diff -r 58c330ad0b5c -r 6be1f9bd2ac0 doc/min_cost_flow.dox --- a/doc/min_cost_flow.dox Sun Oct 04 10:15:32 2009 +0200 +++ b/doc/min_cost_flow.dox Wed Dec 09 11:14:06 2009 +0100 @@ -26,7 +26,7 @@ The \e minimum \e cost \e flow \e problem is to find a feasible flow of minimum total cost from a set of supply nodes to a set of demand nodes in a network with capacity constraints (lower and upper bounds) -and arc costs. +and arc costs \ref amo93networkflows. Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$, \f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and @@ -78,7 +78,7 @@ - if \f$lower(uv)=0\f$; + - \f$\pi(u)\geq 0\f$; - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, then \f$\pi(u)=0\f$.