Merge GLPK fix #337 with CMAKE improvements
authorAlpar Juttner <alpar@cs.elte.hu>
Fri, 15 Apr 2011 09:26:09 +0200
changeset 917b4af20d02ae0
parent 911 66156a3498ea
parent 832 5100072d83ca
child 918 2024bf2ecdd6
Merge GLPK fix #337 with CMAKE improvements
     1.1 --- a/lemon/Makefile.am	Mon Mar 14 08:56:54 2011 +0100
     1.2 +++ b/lemon/Makefile.am	Fri Apr 15 09:26:09 2011 +0200
     1.3 @@ -59,6 +59,7 @@
     1.4  	lemon/assert.h \
     1.5  	lemon/bfs.h \
     1.6  	lemon/bin_heap.h \
     1.7 +	lemon/bucket_heap.h \
     1.8  	lemon/cbc.h \
     1.9  	lemon/circulation.h \
    1.10  	lemon/clp.h \
    1.11 @@ -76,6 +77,7 @@
    1.12  	lemon/elevator.h \
    1.13  	lemon/error.h \
    1.14  	lemon/euler.h \
    1.15 +	lemon/fib_heap.h \
    1.16  	lemon/full_graph.h \
    1.17  	lemon/glpk.h \
    1.18  	lemon/gomory_hu.h \
    1.19 @@ -99,6 +101,7 @@
    1.20  	lemon/network_simplex.h \
    1.21  	lemon/path.h \
    1.22  	lemon/preflow.h \
    1.23 +	lemon/radix_heap.h \
    1.24  	lemon/radix_sort.h \
    1.25  	lemon/random.h \
    1.26  	lemon/smart_graph.h \
     2.1 --- a/lemon/bin_heap.h	Mon Mar 14 08:56:54 2011 +0100
     2.2 +++ b/lemon/bin_heap.h	Fri Apr 15 09:26:09 2011 +0200
     2.3 @@ -33,23 +33,23 @@
     2.4    ///
     2.5    ///\brief A Binary Heap implementation.
     2.6    ///
     2.7 -  ///This class implements the \e binary \e heap data structure. 
     2.8 -  /// 
     2.9 +  ///This class implements the \e binary \e heap data structure.
    2.10 +  ///
    2.11    ///A \e heap is a data structure for storing items with specified values
    2.12    ///called \e priorities in such a way that finding the item with minimum
    2.13 -  ///priority is efficient. \c Comp specifies the ordering of the priorities.
    2.14 +  ///priority is efficient. \c CMP specifies the ordering of the priorities.
    2.15    ///In a heap one can change the priority of an item, add or erase an
    2.16    ///item, etc.
    2.17    ///
    2.18    ///\tparam PR Type of the priority of the items.
    2.19    ///\tparam IM A read and writable item map with int values, used internally
    2.20    ///to handle the cross references.
    2.21 -  ///\tparam Comp A functor class for the ordering of the priorities.
    2.22 +  ///\tparam CMP A functor class for the ordering of the priorities.
    2.23    ///The default is \c std::less<PR>.
    2.24    ///
    2.25    ///\sa FibHeap
    2.26    ///\sa Dijkstra
    2.27 -  template <typename PR, typename IM, typename Comp = std::less<PR> >
    2.28 +  template <typename PR, typename IM, typename CMP = std::less<PR> >
    2.29    class BinHeap {
    2.30  
    2.31    public:
    2.32 @@ -62,7 +62,7 @@
    2.33      ///\e
    2.34      typedef std::pair<Item,Prio> Pair;
    2.35      ///\e
    2.36 -    typedef Comp Compare;
    2.37 +    typedef CMP Compare;
    2.38  
    2.39      /// \brief Type to represent the items states.
