alpar@209: /* -*- mode: C++; indent-tabs-mode: nil; -*-
deba@57:  *
alpar@209:  * This file is a part of LEMON, a generic C++ optimization library.
deba@57:  *
alpar@440:  * Copyright (C) 2003-2009
deba@57:  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@57:  * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@57:  *
deba@57:  * Permission to use, modify and distribute this software is granted
deba@57:  * provided that this copyright notice appears in all copies. For
deba@57:  * precise terms see the accompanying LICENSE file.
deba@57:  *
deba@57:  * This software is provided "AS IS" with no warranty of any kind,
deba@57:  * express or implied, and with no claim as to its suitability for any
deba@57:  * purpose.
deba@57:  *
deba@57:  */
deba@57: 
deba@57: ///\ingroup graph_concepts
deba@57: ///\file
kpeter@734: ///\brief The concept of undirected graphs.
deba@57: 
deba@529: #ifndef LEMON_CONCEPTS_GRAPH_H
deba@529: #define LEMON_CONCEPTS_GRAPH_H
deba@57: 
deba@57: #include <lemon/concepts/graph_components.h>
kpeter@734: #include <lemon/concepts/maps.h>
kpeter@734: #include <lemon/concept_check.h>
deba@220: #include <lemon/core.h>
deba@57: 
deba@57: namespace lemon {
deba@57:   namespace concepts {
deba@57: 
deba@57:     /// \ingroup graph_concepts
deba@57:     ///
kpeter@734:     /// \brief Class describing the concept of undirected graphs.
deba@57:     ///
kpeter@734:     /// This class describes the common interface of all undirected
kpeter@734:     /// graphs.
deba@57:     ///
kpeter@734:     /// Like all concept classes, it only provides an interface
kpeter@734:     /// without any sensible implementation. So any general algorithm for
kpeter@734:     /// undirected graphs should compile with this class, but it will not
deba@57:     /// run properly, of course.
kpeter@734:     /// An actual graph implementation like \ref ListGraph or
kpeter@734:     /// \ref SmartGraph may have additional functionality.    
deba@57:     ///
kpeter@734:     /// The undirected graphs also fulfill the concept of \ref Digraph
kpeter@734:     /// "directed graphs", since each edge can also be regarded as two
kpeter@734:     /// oppositely directed arcs.
kpeter@734:     /// Undirected graphs provide an Edge type for the undirected edges and
kpeter@734:     /// an Arc type for the directed arcs. The Arc type is convertible to
kpeter@734:     /// Edge or inherited from it, i.e. the corresponding edge can be
kpeter@734:     /// obtained from an arc.
kpeter@734:     /// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt
kpeter@734:     /// and ArcMap classes can be used for the arcs (just like in digraphs).
kpeter@734:     /// Both InArcIt and OutArcIt iterates on the same edges but with
kpeter@734:     /// opposite direction. IncEdgeIt also iterates on the same edges
kpeter@734:     /// as OutArcIt and InArcIt, but it is not convertible to Arc,
kpeter@734:     /// only to Edge.
deba@57:     ///
kpeter@734:     /// In LEMON, each undirected edge has an inherent orientation.
kpeter@734:     /// Thus it can defined if an arc is forward or backward oriented in
kpeter@734:     /// an undirected graph with respect to this default oriantation of
kpeter@734:     /// the represented edge.
kpeter@734:     /// With the direction() and direct() functions the direction
kpeter@734:     /// of an arc can be obtained and set, respectively.
deba@57:     ///
kpeter@734:     /// Only nodes and edges can be added to or removed from an undirected
kpeter@734:     /// graph and the corresponding arcs are added or removed automatically.
kpeter@734:     ///
kpeter@734:     /// \sa Digraph
deba@57:     class Graph {
kpeter@734:     private:
kpeter@734:       /// Graphs are \e not copy constructible. Use DigraphCopy instead.
kpeter@734:       Graph(const Graph&) {}
kpeter@734:       /// \brief Assignment of a graph to another one is \e not allowed.
kpeter@734:       /// Use DigraphCopy instead.
kpeter@734:       void operator=(const Graph&) {}
kpeter@734: 
deba@57:     public:
kpeter@734:       /// Default constructor.
kpeter@734:       Graph() {}
kpeter@734: 
kpeter@734:       /// \brief Undirected graphs should be tagged with \c UndirectedTag.
deba@57:       ///
kpeter@734:       /// Undirected graphs should be tagged with \c UndirectedTag.
