar@100:       
alpar@100:       virtual void add(const Key& key) {
alpar@100: 	Parent::add(key);
alpar@100: 	Parent::set(key, 0);
alpar@100:       }
alpar@100: 
alpar@100:       virtual void add(const std::vector<Key>& keys) {
alpar@100: 	Parent::add(keys);
alpar@100: 	for (int i = 0; i < int(keys.size()); ++i) {
alpar@100: 	  Parent::set(keys[i], 0);
alpar@100: 	}
alpar@100:       }
alpar@100: 
alpar@100:       virtual void build() {
alpar@100: 	Parent::build();
alpar@100: 	Key it;
alpar@100: 	typename Parent::Notifier* nf = Parent::notifier();
alpar@100: 	for (nf->first(it); it != INVALID; nf->next(it)) {
alpar@100: 	  Parent::set(it, 0);
alpar@100: 	}
alpar@100:       }
alpar@100:     };
alpar@100: 
alpar@100:   public:
alpar@100: 
alpar@100:     /// \brief Constructor.
alpar@100:     ///
alpar@100:     /// Constructor for creating in-degree map.
deba@139:     explicit InDegMap(const Digraph& digraph) 
deba@139:       : _digraph(digraph), _deg(digraph) {
deba@139:       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
alpar@100:       
deba@139:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@139: 	_deg[it] = countInArcs(_digraph, it);
alpar@100:       }
alpar@100:     }
alpar@100:     
alpar@100:     /// Gives back the in-degree of a Node.
alpar@100:     int operator[](const Key& key) const {
deba@139:       return _deg[key];
alpar@100:     }
alpar@100: 
alpar@100:   protected:
alpar@100:     
alpar@100:     typedef typename Digraph::Arc Arc;
alpar@100: 
alpar@100:     virtual void add(const Arc& arc) {
deba@139:       ++_deg[_digraph.target(arc)];
alpar@100:     }
alpar@100: 
alpar@100:     virtual void add(const std::vector<Arc>& arcs) {
alpar@100:       for (int i = 0; i < int(arcs.size()); ++i) {
deba@139:         ++_deg[_digraph.target(arcs[i])];
alpar@100:       }
alpar@100:     }
alpar@100: 
alpar@100:     virtual void erase(const Arc& arc) {
deba@139:       --_deg[_digraph.target(arc)];
alpar@100:     }
alpar@100: 
alpar@100:     virtual void erase(const std::vector<Arc>& arcs) {
alpar@100:       for (int i = 0; i < int(arcs.size()); ++i) {
deba@139:         --_deg[_digraph.target(arcs[i])];
alpar@100:       }
alpar@100:     }
alpar@100: 
alpar@100:     virtual void build() {
deba@139:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@139: 	_deg[it] = countInArcs(_digraph, it);
alpar@100:       }      
alpar@100:     }
alpar@100: 
alpar@100:     virtual void clear() {
deba@139:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@139: 	_deg[it] = 0;
alpar@100:       }
alpar@100:     }
alpar@100:   private:
alpar@100:     
deba@139:     const Digraph& _digraph;
deba@139:     AutoNodeMap _deg;
alpar@100:   };
alpar@100: 
alpar@100:   /// \brief Map of the node out-degrees.
alpar@100:   ///
alpar@100:   /// This map returns the out-degree of a node. Once it is constructed,
alpar@100:   /// the degrees are stored in a standard NodeMap, so each query is done
alpar@100:   /// in constant time. On the other hand, the values are updated automatically
alpar@100:   /// whenever the digraph changes.
alpar@100:   ///
alpar@100:   /// \warning Besides addNode() and addArc(), a digraph structure may provide
alpar@100:   /// alternative ways to modify the digraph. The correct behavior of OutDegMap
alpar@100:   /// is not guarantied if these additional features are used. For example
alpar@100:   /// the functions \ref ListDigraph::changeSource() "changeSource()",
alpar@100:   /// \ref ListDigraph::changeTarget() "changeTarget()" and
alpar@100:   /// \ref ListDigraph::reverseArc() "reverseArc()"
alpar@100:   /// of \ref ListDigraph will \e not update the degree values correctly.