    2.40      ///
     3.1 --- a/lemon/bits/map_extender.h	Mon Mar 14 08:56:54 2011 +0100
     3.2 +++ b/lemon/bits/map_extender.h	Fri Apr 15 09:26:09 2011 +0200
     3.3 @@ -49,6 +49,8 @@
     3.4      typedef typename Parent::Reference Reference;
     3.5      typedef typename Parent::ConstReference ConstReference;
     3.6  
     3.7 +    typedef typename Parent::ReferenceMapTag ReferenceMapTag;
     3.8 +
     3.9      class MapIt;
    3.10      class ConstMapIt;
    3.11  
    3.12 @@ -82,36 +84,36 @@
    3.13  
    3.14        typedef typename Map::Value Value;
    3.15  
    3.16 -      MapIt() {}
    3.17 +      MapIt() : map(NULL) {}
    3.18  
    3.19 -      MapIt(Invalid i) : Parent(i) { }
    3.20 +      MapIt(Invalid i) : Parent(i), map(NULL) {}
    3.21  
    3.22 -      explicit MapIt(Map& _map) : map(_map) {
    3.23 -        map.notifier()->first(*this);
    3.24 +      explicit MapIt(Map& _map) : map(&_map) {
    3.25 +        map->notifier()->first(*this);
    3.26        }
    3.27  
    3.28        MapIt(const Map& _map, const Item& item)
    3.29 -        : Parent(item), map(_map) {}
    3.30 +        : Parent(item), map(&_map) {}
    3.31  
    3.32        MapIt& operator++() {
    3.33 -        map.notifier()->next(*this);
    3.34 +        map->notifier()->next(*this);
    3.35          return *this;
    3.36        }
    3.37  
    3.38        typename MapTraits<Map>::ConstReturnValue operator*() const {
    3.39 -        return map[*this];
    3.40 +        return (*map)[*this];
    3.41        }
    3.42  
    3.43        typename MapTraits<Map>::ReturnValue operator*() {
    3.44 -        return map[*this];
    3.45 +        return (*map)[*this];
    3.46        }
    3.47  
    3.48        void set(const Value& value) {
    3.49 -        map.set(*this, value);
    3.50 +        map->set(*this, value);
    3.51        }
    3.52  
    3.53      protected:
    3.54 -      Map& map;
    3.55 +      Map* map;
    3.56  
    3.57      };
    3.58  
    3.59 @@ -122,19 +124,19 @@
    3.60  
    3.61        typedef typename Map::Value Value;
    3.62  
    3.63 -      ConstMapIt() {}
    3.64 +      ConstMapIt() : map(NULL) {}
    3.65  
    3.66 -      ConstMapIt(Invalid i) : Parent(i) { }
    3.67 +      ConstMapIt(Invalid i) : Parent(i), map(NULL) {}
    3.68  
    3.69 -      explicit ConstMapIt(Map& _map) : map(_map) {
    3.70 -        map.notifier()->first(*this);
    3.71 +      explicit ConstMapIt(Map& _map) : map(&_map) {
    3.72 +        map->notifier()->first(*this);
    3.73        }
    3.74  
    3.75        ConstMapIt(const Map& _map, const Item& item)
    3.76          : Parent(item), map(_map) {}
    3.77  
    3.78        ConstMapIt& operator++() {
    3.79 -        map.notifier()->next(*this);
    3.80 +        map->notifier()->next(*this);
    3.81          return *this;
    3.82        }
    3.83  
    3.84 @@ -143,32 +145,32 @@
    3.85        }
    3.86  
    3.87      protected:
    3.88 -      const Map& map;
    3.89 +      const Map* map;
    3.90      };
    3.91  
    3.92      class ItemIt : public Item {
    3.93        typedef Item Parent;
    3.94  
    3.95      public:
    3.96 +      ItemIt() : map(NULL) {}
    3.97  
    3.98 -      ItemIt() {}
    3.99  
   3.100 -      ItemIt(Invalid i) : Parent(i) { }
   3.101 +      ItemIt(Invalid i) : Parent(i), map(NULL) {}
   3.102  
   3.103 -      explicit ItemIt(Map& _map) : map(_map) {
   3.104 -        map.notifier()->first(*this);
   3.105 +      explicit ItemIt(Map& _map) : map(&_map) {
   3.106 +        map->notifier()->first(*this);
   3.107        }
   3.108  
   3.109        ItemIt(const Map& _map, const Item& item)
   3.110 -        : Parent(item), map(_map) {}
   3.111 +        : Parent(item), map(&_map) {}
   3.112  
   3.113        ItemIt& operator++() {
   3.114 -        map.notifier()->next(*this);
   3.115 +        map->notifier()->next(*this);
   3.116          return *this;
   3.117        }
   3.118  
   3.119      protected:
   3.120 -      const Map& map;
   3.121 +      const Map* map;
   3.122  
   3.123      };
   3.124    };
   3.125 @@ -191,6 +193,8 @@
   3.126      typedef typename Parent::Reference Reference;
   3.127      typedef typename Parent::ConstReference ConstReference;
