diff -r e9c203fb003d -r 994c7df296c9 lemon/bits/variant.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/bits/variant.h Thu Dec 10 17:05:35 2009 +0100 @@ -0,0 +1,494 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_BITS_VARIANT_H +#define LEMON_BITS_VARIANT_H + +#include + +// \file +// \brief Variant types + +namespace lemon { + + namespace _variant_bits { + + template + struct CTMax { + static const int value = left < right ? right : left; + }; + + } + + + // \brief Simple Variant type for two types + // + // Simple Variant type for two types. The Variant type is a type-safe + // union. C++ has strong limitations for using unions, for + // example you cannot store a type with non-default constructor or + // destructor in a union. This class always knowns the current + // state of the variant and it cares for the proper construction + // and destruction. + template + class BiVariant { + public: + + // \brief The \c First type. + typedef _First First; + // \brief The \c Second type. + typedef _Second Second; + + // \brief Constructor + // + // This constructor initalizes to the default value of the \c First + // type. + BiVariant() { + flag = true; + new(reinterpret_cast(data)) First(); + } + + // \brief Constructor + // + // This constructor initalizes to the given value of the \c First + // type. + BiVariant(const First& f) { + flag = true; + new(reinterpret_cast(data)) First(f); + } + + // \brief Constructor + // + // This constructor initalizes to the given value of the \c + // Second type. + BiVariant(const Second& s) { + flag = false; + new(reinterpret_cast(data)) Second(s); + } + + // \brief Copy constructor + // + // Copy constructor + BiVariant(const BiVariant& bivariant) { + flag = bivariant.flag; + if (flag) { + new(reinterpret_cast(data)) First(bivariant.first()); + } else { + new(reinterpret_cast(data)) Second(bivariant.second()); + } + } + + // \brief Destrcutor + // + // Destructor + ~BiVariant() { + destroy(); + } + + // \brief Set to the default value of the \c First type. + // + // This function sets the variant to the default value of the \c + // First type. + BiVariant& setFirst() { + destroy(); + flag = true; + new(reinterpret_cast(data)) First(); + return *this; + } + + // \brief Set to the given value of the \c First type. + // + // This function sets the variant to the given value of the \c + // First type. + BiVariant& setFirst(const First& f) { + destroy(); + flag = true; + new(reinterpret_cast(data)) First(f); + return *this; + } + + // \brief Set to the default value of the \c Second type. + // + // This function sets the variant to the default value of the \c + // Second type. + BiVariant& setSecond() { + destroy(); + flag = false; + new(reinterpret_cast(data)) Second(); + return *this; + } + + // \brief Set to the given value of the \c Second type. + // + // This function sets the variant to the given value of the \c + // Second type. + BiVariant& setSecond(const Second& s) { + destroy(); + flag = false; + new(reinterpret_cast(data)) Second(s); + return *this; + } + + // \brief Operator form of the \c setFirst() + BiVariant& operator=(const First& f) { + return setFirst(f); + } + + // \brief Operator form of the \c setSecond() + BiVariant& operator=(const Second& s) { + return setSecond(s); + } + + // \brief Assign operator + BiVariant& operator=(const BiVariant& bivariant) { + if (this == &bivariant) return *this; + destroy(); + flag = bivariant.flag; + if (flag) { + new(reinterpret_cast(data)) First(bivariant.first()); + } else { + new(reinterpret_cast(data)) Second(bivariant.second()); + } + return *this; + } + + // \brief Reference to the value + // + // Reference to the value of the \c First type. + // \pre The BiVariant should store value of \c First type. + First& first() { + LEMON_DEBUG(flag, "Variant wrong state"); + return *reinterpret_cast(data); + } + + // \brief Const reference to the value + // + // Const reference to the value of the \c First type. + // \pre The BiVariant should store value of \c First type. + const First& first() const { + LEMON_DEBUG(flag, "Variant wrong state"); + return *reinterpret_cast(data); + } + + // \brief Operator form of the \c first() + operator First&() { return first(); } + // \brief Operator form of the const \c first() + operator const First&() const { return first(); } + + // \brief Reference to the value + // + // Reference to the value of the \c Second type. + // \pre The BiVariant should store value of \c Second type. + Second& second() { + LEMON_DEBUG(!flag, "Variant wrong state"); + return *reinterpret_cast(data); + } + + // \brief Const reference to the value + // + // Const reference to the value of the \c Second type. + // \pre The BiVariant should store value of \c Second type. + const Second& second() const { + LEMON_DEBUG(!flag, "Variant wrong state"); + return *reinterpret_cast(data); + } + + // \brief Operator form of the \c second() + operator Second&() { return second(); } + // \brief Operator form of the const \c second() + operator const Second&() const { return second(); } + + // \brief %True when the variant is in the first state + // + // %True when the variant stores value of the \c First type. + bool firstState() const { return flag; } + + // \brief %True when the variant is in the second state + // + // %True when the variant stores value of the \c Second type. + bool secondState() const { return !flag; } + + private: + + void destroy() { + if (flag) { + reinterpret_cast(data)->~First(); + } else { + reinterpret_cast(data)->~Second(); + } + } + + char data[_variant_bits::CTMax::value]; + bool flag; + }; + + namespace _variant_bits { + + template + struct Memory { + + typedef typename _TypeMap::template Map<_idx>::Type Current; + + static void destroy(int index, char* place) { + if (index == _idx) { + reinterpret_cast(place)->~Current(); + } else { + Memory<_idx - 1, _TypeMap>::destroy(index, place); + } + } + + static void copy(int index, char* to, const char* from) { + if (index == _idx) { + new (reinterpret_cast(to)) + Current(reinterpret_cast(from)); + } else { + Memory<_idx - 1, _TypeMap>::copy(index, to, from); + } + } + + }; + + template + struct Memory<-1, _TypeMap> { + + static void destroy(int, char*) { + LEMON_DEBUG(false, "Variant wrong index."); + } + + static void copy(int, char*, const char*) { + LEMON_DEBUG(false, "Variant wrong index."); + } + }; + + template + struct Size { + static const int value = + CTMax::Type), + Size<_idx - 1, _TypeMap>::value>::value; + }; + + template + struct Size<0, _TypeMap> { + static const int value = + sizeof(typename _TypeMap::template Map<0>::Type); + }; + + } + + // \brief Variant type + // + // Simple Variant type. The Variant type is a type-safe union. + // C++ has strong limitations for using unions, for example you + // cannot store type with non-default constructor or destructor in + // a union. This class always knowns the current state of the + // variant and it cares for the proper construction and + // destruction. + // + // \param _num The number of the types which can be stored in the + // variant type. + // \param _TypeMap This class describes the types of the Variant. The + // _TypeMap::Map::Type should be a valid type for each index + // in the range {0, 1, ..., _num - 1}. The \c VariantTypeMap is helper + // class to define such type mappings up to 10 types. + // + // And the usage of the class: + //\code + // typedef Variant<3, VariantTypeMap > MyVariant; + // MyVariant var; + // var.set<0>(12); + // std::cout << var.get<0>() << std::endl; + // var.set<1>("alpha"); + // std::cout << var.get<1>() << std::endl; + // var.set<2>(0.75); + // std::cout << var.get<2>() << std::endl; + //\endcode + // + // The result of course: + //\code + // 12 + // alpha + // 0.75 + //\endcode + template + class Variant { + public: + + static const int num = _num; + + typedef _TypeMap TypeMap; + + // \brief Constructor + // + // This constructor initalizes to the default value of the \c type + // with 0 index. + Variant() { + flag = 0; + new(reinterpret_cast::Type*>(data)) + typename TypeMap::template Map<0>::Type(); + } + + + // \brief Copy constructor + // + // Copy constructor + Variant(const Variant& variant) { + flag = variant.flag; + _variant_bits::Memory::copy(flag, data, variant.data); + } + + // \brief Assign operator + // + // Assign operator + Variant& operator=(const Variant& variant) { + if (this == &variant) return *this; + _variant_bits::Memory:: + destroy(flag, data); + flag = variant.flag; + _variant_bits::Memory:: + copy(flag, data, variant.data); + return *this; + } + + // \brief Destrcutor + // + // Destructor + ~Variant() { + _variant_bits::Memory::destroy(flag, data); + } + + // \brief Set to the default value of the type with \c _idx index. + // + // This function sets the variant to the default value of the + // type with \c _idx index. + template + Variant& set() { + _variant_bits::Memory::destroy(flag, data); + flag = _idx; + new(reinterpret_cast::Type*>(data)) + typename TypeMap::template Map<_idx>::Type(); + return *this; + } + + // \brief Set to the given value of the type with \c _idx index. + // + // This function sets the variant to the given value of the type + // with \c _idx index. + template + Variant& set(const typename _TypeMap::template Map<_idx>::Type& init) { + _variant_bits::Memory::destroy(flag, data); + flag = _idx; + new(reinterpret_cast::Type*>(data)) + typename TypeMap::template Map<_idx>::Type(init); + return *this; + } + + // \brief Gets the current value of the type with \c _idx index. + // + // Gets the current value of the type with \c _idx index. + template + const typename TypeMap::template Map<_idx>::Type& get() const { + LEMON_DEBUG(_idx == flag, "Variant wrong index"); + return *reinterpret_cast::Type*>(data); + } + + // \brief Gets the current value of the type with \c _idx index. + // + // Gets the current value of the type with \c _idx index. + template + typename _TypeMap::template Map<_idx>::Type& get() { + LEMON_DEBUG(_idx == flag, "Variant wrong index"); + return *reinterpret_cast::Type*> + (data); + } + + // \brief Returns the current state of the variant. + // + // Returns the current state of the variant. + int state() const { + return flag; + } + + private: + + char data[_variant_bits::Size::value]; + int flag; + }; + + namespace _variant_bits { + + template + struct Get { + typedef typename Get<_index - 1, typename _List::Next>::Type Type; + }; + + template + struct Get<0, _List> { + typedef typename _List::Type Type; + }; + + struct List {}; + + template + struct Insert { + typedef _List Next; + typedef _Type Type; + }; + + template + struct Mapper { + typedef List L10; + typedef Insert<_T9, L10> L9; + typedef Insert<_T8, L9> L8; + typedef Insert<_T7, L8> L7; + typedef Insert<_T6, L7> L6; + typedef Insert<_T5, L6> L5; + typedef Insert<_T4, L5> L4; + typedef Insert<_T3, L4> L3; + typedef Insert<_T2, L3> L2; + typedef Insert<_T1, L2> L1; + typedef Insert<_T0, L1> L0; + typedef typename Get<_idx, L0>::Type Type; + }; + + } + + // \brief Helper class for Variant + // + // Helper class to define type mappings for Variant. This class + // converts the template parameters to be mappable by integer. + // \see Variant + template < + typename _T0, + typename _T1 = void, typename _T2 = void, typename _T3 = void, + typename _T4 = void, typename _T5 = void, typename _T6 = void, + typename _T7 = void, typename _T8 = void, typename _T9 = void> + struct VariantTypeMap { + template + struct Map { + typedef typename _variant_bits:: + Mapper<_idx, _T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7, _T8, _T9>::Type + Type; + }; + }; + +} + + +#endif