alpar@100:   ///
alpar@100:   /// \sa InDegMap
alpar@100: 
alpar@100:   template <typename _Digraph>
alpar@100:   class OutDegMap  
alpar@100:     : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
alpar@100:       ::ItemNotifier::ObserverBase {
alpar@100: 
alpar@100:   public:
alpar@100:     
alpar@100:     typedef _Digraph Digraph;
alpar@100:     typedef int Value;
alpar@100:     typedef typename Digraph::Node Key;
alpar@100: 
deba@139:     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
deba@139:     ::ItemNotifier::ObserverBase Parent;
deba@139: 
alpar@100:   private:
alpar@100: 
deba@139:     class AutoNodeMap : public DefaultMap<Digraph, Key, int> {
alpar@100:     public:
alpar@100: 
deba@139:       typedef DefaultMap<Digraph, Key, int> Parent;
alpar@100: 
alpar@100:       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
alpar@100:       
alpar@100:       virtual void add(const Key& key) {
alpar@100: 	Parent::add(key);
alpar@100: 	Parent::set(key, 0);
alpar@100:       }
alpar@100:       virtual void add(const std::vector<Key>& keys) {
alpar@100: 	Parent::add(keys);
alpar@100: 	for (int i = 0; i < int(keys.size()); ++i) {
alpar@100: 	  Parent::set(keys[i], 0);
alpar@100: 	}
alpar@100:       }
alpar@100:       virtual void build() {
alpar@100: 	Parent::build();
alpar@100: 	Key it;
alpar@100: 	typename Parent::Notifier* nf = Parent::notifier();
alpar@100: 	for (nf->first(it); it != INVALID; nf->next(it)) {
alpar@100: 	  Parent::set(it, 0);
alpar@100: 	}
alpar@100:       }
alpar@100:     };
alpar@100: 
alpar@100:   public:
alpar@100: 
alpar@100:     /// \brief Constructor.
alpar@100:     ///
alpar@100:     /// Constructor for creating out-degree map.
deba@139:     explicit OutDegMap(const Digraph& digraph) 
deba@139:       : _digraph(digraph), _deg(digraph) {
deba@139:       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
alpar@100:       
deba@139:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@139: 	_deg[it] = countOutArcs(_digraph, it);
alpar@100:       }
alpar@100:     }
alpar@100: 
alpar@100:     /// Gives back the out-degree of a Node.
alpar@100:     int operator[](const Key& key) const {
deba@139:       return _deg[key];
alpar@100:     }
alpar@100: 
alpar@100:   protected:
alpar@100:     
alpar@100:     typedef typename Digraph::Arc Arc;
alpar@100: 
alpar@100:     virtual void add(const Arc& arc) {
deba@139:       ++_deg[_digraph.source(arc)];
alpar@100:     }
alpar@100: 
alpar@100:     virtual void add(const std::vector<Arc>& arcs) {
alpar@100:       for (int i = 0; i < int(arcs.size()); ++i) {
deba@139:         ++_deg[_digraph.source(arcs[i])];
alpar@100:       }
alpar@100:     }
alpar@100: 
alpar@100:     virtual void erase(const Arc& arc) {
deba@139:       --_deg[_digraph.source(arc)];
alpar@100:     }
alpar@100: 
alpar@100:     virtual void erase(const std::vector<Arc>& arcs) {
alpar@100:       for (int i = 0; i < int(arcs.size()); ++i) {
deba@139:         --_deg[_digraph.source(arcs[i])];
alpar@100:       }
alpar@100:     }
alpar@100: 
alpar@100:     virtual void build() {
deba@139:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@139: 	_deg[it] = countOutArcs(_digraph, it);
alpar@100:       }      
alpar@100:     }
alpar@100: 
alpar@100:     virtual void clear() {
deba@139:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@139: 	_deg[it] = 0;
alpar@100:       }
alpar@100:     }
alpar@100:   private:
alpar@100:     
deba@139:     const Digraph& _digraph;
deba@139:     AutoNodeMap _deg;
alpar@100:   };
alpar@100: 
alpar@100: 
alpar@100:   ///Dynamic arc look up between given endpoints.
alpar@100:   
alpar@100:   ///\ingroup gutils
alpar@100:   ///Using this class, you can find an arc in a digraph from a given
alpar@100:   ///source to a given target in amortized time <em>O(log d)</em>,
alpar@100:   ///where <em>d</em> is the out-degree of the source node.
alpar@100:   ///
alpar@100:   ///It is possible to find \e all parallel arcs between two nodes with
alpar@100:   ///the \c findFirst() and \c findNext() members.
alpar@100:   ///
alpar@100:   ///See the \ref ArcLookUp and \ref AllArcLookUp classes if your
deba@139:   ///digraph is not changed so frequently.
alpar@100:   ///
alpar@100:   ///This class uses a self-adjusting binary search tree, Sleator's
alpar@100:   ///and Tarjan's Splay tree for guarantee the logarithmic amortized
alpar@100:   ///time bound for arc lookups. This class also guarantees the
alpar@100:   ///optimal time bound in a constant factor for any distribution of
alpar@100:   ///queries.
alpar@100:   ///
kpeter@157:   ///\tparam G The type of the underlying digraph.  