kpeter@734:       /// 
kpeter@734:       /// This tag helps the \c enable_if technics to make compile time
alpar@209:       /// specializations for undirected graphs.
deba@57:       typedef True UndirectedTag;
deba@57: 
kpeter@734:       /// The node type of the graph
kpeter@734: 
kpeter@734:       /// This class identifies a node of the graph. It also serves
kpeter@734:       /// as a base class of the node iterators,
kpeter@734:       /// thus they convert to this type.
deba@57:       class Node {
deba@57:       public:
deba@57:         /// Default constructor
deba@57: 
kpeter@734:         /// Default constructor.
kpeter@734:         /// \warning It sets the object to an undefined value.
deba@57:         Node() { }
deba@57:         /// Copy constructor.
deba@57: 
deba@57:         /// Copy constructor.
deba@57:         ///
deba@57:         Node(const Node&) { }
deba@57: 
kpeter@734:         /// %Invalid constructor \& conversion.
deba@57: 
kpeter@734:         /// Initializes the object to be invalid.
deba@57:         /// \sa Invalid for more details.
deba@57:         Node(Invalid) { }
deba@57:         /// Equality operator
deba@57: 
kpeter@734:         /// Equality operator.
kpeter@734:         ///
deba@57:         /// Two iterators are equal if and only if they point to the
kpeter@734:         /// same object or both are \c INVALID.
deba@57:         bool operator==(Node) const { return true; }
deba@57: 
deba@57:         /// Inequality operator
alpar@209: 
kpeter@734:         /// Inequality operator.
deba@57:         bool operator!=(Node) const { return true; }
deba@57: 
alpar@209:         /// Artificial ordering operator.
alpar@209: 
kpeter@734:         /// Artificial ordering operator.
alpar@209:         ///
kpeter@734:         /// \note This operator only has to define some strict ordering of
alpar@209:         /// the items; this order has nothing to do with the iteration
alpar@209:         /// ordering of the items.
alpar@209:         bool operator<(Node) const { return false; }
deba@57: 
deba@57:       };
alpar@209: 
kpeter@734:       /// Iterator class for the nodes.
deba@57: 
kpeter@734:       /// This iterator goes through each node of the graph.
kpeter@786:       /// Its usage is quite simple, for example, you can count the number
kpeter@734:       /// of nodes in a graph \c g of type \c %Graph like this:
deba@57:       ///\code
deba@57:       /// int count=0;
deba@57:       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
deba@57:       ///\endcode
deba@57:       class NodeIt : public Node {
deba@57:       public:
deba@57:         /// Default constructor
deba@57: 
kpeter@734:         /// Default constructor.
kpeter@734:         /// \warning It sets the iterator to an undefined value.
deba@57:         NodeIt() { }
deba@57:         /// Copy constructor.
alpar@209: 
deba@57:         /// Copy constructor.
deba@57:         ///
deba@57:         NodeIt(const NodeIt& n) : Node(n) { }
kpeter@734:         /// %Invalid constructor \& conversion.
deba@57: 
kpeter@734:         /// Initializes the iterator to be invalid.
deba@57:         /// \sa Invalid for more details.
deba@57:         NodeIt(Invalid) { }
deba@57:         /// Sets the iterator to the first node.
deba@57: 
kpeter@734:         /// Sets the iterator to the first node of the given digraph.
deba@57:         ///
kpeter@734:         explicit NodeIt(const Graph&) { }
kpeter@734:         /// Sets the iterator to the given node.
deba@57: 
kpeter@734:         /// Sets the iterator to the given node of the given digraph.
kpeter@734:         ///
deba@57:         NodeIt(const Graph&, const Node&) { }
deba@57:         /// Next node.
deba@57: 
deba@57:         /// Assign the iterator to the next node.
deba@57:         ///
deba@57:         NodeIt& operator++() { return *this; }
deba@57:       };
alpar@209: 
alpar@209: 
kpeter@734:       /// The edge type of the graph
deba@57: 
kpeter@734:       /// This class identifies an edge of the graph. It also serves
kpeter@734:       /// as a base class of the edge iterators,
kpeter@734:       /// thus they will convert to this type.
deba@57:       class Edge {
deba@57:       public:
deba@57:         /// Default constructor
deba@57: 
kpeter@734:         /// Default constructor.
kpeter@734:         /// \warning It sets the object to an undefined value.
deba@57:         Edge() { }
deba@57:         /// Copy constructor.