   3.128  
   3.129 +    typedef typename Parent::ReferenceMapTag ReferenceMapTag;
   3.130 +
   3.131      class MapIt;
   3.132      class ConstMapIt;
   3.133  
   3.134 @@ -227,36 +231,36 @@
   3.135      public:
   3.136        typedef typename Map::Value Value;
   3.137  
   3.138 -      MapIt() {}
   3.139 +      MapIt() : map(NULL) {}
   3.140  
   3.141 -      MapIt(Invalid i) : Parent(i) { }
   3.142 +      MapIt(Invalid i) : Parent(i), map(NULL) { }
   3.143  
   3.144 -      explicit MapIt(Map& _map) : map(_map) {
   3.145 -        map.graph.first(*this);
   3.146 +      explicit MapIt(Map& _map) : map(&_map) {
   3.147 +        map->graph.first(*this);
   3.148        }
   3.149  
   3.150        MapIt(const Map& _map, const Item& item)
   3.151 -        : Parent(item), map(_map) {}
   3.152 +        : Parent(item), map(&_map) {}
   3.153  
   3.154        MapIt& operator++() {
   3.155 -        map.graph.next(*this);
   3.156 +        map->graph.next(*this);
   3.157          return *this;
   3.158        }
   3.159  
   3.160        typename MapTraits<Map>::ConstReturnValue operator*() const {
   3.161 -        return map[*this];
   3.162 +        return (*map)[*this];
   3.163        }
   3.164  
   3.165        typename MapTraits<Map>::ReturnValue operator*() {
   3.166 -        return map[*this];
   3.167 +        return (*map)[*this];
   3.168        }
   3.169  
   3.170        void set(const Value& value) {
   3.171 -        map.set(*this, value);
   3.172 +        map->set(*this, value);
   3.173        }
   3.174  
   3.175      protected:
   3.176 -      Map& map;
   3.177 +      Map* map;
   3.178  
   3.179      };
   3.180  
   3.181 @@ -267,53 +271,53 @@
   3.182  
   3.183        typedef typename Map::Value Value;
   3.184  
   3.185 -      ConstMapIt() {}
   3.186 +      ConstMapIt() : map(NULL) {}
   3.187  
   3.188 -      ConstMapIt(Invalid i) : Parent(i) { }
   3.189 +      ConstMapIt(Invalid i) : Parent(i), map(NULL) { }
   3.190  
   3.191 -      explicit ConstMapIt(Map& _map) : map(_map) {
   3.192 -        map.graph.first(*this);
   3.193 +      explicit ConstMapIt(Map& _map) : map(&_map) {
   3.194 +        map->graph.first(*this);
   3.195        }
   3.196  
   3.197        ConstMapIt(const Map& _map, const Item& item)
   3.198 -        : Parent(item), map(_map) {}
   3.199 +        : Parent(item), map(&_map) {}
   3.200  
   3.201        ConstMapIt& operator++() {
   3.202 -        map.graph.next(*this);
   3.203 +        map->graph.next(*this);
   3.204          return *this;
   3.205        }
   3.206  
   3.207        typename MapTraits<Map>::ConstReturnValue operator*() const {
   3.208 -        return map[*this];
   3.209 +        return (*map)[*this];
   3.210        }
   3.211  
   3.212      protected:
   3.213 -      const Map& map;
   3.214 +      const Map* map;
   3.215      };
   3.216  
   3.217      class ItemIt : public Item {
   3.218        typedef Item Parent;
   3.219  
   3.220      public:
   3.221 +      ItemIt() : map(NULL) {}
   3.222  
   3.223 -      ItemIt() {}
   3.224  
   3.225 -      ItemIt(Invalid i) : Parent(i) { }
   3.226 +      ItemIt(Invalid i) : Parent(i), map(NULL) { }
   3.227  
   3.228 -      explicit ItemIt(Map& _map) : map(_map) {
   3.229 -        map.graph.first(*this);
   3.230 +      explicit ItemIt(Map& _map) : map(&_map) {
   3.231 +        map->graph.first(*this);
   3.232        }
   3.233  
   3.234        ItemIt(const Map& _map, const Item& item)
   3.235 -        : Parent(item), map(_map) {}
   3.236 +        : Parent(item), map(&_map) {}
   3.237  
   3.238        ItemIt& operator++() {
   3.239 -        map.graph.next(*this);
   3.240 +        map->graph.next(*this);
   3.241          return *this;
   3.242        }
   3.243  
   3.244      protected:
   3.245 -      const Map& map;
   3.246 +      const Map* map;
   3.247  
   3.248      };
   3.249  
     4.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     4.2 +++ b/lemon/bucket_heap.h	Fri Apr 15 09:26:09 2011 +0200
     4.3 @@ -0,0 +1,567 @@
     4.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     4.5 + *
     4.6 + * This file is a part of LEMON, a generic C++ optimization library.