alpar@100:   ///
alpar@100:   ///\sa ArcLookUp  
alpar@100:   ///\sa AllArcLookUp  
alpar@100:   template<class G>
alpar@100:   class DynArcLookUp 
alpar@100:     : protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase
alpar@100:   {
alpar@100:   public:
alpar@100:     typedef typename ItemSetTraits<G, typename G::Arc>
alpar@100:     ::ItemNotifier::ObserverBase Parent;
alpar@100: 
deba@148:     TEMPLATE_DIGRAPH_TYPEDEFS(G);
alpar@100:     typedef G Digraph;
alpar@100: 
alpar@100:   protected:
alpar@100: 
alpar@100:     class AutoNodeMap : public DefaultMap<G, Node, Arc> {
alpar@100:     public:
alpar@100: 
alpar@100:       typedef DefaultMap<G, Node, Arc> Parent;
alpar@100: 
alpar@100:       AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
alpar@100:       
alpar@100:       virtual void add(const Node& node) {
alpar@100: 	Parent::add(node);
alpar@100: 	Parent::set(node, INVALID);
alpar@100:       }
alpar@100: 
alpar@100:       virtual void add(const std::vector<Node>& nodes) {
alpar@100: 	Parent::add(nodes);
alpar@100: 	for (int i = 0; i < int(nodes.size()); ++i) {
alpar@100: 	  Parent::set(nodes[i], INVALID);
alpar@100: 	}
alpar@100:       }
alpar@100: 
alpar@100:       virtual void build() {
alpar@100: 	Parent::build();
alpar@100: 	Node it;
alpar@100: 	typename Parent::Notifier* nf = Parent::notifier();
alpar@100: 	for (nf->first(it); it != INVALID; nf->next(it)) {
alpar@100: 	  Parent::set(it, INVALID);
alpar@100: 	}
alpar@100:       }
alpar@100:     };
alpar@100: 
alpar@100:     const Digraph &_g;
alpar@100:     AutoNodeMap _head;
alpar@100:     typename Digraph::template ArcMap<Arc> _parent;
alpar@100:     typename Digraph::template ArcMap<Arc> _left;
alpar@100:     typename Digraph::template ArcMap<Arc> _right;
alpar@100:     
alpar@100:     class ArcLess {
alpar@100:       const Digraph &g;
alpar@100:     public:
alpar@100:       ArcLess(const Digraph &_g) : g(_g) {}
alpar@100:       bool operator()(Arc a,Arc b) const 
alpar@100:       {
alpar@100: 	return g.target(a)<g.target(b);
alpar@100:       }
alpar@100:     };
alpar@100:     
alpar@100:   public:
alpar@100:     
alpar@100:     ///Constructor
alpar@100: 
alpar@100:     ///Constructor.
alpar@100:     ///
alpar@100:     ///It builds up the search database.
alpar@100:     DynArcLookUp(const Digraph &g) 
alpar@100:       : _g(g),_head(g),_parent(g),_left(g),_right(g) 
alpar@100:     { 
alpar@100:       Parent::attach(_g.notifier(typename Digraph::Arc()));
alpar@100:       refresh(); 
alpar@100:     }
alpar@100:     
alpar@100:   protected:
alpar@100: 
alpar@100:     virtual void add(const Arc& arc) {
alpar@100:       insert(arc);
alpar@100:     }
alpar@100: 
alpar@100:     virtual void add(const std::vector<Arc>& arcs) {
alpar@100:       for (int i = 0; i < int(arcs.size()); ++i) {
alpar@100: 	insert(arcs[i]);
alpar@100:       }
alpar@100:     }
alpar@100: 
alpar@100:     virtual void erase(const Arc& arc) {
alpar@100:       remove(arc);
alpar@100:     }
alpar@100: 
alpar@100:     virtual void erase(const std::vector<Arc>& arcs) {
alpar@100:       for (int i = 0; i < int(arcs.size()); ++i) {
alpar@100: 	remove(arcs[i]);
alpar@100:       }     
alpar@100:     }
alpar@100: 
alpar@100:     virtual void build() {
alpar@100:       refresh();
alpar@100:     }
alpar@100: 
alpar@100:     virtual void clear() {
alpar@100:       for(NodeIt n(_g);n!=INVALID;++n) {
alpar@100: 	_head.set(n, INVALID);
alpar@100:       }
alpar@100:     }
alpar@100: 
alpar@100:     void insert(Arc arc) {