deba@57: 
deba@57:         /// Copy constructor.
deba@57:         ///
deba@57:         Edge(const Edge&) { }
kpeter@734:         /// %Invalid constructor \& conversion.
deba@57: 
kpeter@734:         /// Initializes the object to be invalid.
kpeter@734:         /// \sa Invalid for more details.
deba@57:         Edge(Invalid) { }
deba@57:         /// Equality operator
deba@57: 
kpeter@734:         /// Equality operator.
kpeter@734:         ///
deba@57:         /// Two iterators are equal if and only if they point to the
kpeter@734:         /// same object or both are \c INVALID.
deba@57:         bool operator==(Edge) const { return true; }
deba@57:         /// Inequality operator
deba@57: 
kpeter@734:         /// Inequality operator.
deba@57:         bool operator!=(Edge) const { return true; }
deba@57: 
alpar@209:         /// Artificial ordering operator.
alpar@209: 
kpeter@734:         /// Artificial ordering operator.
alpar@209:         ///
kpeter@734:         /// \note This operator only has to define some strict ordering of
kpeter@734:         /// the edges; this order has nothing to do with the iteration
kpeter@734:         /// ordering of the edges.
alpar@209:         bool operator<(Edge) const { return false; }
deba@57:       };
deba@57: 
kpeter@734:       /// Iterator class for the edges.
deba@57: 
kpeter@734:       /// This iterator goes through each edge of the graph.
kpeter@786:       /// Its usage is quite simple, for example, you can count the number
kpeter@734:       /// of edges in a graph \c g of type \c %Graph as follows:
deba@57:       ///\code
deba@57:       /// int count=0;
deba@57:       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
deba@57:       ///\endcode
deba@57:       class EdgeIt : public Edge {
deba@57:       public:
deba@57:         /// Default constructor
deba@57: 
kpeter@734:         /// Default constructor.
kpeter@734:         /// \warning It sets the iterator to an undefined value.
deba@57:         EdgeIt() { }
deba@57:         /// Copy constructor.
deba@57: 
deba@57:         /// Copy constructor.
deba@57:         ///
deba@57:         EdgeIt(const EdgeIt& e) : Edge(e) { }
kpeter@734:         /// %Invalid constructor \& conversion.
deba@57: 
kpeter@734:         /// Initializes the iterator to be invalid.
kpeter@734:         /// \sa Invalid for more details.
kpeter@734:         EdgeIt(Invalid) { }
kpeter@734:         /// Sets the iterator to the first edge.
kpeter@734: 
kpeter@734:         /// Sets the iterator to the first edge of the given graph.
deba@57:         ///
kpeter@734:         explicit EdgeIt(const Graph&) { }
kpeter@734:         /// Sets the iterator to the given edge.
alpar@209: 
kpeter@734:         /// Sets the iterator to the given edge of the given graph.
kpeter@734:         ///
alpar@209:         EdgeIt(const Graph&, const Edge&) { }
deba@57:         /// Next edge
alpar@209: 
deba@57:         /// Assign the iterator to the next edge.
kpeter@734:         ///
deba@57:         EdgeIt& operator++() { return *this; }
deba@57:       };
deba@57: 
kpeter@734:       /// Iterator class for the incident edges of a node.
kpeter@734: 
kpeter@734:       /// This iterator goes trough the incident undirected edges
kpeter@734:       /// of a certain node of a graph.
kpeter@786:       /// Its usage is quite simple, for example, you can compute the
kpeter@734:       /// degree (i.e. the number of incident edges) of a node \c n
kpeter@734:       /// in a graph \c g of type \c %Graph as follows.
deba@57:       ///
deba@57:       ///\code
deba@57:       /// int count=0;
deba@78:       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
deba@57:       ///\endcode
kpeter@734:       ///
kpeter@734:       /// \warning Loop edges will be iterated twice.
deba@78:       class IncEdgeIt : public Edge {
deba@57:       public:
deba@57:         /// Default constructor
deba@57: 
kpeter@734:         /// Default constructor.
kpeter@734:         /// \warning It sets the iterator to an undefined value.
deba@78:         IncEdgeIt() { }
deba@57:         /// Copy constructor.
deba@57: 
deba@57:         /// Copy constructor.
deba@57:         ///
deba@78:         IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
kpeter@734:         /// %Invalid constructor \& conversion.
deba@57: 
kpeter@734:         /// Initializes the iterator to be invalid.