     4.7 + *
     4.8 + * Copyright (C) 2003-2009
     4.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    4.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    4.11 + *
    4.12 + * Permission to use, modify and distribute this software is granted
    4.13 + * provided that this copyright notice appears in all copies. For
    4.14 + * precise terms see the accompanying LICENSE file.
    4.15 + *
    4.16 + * This software is provided "AS IS" with no warranty of any kind,
    4.17 + * express or implied, and with no claim as to its suitability for any
    4.18 + * purpose.
    4.19 + *
    4.20 + */
    4.21 +
    4.22 +#ifndef LEMON_BUCKET_HEAP_H
    4.23 +#define LEMON_BUCKET_HEAP_H
    4.24 +
    4.25 +///\ingroup auxdat
    4.26 +///\file
    4.27 +///\brief Bucket Heap implementation.
    4.28 +
    4.29 +#include <vector>
    4.30 +#include <utility>
    4.31 +#include <functional>
    4.32 +
    4.33 +namespace lemon {
    4.34 +
    4.35 +  namespace _bucket_heap_bits {
    4.36 +
    4.37 +    template <bool MIN>
    4.38 +    struct DirectionTraits {
    4.39 +      static bool less(int left, int right) {
    4.40 +        return left < right;
    4.41 +      }
    4.42 +      static void increase(int& value) {
    4.43 +        ++value;
    4.44 +      }
    4.45 +    };
    4.46 +
    4.47 +    template <>
    4.48 +    struct DirectionTraits<false> {
    4.49 +      static bool less(int left, int right) {
    4.50 +        return left > right;
    4.51 +      }
    4.52 +      static void increase(int& value) {
    4.53 +        --value;
    4.54 +      }
    4.55 +    };
    4.56 +
    4.57 +  }
    4.58 +
    4.59 +  /// \ingroup auxdat
    4.60 +  ///
    4.61 +  /// \brief A Bucket Heap implementation.
    4.62 +  ///
    4.63 +  /// This class implements the \e bucket \e heap data structure. A \e heap
    4.64 +  /// is a data structure for storing items with specified values called \e
    4.65 +  /// priorities in such a way that finding the item with minimum priority is
    4.66 +  /// efficient. The bucket heap is very simple implementation, it can store
    4.67 +  /// only integer priorities and it stores for each priority in the
    4.68 +  /// \f$ [0..C) \f$ range a list of items. So it should be used only when
    4.69 +  /// the priorities are small. It is not intended to use as dijkstra heap.
    4.70 +  ///
    4.71 +  /// \param IM A read and write Item int map, used internally
    4.72 +  /// to handle the cross references.
    4.73 +  /// \param MIN If the given parameter is false then instead of the
    4.74 +  /// minimum value the maximum can be retrivied with the top() and
    4.75 +  /// prio() member functions.
    4.76 +  template <typename IM, bool MIN = true>
    4.77 +  class BucketHeap {
    4.78 +
    4.79 +  public:
    4.80 +    /// \e
    4.81 +    typedef typename IM::Key Item;
    4.82 +    /// \e
    4.83 +    typedef int Prio;
    4.84 +    /// \e
    4.85 +    typedef std::pair<Item, Prio> Pair;
    4.86 +    /// \e
    4.87 +    typedef IM ItemIntMap;
    4.88 +
    4.89 +  private:
    4.90 +
    4.91 +    typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;
    4.92 +
    4.93 +  public:
    4.94 +
    4.95 +    /// \brief Type to represent the items states.
    4.96 +    ///
    4.97 +    /// Each Item element have a state associated to it. It may be "in heap",
    4.98 +    /// "pre heap" or "post heap". The latter two are indifferent from the
    4.99 +    /// heap's point of view, but may be useful to the user.
   4.100 +    ///
   4.101 +    /// The item-int map must be initialized in such way that it assigns
   4.102 +    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
   4.103 +    enum State {
   4.104 +      IN_HEAP = 0,    ///< = 0.