alpar@100:       Node s = _g.source(arc);
alpar@100:       Node t = _g.target(arc);
alpar@100:       _left.set(arc, INVALID);
alpar@100:       _right.set(arc, INVALID);
alpar@100:       
alpar@100:       Arc e = _head[s];
alpar@100:       if (e == INVALID) {
alpar@100: 	_head.set(s, arc);
alpar@100: 	_parent.set(arc, INVALID);
alpar@100: 	return;
alpar@100:       }
alpar@100:       while (true) {
alpar@100: 	if (t < _g.target(e)) {
alpar@100: 	  if (_left[e] == INVALID) {
alpar@100: 	    _left.set(e, arc);
alpar@100: 	    _parent.set(arc, e);
alpar@100: 	    splay(arc);
alpar@100: 	    return;
alpar@100: 	  } else {
alpar@100: 	    e = _left[e];
alpar@100: 	  }
alpar@100: 	} else {
alpar@100: 	  if (_right[e] == INVALID) {
alpar@100: 	    _right.set(e, arc);
alpar@100: 	    _parent.set(arc, e);
alpar@100: 	    splay(arc);
alpar@100: 	    return;
alpar@100: 	  } else {
alpar@100: 	    e = _right[e];
alpar@100: 	  }
alpar@100: 	}
alpar@100:       }
alpar@100:     }
alpar@100: 
alpar@100:     void remove(Arc arc) {
alpar@100:       if (_left[arc] == INVALID) {
alpar@100: 	if (_right[arc] != INVALID) {
alpar@100: 	  _parent.set(_right[arc], _parent[arc]);
alpar@100: 	}
alpar@100: 	if (_parent[arc] != INVALID) {
alpar@100: 	  if (_left[_parent[arc]] == arc) {
alpar@100: 	    _left.set(_parent[arc], _right[arc]);
alpar@100: 	  } else {
alpar@100: 	    _right.set(_parent[arc], _right[arc]);
alpar@100: 	  }
alpar@100: 	} else {
alpar@100: 	  _head.set(_g.source(arc), _right[arc]);
alpar@100: 	}
alpar@100:       } else if (_right[arc] == INVALID) {
alpar@100: 	_parent.set(_left[arc], _parent[arc]);
alpar@100: 	if (_parent[arc] != INVALID) {
alpar@100: 	  if (_left[_parent[arc]] == arc) {
alpar@100: 	    _left.set(_parent[arc], _left[arc]);
alpar@100: 	  } else {
alpar@100: 	    _right.set(_parent[arc], _left[arc]);
alpar@100: 	  }
alpar@100: 	} else {
alpar@100: 	  _head.set(_g.source(arc), _left[arc]);
alpar@100: 	}
alpar@100:       } else {
alpar@100: 	Arc e = _left[arc];
alpar@100: 	if (_right[e] != INVALID) {
alpar@100: 	  e = _right[e];	  
alpar@100: 	  while (_right[e] != INVALID) {
alpar@100: 	    e = _right[e];
alpar@100: 	  }
alpar@100: 	  Arc s = _parent[e];
alpar@100: 	  _right.set(_parent[e], _left[e]);
alpar@100: 	  if (_left[e] != INVALID) {
alpar@100: 	    _parent.set(_left[e], _parent[e]);
alpar@100: 	  }
alpar@100: 	  
alpar@100: 	  _left.set(e, _left[arc]);
alpar@100: 	  _parent.set(_left[arc], e);
alpar@100: 	  _right.set(e, _right[arc]);
alpar@100: 	  _parent.set(_right[arc], e);
alpar@100: 
alpar@100: 	  _parent.set(e, _parent[arc]);
alpar@100: 	  if (_parent[arc] != INVALID) {
alpar@100: 	    if (_left[_parent[arc]] == arc) {
alpar@100: 	      _left.set(_parent[arc], e);
alpar@100: 	    } else {
alpar@100: 	      _right.set(_parent[arc], e);
alpar@100: 	    }
alpar@100: 	  }
alpar@100: 	  splay(s);
alpar@100: 	} else {
alpar@100: 	  _right.set(e, _right[arc]);
alpar@100: 	  _parent.set(_right[arc], e);
alpar@100: 
alpar@100: 	  if (_parent[arc] != INVALID) {
alpar@100: 	    if (_left[_parent[arc]] == arc) {
alpar@100: 	      _left.set(_parent[arc], e);
alpar@100: 	    } else {
alpar@100: 	      _right.set(_parent[arc], e);
alpar@100: 	    }
alpar@100: 	  } else {
alpar@100: 	    _head.set(_g.source(arc), e);
alpar@100: 	  }
alpar@100: 	}
alpar@100:       }
alpar@100:     }
alpar@100: 
alpar@100:     Arc refreshRec(std::vector<Arc> &v,int a,int b) 
alpar@100:     {
alpar@100:       int m=(a+b)/2;
alpar@100:       Arc me=v[m];
alpar@100:       if (a < m) {