kpeter@734:         /// \sa Invalid for more details.
kpeter@734:         IncEdgeIt(Invalid) { }
kpeter@734:         /// Sets the iterator to the first incident edge.
kpeter@734: 
kpeter@734:         /// Sets the iterator to the first incident edge of the given node.
deba@57:         ///
kpeter@734:         IncEdgeIt(const Graph&, const Node&) { }
kpeter@734:         /// Sets the iterator to the given edge.
alpar@209: 
kpeter@734:         /// Sets the iterator to the given edge of the given graph.
kpeter@734:         ///
kpeter@734:         IncEdgeIt(const Graph&, const Edge&) { }
kpeter@734:         /// Next incident edge
deba@57: 
kpeter@734:         /// Assign the iterator to the next incident edge
alpar@209:         /// of the corresponding node.
deba@78:         IncEdgeIt& operator++() { return *this; }
deba@57:       };
deba@57: 
kpeter@734:       /// The arc type of the graph
deba@57: 
kpeter@734:       /// This class identifies a directed arc of the graph. It also serves
kpeter@734:       /// as a base class of the arc iterators,
kpeter@734:       /// thus they will convert to this type.
kpeter@657:       class Arc {
deba@57:       public:
deba@57:         /// Default constructor
deba@57: 
kpeter@734:         /// Default constructor.
kpeter@734:         /// \warning It sets the object to an undefined value.
deba@57:         Arc() { }
deba@57:         /// Copy constructor.
deba@57: 
deba@57:         /// Copy constructor.
deba@57:         ///
kpeter@657:         Arc(const Arc&) { }
kpeter@734:         /// %Invalid constructor \& conversion.
deba@57: 
kpeter@734:         /// Initializes the object to be invalid.
kpeter@734:         /// \sa Invalid for more details.
deba@57:         Arc(Invalid) { }
deba@57:         /// Equality operator
deba@57: 
kpeter@734:         /// Equality operator.
kpeter@734:         ///
deba@57:         /// Two iterators are equal if and only if they point to the
kpeter@734:         /// same object or both are \c INVALID.
deba@57:         bool operator==(Arc) const { return true; }
deba@57:         /// Inequality operator
deba@57: 
kpeter@734:         /// Inequality operator.
deba@57:         bool operator!=(Arc) const { return true; }
deba@57: 
alpar@209:         /// Artificial ordering operator.
alpar@209: 
kpeter@734:         /// Artificial ordering operator.
alpar@209:         ///
kpeter@734:         /// \note This operator only has to define some strict ordering of
kpeter@734:         /// the arcs; this order has nothing to do with the iteration
kpeter@734:         /// ordering of the arcs.
alpar@209:         bool operator<(Arc) const { return false; }
alpar@209: 
kpeter@734:         /// Converison to \c Edge
kpeter@734:         
kpeter@734:         /// Converison to \c Edge.
kpeter@734:         ///
kpeter@657:         operator Edge() const { return Edge(); }
alpar@209:       };
deba@57: 
kpeter@734:       /// Iterator class for the arcs.
kpeter@734: 
kpeter@734:       /// This iterator goes through each directed arc of the graph.
kpeter@786:       /// Its usage is quite simple, for example, you can count the number
kpeter@734:       /// of arcs in a graph \c g of type \c %Graph as follows:
deba@57:       ///\code
deba@57:       /// int count=0;
kpeter@734:       /// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count;
deba@57:       ///\endcode
deba@57:       class ArcIt : public Arc {
deba@57:       public:
deba@57:         /// Default constructor
deba@57: 
kpeter@734:         /// Default constructor.
kpeter@734:         /// \warning It sets the iterator to an undefined value.
deba@57:         ArcIt() { }
deba@57:         /// Copy constructor.
deba@57: 
deba@57:         /// Copy constructor.
deba@57:         ///
deba@57:         ArcIt(const ArcIt& e) : Arc(e) { }
kpeter@734:         /// %Invalid constructor \& conversion.
deba@57: 
kpeter@734:         /// Initializes the iterator to be invalid.
kpeter@734:         /// \sa Invalid for more details.
kpeter@734:         ArcIt(Invalid) { }
kpeter@734:         /// Sets the iterator to the first arc.
kpeter@734: 
kpeter@734:         /// Sets the iterator to the first arc of the given graph.
deba@57:         ///
kpeter@734:         explicit ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
kpeter@734:         /// Sets the iterator to the given arc.
