diff -r e9c203fb003d -r 994c7df296c9 lemon/euler.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/euler.h Thu Dec 10 17:05:35 2009 +0100 @@ -0,0 +1,287 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_EULER_H +#define LEMON_EULER_H + +#include +#include +#include +#include + +/// \ingroup graph_properties +/// \file +/// \brief Euler tour iterators and a function for checking the \e Eulerian +/// property. +/// +///This file provides Euler tour iterators and a function to check +///if a (di)graph is \e Eulerian. + +namespace lemon { + + ///Euler tour iterator for digraphs. + + /// \ingroup graph_prop + ///This iterator provides an Euler tour (Eulerian circuit) of a \e directed + ///graph (if there exists) and it converts to the \c Arc type of the digraph. + /// + ///For example, if the given digraph has an Euler tour (i.e it has only one + ///non-trivial component and the in-degree is equal to the out-degree + ///for all nodes), then the following code will put the arcs of \c g + ///to the vector \c et according to an Euler tour of \c g. + ///\code + /// std::vector et; + /// for(DiEulerIt e(g); e!=INVALID; ++e) + /// et.push_back(e); + ///\endcode + ///If \c g has no Euler tour, then the resulted walk will not be closed + ///or not contain all arcs. + ///\sa EulerIt + template + class DiEulerIt + { + typedef typename GR::Node Node; + typedef typename GR::NodeIt NodeIt; + typedef typename GR::Arc Arc; + typedef typename GR::ArcIt ArcIt; + typedef typename GR::OutArcIt OutArcIt; + typedef typename GR::InArcIt InArcIt; + + const GR &g; + typename GR::template NodeMap narc; + std::list euler; + + public: + + ///Constructor + + ///Constructor. + ///\param gr A digraph. + ///\param start The starting point of the tour. If it is not given, + ///the tour will start from the first node that has an outgoing arc. + DiEulerIt(const GR &gr, typename GR::Node start = INVALID) + : g(gr), narc(g) + { + if (start==INVALID) { + NodeIt n(g); + while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n; + start=n; + } + if (start!=INVALID) { + for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n); + while (narc[start]!=INVALID) { + euler.push_back(narc[start]); + Node next=g.target(narc[start]); + ++narc[start]; + start=next; + } + } + } + + ///Arc conversion + operator Arc() { return euler.empty()?INVALID:euler.front(); } + ///Compare with \c INVALID + bool operator==(Invalid) { return euler.empty(); } + ///Compare with \c INVALID + bool operator!=(Invalid) { return !euler.empty(); } + + ///Next arc of the tour + + ///Next arc of the tour + /// + DiEulerIt &operator++() { + Node s=g.target(euler.front()); + euler.pop_front(); + typename std::list::iterator next=euler.begin(); + while(narc[s]!=INVALID) { + euler.insert(next,narc[s]); + Node n=g.target(narc[s]); + ++narc[s]; + s=n; + } + return *this; + } + ///Postfix incrementation + + /// Postfix incrementation. + /// + ///\warning This incrementation + ///returns an \c Arc, not a \ref DiEulerIt, as one may + ///expect. + Arc operator++(int) + { + Arc e=*this; + ++(*this); + return e; + } + }; + + ///Euler tour iterator for graphs. + + /// \ingroup graph_properties + ///This iterator provides an Euler tour (Eulerian circuit) of an + ///\e undirected graph (if there exists) and it converts to the \c Arc + ///and \c Edge types of the graph. + /// + ///For example, if the given graph has an Euler tour (i.e it has only one + ///non-trivial component and the degree of each node is even), + ///the following code will print the arc IDs according to an + ///Euler tour of \c g. + ///\code + /// for(EulerIt e(g); e!=INVALID; ++e) { + /// std::cout << g.id(Edge(e)) << std::eol; + /// } + ///\endcode + ///Although this iterator is for undirected graphs, it still returns + ///arcs in order to indicate the direction of the tour. + ///(But arcs convert to edges, of course.) + /// + ///If \c g has no Euler tour, then the resulted walk will not be closed + ///or not contain all edges. + template + class EulerIt + { + typedef typename GR::Node Node; + typedef typename GR::NodeIt NodeIt; + typedef typename GR::Arc Arc; + typedef typename GR::Edge Edge; + typedef typename GR::ArcIt ArcIt; + typedef typename GR::OutArcIt OutArcIt; + typedef typename GR::InArcIt InArcIt; + + const GR &g; + typename GR::template NodeMap narc; + typename GR::template EdgeMap visited; + std::list euler; + + public: + + ///Constructor + + ///Constructor. + ///\param gr A graph. + ///\param start The starting point of the tour. If it is not given, + ///the tour will start from the first node that has an incident edge. + EulerIt(const GR &gr, typename GR::Node start = INVALID) + : g(gr), narc(g), visited(g, false) + { + if (start==INVALID) { + NodeIt n(g); + while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n; + start=n; + } + if (start!=INVALID) { + for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n); + while(narc[start]!=INVALID) { + euler.push_back(narc[start]); + visited[narc[start]]=true; + Node next=g.target(narc[start]); + ++narc[start]; + start=next; + while(narc[start]!=INVALID && visited[narc[start]]) ++narc[start]; + } + } + } + + ///Arc conversion + operator Arc() const { return euler.empty()?INVALID:euler.front(); } + ///Edge conversion + operator Edge() const { return euler.empty()?INVALID:euler.front(); } + ///Compare with \c INVALID + bool operator==(Invalid) const { return euler.empty(); } + ///Compare with \c INVALID + bool operator!=(Invalid) const { return !euler.empty(); } + + ///Next arc of the tour + + ///Next arc of the tour + /// + EulerIt &operator++() { + Node s=g.target(euler.front()); + euler.pop_front(); + typename std::list::iterator next=euler.begin(); + while(narc[s]!=INVALID) { + while(narc[s]!=INVALID && visited[narc[s]]) ++narc[s]; + if(narc[s]==INVALID) break; + else { + euler.insert(next,narc[s]); + visited[narc[s]]=true; + Node n=g.target(narc[s]); + ++narc[s]; + s=n; + } + } + return *this; + } + + ///Postfix incrementation + + /// Postfix incrementation. + /// + ///\warning This incrementation returns an \c Arc (which converts to + ///an \c Edge), not an \ref EulerIt, as one may expect. + Arc operator++(int) + { + Arc e=*this; + ++(*this); + return e; + } + }; + + + ///Check if the given graph is Eulerian + + /// \ingroup graph_properties + ///This function checks if the given graph is Eulerian. + ///It works for both directed and undirected graphs. + /// + ///By definition, a digraph is called \e Eulerian if + ///and only if it is connected and the number of incoming and outgoing + ///arcs are the same for each node. + ///Similarly, an undirected graph is called \e Eulerian if + ///and only if it is connected and the number of incident edges is even + ///for each node. + /// + ///\note There are (di)graphs that are not Eulerian, but still have an + /// Euler tour, since they may contain isolated nodes. + /// + ///\sa DiEulerIt, EulerIt + template +#ifdef DOXYGEN + bool +#else + typename enable_if,bool>::type + eulerian(const GR &g) + { + for(typename GR::NodeIt n(g);n!=INVALID;++n) + if(countIncEdges(g,n)%2) return false; + return connected(g); + } + template + typename disable_if,bool>::type +#endif + eulerian(const GR &g) + { + for(typename GR::NodeIt n(g);n!=INVALID;++n) + if(countInArcs(g,n)!=countOutArcs(g,n)) return false; + return connected(undirector(g)); + } + +} + +#endif