alpar@100: 	Arc left = refreshRec(v,a,m-1);
alpar@100: 	_left.set(me, left);
alpar@100: 	_parent.set(left, me);
alpar@100:       } else {
alpar@100: 	_left.set(me, INVALID);
alpar@100:       }
alpar@100:       if (m < b) {
alpar@100: 	Arc right = refreshRec(v,m+1,b);
alpar@100: 	_right.set(me, right);
alpar@100: 	_parent.set(right, me);
alpar@100:       } else {
alpar@100: 	_right.set(me, INVALID);
alpar@100:       }
alpar@100:       return me;
alpar@100:     }
alpar@100: 
alpar@100:     void refresh() {
alpar@100:       for(NodeIt n(_g);n!=INVALID;++n) {
alpar@100: 	std::vector<Arc> v;
alpar@100: 	for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
alpar@100: 	if(v.size()) {
alpar@100: 	  std::sort(v.begin(),v.end(),ArcLess(_g));
alpar@100: 	  Arc head = refreshRec(v,0,v.size()-1);
alpar@100: 	  _head.set(n, head);
alpar@100: 	  _parent.set(head, INVALID);
alpar@100: 	}
alpar@100: 	else _head.set(n, INVALID);
alpar@100:       }
alpar@100:     }
alpar@100: 
alpar@100:     void zig(Arc v) {        
alpar@100:       Arc w = _parent[v];
alpar@100:       _parent.set(v, _parent[w]);
alpar@100:       _parent.set(w, v);
alpar@100:       _left.set(w, _right[v]);
alpar@100:       _right.set(v, w);
alpar@100:       if (_parent[v] != INVALID) {
alpar@100: 	if (_right[_parent[v]] == w) {
alpar@100: 	  _right.set(_parent[v], v);
alpar@100: 	} else {
alpar@100: 	  _left.set(_parent[v], v);
alpar@100: 	}
alpar@100:       }
alpar@100:       if (_left[w] != INVALID){
alpar@100: 	_parent.set(_left[w], w);
alpar@100:       }
alpar@100:     }
alpar@100: 
alpar@100:     void zag(Arc v) {        
alpar@100:       Arc w = _parent[v];
alpar@100:       _parent.set(v, _parent[w]);
alpar@100:       _parent.set(w, v);
alpar@100:       _right.set(w, _left[v]);
alpar@100:       _left.set(v, w);
alpar@100:       if (_parent[v] != INVALID){
alpar@100: 	if (_left[_parent[v]] == w) {
alpar@100: 	  _left.set(_parent[v], v);
alpar@100: 	} else {
alpar@100: 	  _right.set(_parent[v], v);
alpar@100: 	}
alpar@100:       }
alpar@100:       if (_right[w] != INVALID){
alpar@100: 	_parent.set(_right[w], w);
alpar@100:       }
alpar@100:     }
alpar@100: 
alpar@100:     void splay(Arc v) {
alpar@100:       while (_parent[v] != INVALID) {
alpar@100: 	if (v == _left[_parent[v]]) {
alpar@100: 	  if (_parent[_parent[v]] == INVALID) {
alpar@100: 	    zig(v);
alpar@100: 	  } else {
alpar@100: 	    if (_parent[v] == _left[_parent[_parent[v]]]) {
alpar@100: 	      zig(_parent[v]);
alpar@100: 	      zig(v);
alpar@100: 	    } else {
alpar@100: 	      zig(v);
alpar@100: 	      zag(v);
alpar@100: 	    }
alpar@100: 	  }
alpar@100: 	} else {
alpar@100: 	  if (_parent[_parent[v]] == INVALID) {
alpar@100: 	    zag(v);
alpar@100: 	  } else {
alpar@100: 	    if (_parent[v] == _left[_parent[_parent[v]]]) {
alpar@100: 	      zag(v);
alpar@100: 	      zig(v);
alpar@100: 	    } else {
alpar@100: 	      zag(_parent[v]);
alpar@100: 	      zag(v);
alpar@100: 	    }
alpar@100: 	  }
alpar@100: 	}
alpar@100:       }
alpar@100:       _head[_g.source(v)] = v;
alpar@100:     }
alpar@100: 
alpar@100: 
alpar@100:   public:
alpar@100:     
alpar@100:     ///Find an arc between two nodes.
alpar@100:     
alpar@100:     ///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
alpar@100:     /// <em>d</em> is the number of outgoing arcs of \c s.
alpar@100:     ///\param s The source node
alpar@100:     ///\param t The target node
alpar@100:     ///\return An arc from \c s to \c t if there exists,
alpar@100:     ///\ref INVALID otherwise.