alpar@209: 
kpeter@734:         /// Sets the iterator to the given arc of the given graph.
kpeter@734:         ///
alpar@209:         ArcIt(const Graph&, const Arc&) { }
kpeter@734:         /// Next arc
alpar@209: 
deba@57:         /// Assign the iterator to the next arc.
kpeter@734:         ///
deba@57:         ArcIt& operator++() { return *this; }
deba@57:       };
alpar@209: 
kpeter@734:       /// Iterator class for the outgoing arcs of a node.
deba@57: 
kpeter@734:       /// This iterator goes trough the \e outgoing directed arcs of a
kpeter@734:       /// certain node of a graph.
kpeter@786:       /// Its usage is quite simple, for example, you can count the number
deba@57:       /// of outgoing arcs of a node \c n
kpeter@734:       /// in a graph \c g of type \c %Graph as follows.
deba@57:       ///\code
deba@57:       /// int count=0;
kpeter@734:       /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
deba@57:       ///\endcode
deba@57:       class OutArcIt : public Arc {
deba@57:       public:
deba@57:         /// Default constructor
deba@57: 
kpeter@734:         /// Default constructor.
kpeter@734:         /// \warning It sets the iterator to an undefined value.
deba@57:         OutArcIt() { }
deba@57:         /// Copy constructor.
deba@57: 
deba@57:         /// Copy constructor.
deba@57:         ///
deba@57:         OutArcIt(const OutArcIt& e) : Arc(e) { }
kpeter@734:         /// %Invalid constructor \& conversion.
deba@57: 
kpeter@734:         /// Initializes the iterator to be invalid.
kpeter@734:         /// \sa Invalid for more details.
kpeter@734:         OutArcIt(Invalid) { }
kpeter@734:         /// Sets the iterator to the first outgoing arc.
kpeter@734: 
kpeter@734:         /// Sets the iterator to the first outgoing arc of the given node.
deba@57:         ///
deba@57:         OutArcIt(const Graph& n, const Node& g) {
alpar@209:           ignore_unused_variable_warning(n);
alpar@209:           ignore_unused_variable_warning(g);
alpar@209:         }
kpeter@734:         /// Sets the iterator to the given arc.
deba@57: 
kpeter@734:         /// Sets the iterator to the given arc of the given graph.
kpeter@734:         ///
deba@57:         OutArcIt(const Graph&, const Arc&) { }
kpeter@734:         /// Next outgoing arc
alpar@209: 
alpar@209:         /// Assign the iterator to the next
deba@57:         /// outgoing arc of the corresponding node.
deba@57:         OutArcIt& operator++() { return *this; }
deba@57:       };
deba@57: 
kpeter@734:       /// Iterator class for the incoming arcs of a node.
deba@57: 
kpeter@734:       /// This iterator goes trough the \e incoming directed arcs of a
kpeter@734:       /// certain node of a graph.
kpeter@786:       /// Its usage is quite simple, for example, you can count the number
kpeter@734:       /// of incoming arcs of a node \c n
kpeter@734:       /// in a graph \c g of type \c %Graph as follows.
deba@57:       ///\code
deba@57:       /// int count=0;
kpeter@734:       /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
deba@57:       ///\endcode
deba@57:       class InArcIt : public Arc {
deba@57:       public:
deba@57:         /// Default constructor
deba@57: 
kpeter@734:         /// Default constructor.
kpeter@734:         /// \warning It sets the iterator to an undefined value.
deba@57:         InArcIt() { }
deba@57:         /// Copy constructor.
deba@57: 
deba@57:         /// Copy constructor.
deba@57:         ///
deba@57:         InArcIt(const InArcIt& e) : Arc(e) { }
kpeter@734:         /// %Invalid constructor \& conversion.
deba@57: 
kpeter@734:         /// Initializes the iterator to be invalid.
kpeter@734:         /// \sa Invalid for more details.
kpeter@734:         InArcIt(Invalid) { }
kpeter@734:         /// Sets the iterator to the first incoming arc.
kpeter@734: 
kpeter@734:         /// Sets the iterator to the first incoming arc of the given node.
deba@57:         ///
alpar@209:         InArcIt(const Graph& g, const Node& n) {
alpar@209:           ignore_unused_variable_warning(n);
alpar@209:           ignore_unused_variable_warning(g);
alpar@209:         }
kpeter@734:         /// Sets the iterator to the given arc.
deba@57: 
kpeter@734:         /// Sets the iterator to the given arc of the given graph.
kpeter@734:         ///
deba@57:         InArcIt(const Graph&, const Arc&) { }
deba@57:         /// Next incoming arc
deba@57: 
kpeter@734:         /// Assign the iterator to the next
kpeter@734:         /// incoming arc of the corresponding node.
deba@57:         InArcIt& operator++() { return *this; }
deba@57:       };
deba@57: 
kpeter@734:       /// \brief Standard graph map type for the nodes.
alpar@209:       ///
kpeter@734:       /// Standard graph map type for the nodes.
kpeter@734:       /// It conforms to the ReferenceMap concept.
alpar@209:       template<class T>
kpeter@580:       class NodeMap : public ReferenceMap<Node, T, T&, const T&>
deba@57:       {
deba@57:       public:
deba@57: 
kpeter@734:         /// Constructor
kpeter@734:         explicit NodeMap(const Graph&) { }
kpeter@734:         /// Constructor with given initial value
deba@57:         NodeMap(const Graph&, T) { }
deba@57: 
kpeter@263:       private:
deba@57:         ///Copy constructor
kpeter@580:         NodeMap(const NodeMap& nm) :
kpeter@580:           ReferenceMap<Node, T, T&, const T&>(nm) { }
deba@57:         ///Assignment operator
deba@57:         template <typename CMap>
alpar@209:         NodeMap& operator=(const CMap&) {
deba@57:           checkConcept<ReadMap<Node, T>, CMap>();
alpar@209:           return *this;
deba@57:         }
deba@57:       };
deba@57: 
kpeter@734:       /// \brief Standard graph map type for the arcs.
deba@57:       ///
kpeter@734:       /// Standard graph map type for the arcs.
kpeter@734:       /// It conforms to the ReferenceMap concept.
alpar@209:       template<class T>
kpeter@580:       class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
deba@57:       {
deba@57:       public:
deba@57: 
kpeter@734:         /// Constructor
kpeter@734:         explicit ArcMap(const Graph&) { }
kpeter@734:         /// Constructor with given initial value
deba@57:         ArcMap(const Graph&, T) { }
kpeter@734: 
kpeter@263:       private:
deba@57:         ///Copy constructor
kpeter@580:         ArcMap(const ArcMap& em) :
kpeter@580:           ReferenceMap<Arc, T, T&, const T&>(em) { }
deba@57:         ///Assignment operator
deba@57:         template <typename CMap>
alpar@209:         ArcMap& operator=(const CMap&) {
deba@57:           checkConcept<ReadMap<Arc, T>, CMap>();
alpar@209:           return *this;
deba@57:         }
deba@57:       };
deba@57: 
kpeter@734:       /// \brief Standard graph map type for the edges.
kpeter@734:       ///
kpeter@734:       /// Standard graph map type for the edges.
kpeter@734:       /// It conforms to the ReferenceMap concept.
alpar@209:       template<class T>
kpeter@580:       class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
deba@57:       {
deba@57:       public:
deba@57: 
kpeter@734:         /// Constructor
kpeter@734:         explicit EdgeMap(const Graph&) { }
kpeter@734:         /// Constructor with given initial value
deba@57:         EdgeMap(const Graph&, T) { }
kpeter@734: 
kpeter@263:       private:
deba@57:         ///Copy constructor
kpeter@580:         EdgeMap(const EdgeMap& em) :
kpeter@580:           ReferenceMap<Edge, T, T&, const T&>(em) {}
deba@57:         ///Assignment operator
deba@57:         template <typename CMap>
alpar@209:         EdgeMap& operator=(const CMap&) {
deba@57:           checkConcept<ReadMap<Edge, T>, CMap>();
alpar@209:           return *this;
deba@57:         }
deba@57:       };
deba@57: 
kpeter@734:       /// \brief The first node of the edge.
deba@57:       ///
kpeter@734:       /// Returns the first node of the given edge.
deba@57:       ///
kpeter@786:       /// Edges don't have source and target nodes, however, methods
kpeter@734:       /// u() and v() are used to query the two end-nodes of an edge.
kpeter@734:       /// The orientation of an edge that arises this way is called
kpeter@734:       /// the inherent direction, it is used to define the default
kpeter@734:       /// direction for the corresponding arcs.
kpeter@559:       /// \sa v()
kpeter@559:       /// \sa direction()
deba@57:       Node u(Edge) const { return INVALID; }
deba@57: 
kpeter@734:       /// \brief The second node of the edge.