alpar@100:     Arc operator()(Node s, Node t) const
alpar@100:     {
deba@139:       Arc a = _head[s];
alpar@100:       while (true) {
deba@139: 	if (_g.target(a) == t) {
deba@139: 	  const_cast<DynArcLookUp&>(*this).splay(a);
deba@139: 	  return a;
deba@139: 	} else if (t < _g.target(a)) {
deba@139: 	  if (_left[a] == INVALID) {
deba@139: 	    const_cast<DynArcLookUp&>(*this).splay(a);
alpar@100: 	    return INVALID;
alpar@100: 	  } else {
deba@139: 	    a = _left[a];
alpar@100: 	  }
alpar@100: 	} else  {
deba@139: 	  if (_right[a] == INVALID) {
deba@139: 	    const_cast<DynArcLookUp&>(*this).splay(a);
alpar@100: 	    return INVALID;
alpar@100: 	  } else {
deba@139: 	    a = _right[a];
alpar@100: 	  }
alpar@100: 	}
alpar@100:       }
alpar@100:     }
alpar@100: 
alpar@100:     ///Find the first arc between two nodes.
alpar@100:     
alpar@100:     ///Find the first arc between two nodes in time
alpar@100:     /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
alpar@100:     /// outgoing arcs of \c s.  
alpar@100:     ///\param s The source node 
alpar@100:     ///\param t The target node
alpar@100:     ///\return An arc from \c s to \c t if there exists, \ref INVALID
alpar@100:     /// otherwise.
alpar@100:     Arc findFirst(Node s, Node t) const
alpar@100:     {
deba@139:       Arc a = _head[s];
alpar@100:       Arc r = INVALID;
alpar@100:       while (true) {
deba@139: 	if (_g.target(a) < t) {
deba@139: 	  if (_right[a] == INVALID) {
deba@139: 	    const_cast<DynArcLookUp&>(*this).splay(a);
alpar@100: 	    return r;
alpar@100: 	  } else {
deba@139: 	    a = _right[a];
alpar@100: 	  }
alpar@100: 	} else {
deba@139: 	  if (_g.target(a) == t) {
deba@139: 	    r = a;
alpar@100: 	  }
deba@139: 	  if (_left[a] == INVALID) {
deba@139: 	    const_cast<DynArcLookUp&>(*this).splay(a);
alpar@100: 	    return r;
alpar@100: 	  } else {
deba@139: 	    a = _left[a];
alpar@100: 	  }
alpar@100: 	}
alpar@100:       }
alpar@100:     }
alpar@100: 
alpar@100:     ///Find the next arc between two nodes.
alpar@100:     
alpar@100:     ///Find the next arc between two nodes in time
alpar@100:     /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
alpar@100:     /// outgoing arcs of \c s.  
alpar@100:     ///\param s The source node 
alpar@100:     ///\param t The target node
alpar@100:     ///\return An arc from \c s to \c t if there exists, \ref INVALID
alpar@100:     /// otherwise.
alpar@100: 
alpar@100:     ///\note If \c e is not the result of the previous \c findFirst()
alpar@100:     ///operation then the amorized time bound can not be guaranteed.
alpar@100: #ifdef DOXYGEN
deba@139:     Arc findNext(Node s, Node t, Arc a) const
alpar@100: #else
deba@139:     Arc findNext(Node, Node t, Arc a) const
alpar@100: #endif
alpar@100:     {
deba@139:       if (_right[a] != INVALID) {
deba@139: 	a = _right[a];
deba@139: 	while (_left[a] != INVALID) {
deba@139: 	  a = _left[a];
alpar@100: 	}
deba@139: 	const_cast<DynArcLookUp&>(*this).splay(a);
alpar@100:       } else {
deba@139: 	while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
deba@139: 	  a = _parent[a];
alpar@100: 	}
deba@139: 	if (_parent[a] == INVALID) {
alpar@100: 	  return INVALID;
alpar@100: 	} else {
deba@139: 	  a = _parent[a];
deba@139: 	  const_cast<DynArcLookUp&>(*this).splay(a);
alpar@100: 	}
alpar@100:       }
deba@139:       if (_g.target(a) == t) return a;
alpar@100:       else return INVALID;    
alpar@100:     }
alpar@100: 
alpar@100:   };
alpar@100: 
alpar@100:   ///Fast arc look up between given endpoints.
alpar@100:   
alpar@100:   ///\ingroup gutils
alpar@100:   ///Using this class, you can find an arc in a digraph from a given
alpar@100:   ///source to a given target in time <em>O(log d)</em>,
alpar@100:   ///where <em>d</em> is the out-degree of the source node.
alpar@100:   ///
alpar@100:   ///It is not possible to find \e all parallel arcs between two nodes.
alpar@100:   ///Use \ref AllArcLookUp for this purpose.
alpar@100:   ///
alpar@100:   ///\warning This class is static, so you should refresh() (or at least
alpar@100:   ///refresh(Node)) this data structure
alpar@100:   ///whenever the digraph changes. This is a time consuming (superlinearly
alpar@100:   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
alpar@100:   ///
kpeter@157:   ///\tparam G The type of the underlying digraph.