kpeter@559:       ///
kpeter@734:       /// Returns the second node of the given edge.
kpeter@559:       ///
kpeter@786:       /// Edges don't have source and target nodes, however, methods
kpeter@734:       /// u() and v() are used to query the two end-nodes of an edge.
kpeter@734:       /// The orientation of an edge that arises this way is called
kpeter@734:       /// the inherent direction, it is used to define the default
kpeter@734:       /// direction for the corresponding arcs.
kpeter@559:       /// \sa u()
kpeter@559:       /// \sa direction()
deba@57:       Node v(Edge) const { return INVALID; }
deba@57: 
kpeter@734:       /// \brief The source node of the arc.
kpeter@734:       ///
kpeter@734:       /// Returns the source node of the given arc.
deba@57:       Node source(Arc) const { return INVALID; }
deba@57: 
kpeter@734:       /// \brief The target node of the arc.
kpeter@734:       ///
kpeter@734:       /// Returns the target node of the given arc.
deba@57:       Node target(Arc) const { return INVALID; }
deba@57: 
kpeter@734:       /// \brief The ID of the node.
kpeter@734:       ///
kpeter@734:       /// Returns the ID of the given node.
alpar@209:       int id(Node) const { return -1; }
deba@61: 
kpeter@734:       /// \brief The ID of the edge.
kpeter@734:       ///
kpeter@734:       /// Returns the ID of the given edge.
alpar@209:       int id(Edge) const { return -1; }
deba@61: 
kpeter@734:       /// \brief The ID of the arc.
kpeter@734:       ///
kpeter@734:       /// Returns the ID of the given arc.
alpar@209:       int id(Arc) const { return -1; }
deba@61: 
kpeter@734:       /// \brief The node with the given ID.
deba@61:       ///
kpeter@734:       /// Returns the node with the given ID.
kpeter@734:       /// \pre The argument should be a valid node ID in the graph.
alpar@209:       Node nodeFromId(int) const { return INVALID; }
deba@61: 
kpeter@734:       /// \brief The edge with the given ID.
deba@61:       ///
kpeter@734:       /// Returns the edge with the given ID.
kpeter@734:       /// \pre The argument should be a valid edge ID in the graph.
alpar@209:       Edge edgeFromId(int) const { return INVALID; }
deba@61: 
kpeter@734:       /// \brief The arc with the given ID.
deba@61:       ///
kpeter@734:       /// Returns the arc with the given ID.
kpeter@734:       /// \pre The argument should be a valid arc ID in the graph.
alpar@209:       Arc arcFromId(int) const { return INVALID; }
deba@61: 
kpeter@734:       /// \brief An upper bound on the node IDs.
kpeter@734:       ///
kpeter@734:       /// Returns an upper bound on the node IDs.
alpar@209:       int maxNodeId() const { return -1; }
deba@61: 
kpeter@734:       /// \brief An upper bound on the edge IDs.
kpeter@734:       ///
kpeter@734:       /// Returns an upper bound on the edge IDs.
alpar@209:       int maxEdgeId() const { return -1; }
deba@61: 
kpeter@734:       /// \brief An upper bound on the arc IDs.
kpeter@734:       ///
kpeter@734:       /// Returns an upper bound on the arc IDs.
alpar@209:       int maxArcId() const { return -1; }
deba@61: 
kpeter@734:       /// \brief The direction of the arc.
kpeter@734:       ///
kpeter@734:       /// Returns \c true if the direction of the given arc is the same as
kpeter@734:       /// the inherent orientation of the represented edge.
kpeter@734:       bool direction(Arc) const { return true; }
kpeter@734: 
kpeter@734:       /// \brief Direct the edge.
kpeter@734:       ///
kpeter@734:       /// Direct the given edge. The returned arc
kpeter@734:       /// represents the given edge and its direction comes
kpeter@734:       /// from the bool parameter. If it is \c true, then the direction
kpeter@734:       /// of the arc is the same as the inherent orientation of the edge.
kpeter@734:       Arc direct(Edge, bool) const {
kpeter@734:         return INVALID;
kpeter@734:       }
kpeter@734: 
kpeter@734:       /// \brief Direct the edge.
kpeter@734:       ///
kpeter@734:       /// Direct the given edge. The returned arc represents the given
kpeter@734:       /// edge and its source node is the given node.