alpar@100:   ///
alpar@100:   ///\sa DynArcLookUp
alpar@100:   ///\sa AllArcLookUp  
alpar@100:   template<class G>
alpar@100:   class ArcLookUp 
alpar@100:   {
alpar@100:   public:
deba@148:     TEMPLATE_DIGRAPH_TYPEDEFS(G);
alpar@100:     typedef G Digraph;
alpar@100: 
alpar@100:   protected:
alpar@100:     const Digraph &_g;
alpar@100:     typename Digraph::template NodeMap<Arc> _head;
alpar@100:     typename Digraph::template ArcMap<Arc> _left;
alpar@100:     typename Digraph::template ArcMap<Arc> _right;
alpar@100:     
alpar@100:     class ArcLess {
alpar@100:       const Digraph &g;
alpar@100:     public:
alpar@100:       ArcLess(const Digraph &_g) : g(_g) {}
alpar@100:       bool operator()(Arc a,Arc b) const 
alpar@100:       {
alpar@100: 	return g.target(a)<g.target(b);
alpar@100:       }
alpar@100:     };
alpar@100:     
alpar@100:   public:
alpar@100:     
alpar@100:     ///Constructor
alpar@100: 
alpar@100:     ///Constructor.
alpar@100:     ///
alpar@100:     ///It builds up the search database, which remains valid until the digraph
alpar@100:     ///changes.
alpar@100:     ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
alpar@100:     
alpar@100:   private:
alpar@100:     Arc refreshRec(std::vector<Arc> &v,int a,int b) 
alpar@100:     {
alpar@100:       int m=(a+b)/2;
alpar@100:       Arc me=v[m];
alpar@100:       _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
alpar@100:       _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
alpar@100:       return me;
alpar@100:     }
alpar@100:   public:
alpar@100:     ///Refresh the data structure at a node.
alpar@100: 
alpar@100:     ///Build up the search database of node \c n.
alpar@100:     ///
alpar@100:     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
alpar@100:     ///the number of the outgoing arcs of \c n.
alpar@100:     void refresh(Node n) 
alpar@100:     {
alpar@100:       std::vector<Arc> v;
alpar@100:       for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
alpar@100:       if(v.size()) {
alpar@100: 	std::sort(v.begin(),v.end(),ArcLess(_g));
alpar@100: 	_head[n]=refreshRec(v,0,v.size()-1);
alpar@100:       }
alpar@100:       else _head[n]=INVALID;
alpar@100:     }
alpar@100:     ///Refresh the full data structure.
alpar@100: 
alpar@100:     ///Build up the full search database. In fact, it simply calls
alpar@100:     ///\ref refresh(Node) "refresh(n)" for each node \c n.
alpar@100:     ///
alpar@100:     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
alpar@100:     ///the number of the arcs of \c n and <em>D</em> is the maximum
alpar@100:     ///out-degree of the digraph.
alpar@100: 
alpar@100:     void refresh() 
alpar@100:     {
alpar@100:       for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
alpar@100:     }
alpar@100:     
alpar@100:     ///Find an arc between two nodes.
alpar@100:     
alpar@100:     ///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
alpar@100:     /// <em>d</em> is the number of outgoing arcs of \c s.
alpar@100:     ///\param s The source node
alpar@100:     ///\param t The target node
alpar@100:     ///\return An arc from \c s to \c t if there exists,
alpar@100:     ///\ref INVALID otherwise.
alpar@100:     ///
alpar@100:     ///\warning If you change the digraph, refresh() must be called before using
alpar@100:     ///this operator. If you change the outgoing arcs of
alpar@100:     ///a single node \c n, then
alpar@100:     ///\ref refresh(Node) "refresh(n)" is enough.
alpar@100:     ///
alpar@100:     Arc operator()(Node s, Node t) const
alpar@100:     {
alpar@100:       Arc e;
alpar@100:       for(e=_head[s];
alpar@100: 	  e!=INVALID&&_g.target(e)!=t;
alpar@100: 	  e = t < _g.target(e)?_left[e]:_right[e]) ;
alpar@100:       return e;
alpar@100:     }
alpar@100: 
alpar@100:   };
alpar@100: 
alpar@100:   ///Fast look up of all arcs between given endpoints.
alpar@100:   
alpar@100:   ///\ingroup gutils
alpar@100:   ///This class is the same as \ref ArcLookUp, with the addition
alpar@100:   ///that it makes it possible to find all arcs between given endpoints.
alpar@100:   ///
alpar@100:   ///\warning This class is static, so you should refresh() (or at least
alpar@100:   ///refresh(Node)) this data structure
alpar@100:   ///whenever the digraph changes. This is a time consuming (superlinearly
alpar@100:   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
alpar@100:   ///
kpeter@157:   ///\tparam G The type of the underlying digraph.