kpeter@734:       Arc direct(Edge, Node) const {
kpeter@734:         return INVALID;
kpeter@734:       }
kpeter@734: 
kpeter@734:       /// \brief The oppositely directed arc.
kpeter@734:       ///
kpeter@734:       /// Returns the oppositely directed arc representing the same edge.
kpeter@734:       Arc oppositeArc(Arc) const { return INVALID; }
kpeter@734: 
kpeter@734:       /// \brief The opposite node on the edge.
kpeter@734:       ///
kpeter@734:       /// Returns the opposite node on the given edge.
kpeter@734:       Node oppositeNode(Node, Edge) const { return INVALID; }
kpeter@734: 
deba@57:       void first(Node&) const {}
deba@57:       void next(Node&) const {}
deba@57: 
deba@57:       void first(Edge&) const {}
deba@57:       void next(Edge&) const {}
deba@57: 
deba@57:       void first(Arc&) const {}
deba@57:       void next(Arc&) const {}
deba@57: 
deba@57:       void firstOut(Arc&, Node) const {}
deba@57:       void nextOut(Arc&) const {}
deba@57: 
deba@57:       void firstIn(Arc&, Node) const {}
deba@57:       void nextIn(Arc&) const {}
deba@57: 
deba@57:       void firstInc(Edge &, bool &, const Node &) const {}
deba@57:       void nextInc(Edge &, bool &) const {}
deba@57: 
deba@61:       // The second parameter is dummy.
deba@61:       Node fromId(int, Node) const { return INVALID; }
deba@61:       // The second parameter is dummy.
deba@61:       Edge fromId(int, Edge) const { return INVALID; }
deba@61:       // The second parameter is dummy.
deba@61:       Arc fromId(int, Arc) const { return INVALID; }
deba@61: 
deba@61:       // Dummy parameter.
alpar@209:       int maxId(Node) const { return -1; }
deba@61:       // Dummy parameter.
alpar@209:       int maxId(Edge) const { return -1; }
deba@61:       // Dummy parameter.
alpar@209:       int maxId(Arc) const { return -1; }
deba@61: 
kpeter@734:       /// \brief The base node of the iterator.
deba@57:       ///
kpeter@734:       /// Returns the base node of the given incident edge iterator.
kpeter@734:       Node baseNode(IncEdgeIt) const { return INVALID; }
kpeter@734: 
kpeter@734:       /// \brief The running node of the iterator.
deba@57:       ///
kpeter@734:       /// Returns the running node of the given incident edge iterator.
kpeter@734:       Node runningNode(IncEdgeIt) const { return INVALID; }
deba@57: 
kpeter@734:       /// \brief The base node of the iterator.
deba@57:       ///
kpeter@734:       /// Returns the base node of the given outgoing arc iterator
kpeter@734:       /// (i.e. the source node of the corresponding arc).
kpeter@734:       Node baseNode(OutArcIt) const { return INVALID; }
kpeter@734: 
kpeter@734:       /// \brief The running node of the iterator.
deba@57:       ///
kpeter@734:       /// Returns the running node of the given outgoing arc iterator
kpeter@734:       /// (i.e. the target node of the corresponding arc).
kpeter@734:       Node runningNode(OutArcIt) const { return INVALID; }
deba@57: 
kpeter@734:       /// \brief The base node of the iterator.
deba@57:       ///
kpeter@734:       /// Returns the base node of the given incomming arc iterator
kpeter@734:       /// (i.e. the target node of the corresponding arc).
kpeter@734:       Node baseNode(InArcIt) const { return INVALID; }
alpar@209: 
kpeter@734:       /// \brief The running node of the iterator.
deba@57:       ///
kpeter@734:       /// Returns the running node of the given incomming arc iterator
kpeter@734:       /// (i.e. the source node of the corresponding arc).
kpeter@734:       Node runningNode(InArcIt) const { return INVALID; }
deba@57: 
deba@125:       template <typename _Graph>
deba@57:       struct Constraints {
alpar@209:         void constraints() {
kpeter@580:           checkConcept<BaseGraphComponent, _Graph>();
alpar@209:           checkConcept<IterableGraphComponent<>, _Graph>();
alpar@209:           checkConcept<IDableGraphComponent<>, _Graph>();
alpar@209:           checkConcept<MappableGraphComponent<>, _Graph>();
alpar@209:         }
deba@57:       };
deba@57: 
deba@57:     };
deba@57: 
deba@57:   }
deba@57: 
deba@57: }
deba@57: 
deba@57: #endif