alpar@100:   ///
alpar@100:   ///\sa DynArcLookUp
alpar@100:   ///\sa ArcLookUp  
alpar@100:   template<class G>
alpar@100:   class AllArcLookUp : public ArcLookUp<G>
alpar@100:   {
alpar@100:     using ArcLookUp<G>::_g;
alpar@100:     using ArcLookUp<G>::_right;
alpar@100:     using ArcLookUp<G>::_left;
alpar@100:     using ArcLookUp<G>::_head;
alpar@100: 
deba@148:     TEMPLATE_DIGRAPH_TYPEDEFS(G);
alpar@100:     typedef G Digraph;
alpar@100:     
alpar@100:     typename Digraph::template ArcMap<Arc> _next;
alpar@100:     
alpar@100:     Arc refreshNext(Arc head,Arc next=INVALID)
alpar@100:     {
alpar@100:       if(head==INVALID) return next;
alpar@100:       else {
alpar@100: 	next=refreshNext(_right[head],next);
alpar@100: // 	_next[head]=next;
alpar@100: 	_next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
alpar@100: 	  ? next : INVALID;
alpar@100: 	return refreshNext(_left[head],head);
alpar@100:       }
alpar@100:     }
alpar@100:     
alpar@100:     void refreshNext()
alpar@100:     {
alpar@100:       for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
alpar@100:     }
alpar@100:     
alpar@100:   public:
alpar@100:     ///Constructor
alpar@100: 
alpar@100:     ///Constructor.
alpar@100:     ///
alpar@100:     ///It builds up the search database, which remains valid until the digraph
alpar@100:     ///changes.
alpar@100:     AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();}
alpar@100: 
alpar@100:     ///Refresh the data structure at a node.
alpar@100: 
alpar@100:     ///Build up the search database of node \c n.
alpar@100:     ///
alpar@100:     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
alpar@100:     ///the number of the outgoing arcs of \c n.
alpar@100:     
alpar@100:     void refresh(Node n) 
alpar@100:     {
alpar@100:       ArcLookUp<G>::refresh(n);
alpar@100:       refreshNext(_head[n]);
alpar@100:     }
alpar@100:     
alpar@100:     ///Refresh the full data structure.
alpar@100: 
alpar@100:     ///Build up the full search database. In fact, it simply calls
alpar@100:     ///\ref refresh(Node) "refresh(n)" for each node \c n.
alpar@100:     ///
alpar@100:     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
alpar@100:     ///the number of the arcs of \c n and <em>D</em> is the maximum
alpar@100:     ///out-degree of the digraph.
alpar@100: 
alpar@100:     void refresh() 
alpar@100:     {
alpar@100:       for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
alpar@100:     }
alpar@100:     
alpar@100:     ///Find an arc between two nodes.
alpar@100:     
alpar@100:     ///Find an arc between two nodes.
alpar@100:     ///\param s The source node
alpar@100:     ///\param t The target node
alpar@100:     ///\param prev The previous arc between \c s and \c t. It it is INVALID or
alpar@100:     ///not given, the operator finds the first appropriate arc.
alpar@100:     ///\return An arc from \c s to \c t after \c prev or
alpar@100:     ///\ref INVALID if there is no more.
alpar@100:     ///
alpar@100:     ///For example, you can count the number of arcs from \c u to \c v in the
alpar@100:     ///following way.
alpar@100:     ///\code
alpar@100:     ///AllArcLookUp<ListDigraph> ae(g);
alpar@100:     ///...
alpar@100:     ///int n=0;
alpar@100:     ///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
alpar@100:     ///\endcode
alpar@100:     ///
alpar@100:     ///Finding the first arc take <em>O(</em>log<em>d)</em> time, where
alpar@100:     /// <em>d</em> is the number of outgoing arcs of \c s. Then, the
alpar@100:     ///consecutive arcs are found in constant time.
alpar@100:     ///
alpar@100:     ///\warning If you change the digraph, refresh() must be called before using
alpar@100:     ///this operator. If you change the outgoing arcs of
alpar@100:     ///a single node \c n, then
alpar@100:     ///\ref refresh(Node) "refresh(n)" is enough.
alpar@100:     ///
alpar@100: #ifdef DOXYGEN
alpar@100:     Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
alpar@100: #else
alpar@100:     using ArcLookUp<G>::operator() ;
alpar@100:     Arc operator()(Node s, Node t, Arc prev) const
alpar@100:     {
alpar@100:       return prev==INVALID?(*this)(s,t):_next[prev];
alpar@100:     }
alpar@100: #endif
alpar@100:       
alpar@100:   };
alpar@100: 
alpar@100:   /// @}
alpar@100: 
alpar@100: } //END OF NAMESPACE LEMON
alpar@100: 
alpar@100: #endif