   4.105 +      PRE_HEAP = -1,  ///< = -1.
   4.106 +      POST_HEAP = -2  ///< = -2.
   4.107 +    };
   4.108 +
   4.109 +  public:
   4.110 +    /// \brief The constructor.
   4.111 +    ///
   4.112 +    /// The constructor.
   4.113 +    /// \param map should be given to the constructor, since it is used
   4.114 +    /// internally to handle the cross references. The value of the map
   4.115 +    /// should be PRE_HEAP (-1) for each element.
   4.116 +    explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
   4.117 +
   4.118 +    /// The number of items stored in the heap.
   4.119 +    ///
   4.120 +    /// \brief Returns the number of items stored in the heap.
   4.121 +    int size() const { return _data.size(); }
   4.122 +
   4.123 +    /// \brief Checks if the heap stores no items.
   4.124 +    ///
   4.125 +    /// Returns \c true if and only if the heap stores no items.
   4.126 +    bool empty() const { return _data.empty(); }
   4.127 +
   4.128 +    /// \brief Make empty this heap.
   4.129 +    ///
   4.130 +    /// Make empty this heap. It does not change the cross reference
   4.131 +    /// map.  If you want to reuse a heap what is not surely empty you
   4.132 +    /// should first clear the heap and after that you should set the
   4.133 +    /// cross reference map for each item to \c PRE_HEAP.
   4.134 +    void clear() {
   4.135 +      _data.clear(); _first.clear(); _minimum = 0;
   4.136 +    }
   4.137 +
   4.138 +  private:
   4.139 +
   4.140 +    void relocate_last(int idx) {
   4.141 +      if (idx + 1 < int(_data.size())) {
   4.142 +        _data[idx] = _data.back();
   4.143 +        if (_data[idx].prev != -1) {
   4.144 +          _data[_data[idx].prev].next = idx;
   4.145 +        } else {
   4.146 +          _first[_data[idx].value] = idx;
   4.147 +        }
   4.148 +        if (_data[idx].next != -1) {
   4.149 +          _data[_data[idx].next].prev = idx;
   4.150 +        }
   4.151 +        _iim[_data[idx].item] = idx;
   4.152 +      }
   4.153 +      _data.pop_back();
   4.154 +    }
   4.155 +
   4.156 +    void unlace(int idx) {
   4.157 +      if (_data[idx].prev != -1) {
   4.158 +        _data[_data[idx].prev].next = _data[idx].next;
   4.159 +      } else {
   4.160 +        _first[_data[idx].value] = _data[idx].next;
   4.161 +      }
   4.162 +      if (_data[idx].next != -1) {
   4.163 +        _data[_data[idx].next].prev = _data[idx].prev;
   4.164 +      }
   4.165 +    }
   4.166 +
   4.167 +    void lace(int idx) {
   4.168 +      if (int(_first.size()) <= _data[idx].value) {
   4.169 +        _first.resize(_data[idx].value + 1, -1);
   4.170 +      }
   4.171 +      _data[idx].next = _first[_data[idx].value];
   4.172 +      if (_data[idx].next != -1) {
   4.173 +        _data[_data[idx].next].prev = idx;
   4.174 +      }
   4.175 +      _first[_data[idx].value] = idx;
   4.176 +      _data[idx].prev = -1;
   4.177 +    }
   4.178 +
   4.179 +  public:
   4.180 +    /// \brief Insert a pair of item and priority into the heap.
   4.181 +    ///
   4.182 +    /// Adds \c p.first to the heap with priority \c p.second.
   4.183 +    /// \param p The pair to insert.
   4.184 +    void push(const Pair& p) {
   4.185 +      push(p.first, p.second);
   4.186 +    }
   4.187 +
   4.188 +    /// \brief Insert an item into the heap with the given priority.
   4.189 +    ///
   4.190 +    /// Adds \c i to the heap with priority \c p.
   4.191 +    /// \param i The item to insert.
   4.192 +    /// \param p The priority of the item.
   4.193 +    void push(const Item &i, const Prio &p) {
   4.194 +      int idx = _data.size();
   4.195 +      _iim[i] = idx;
   4.196 +      _data.push_back(BucketItem(i, p));
   4.197 +      lace(idx);
   4.198 +      if (Direction::less(p, _minimum)) {
   4.199 +        _minimum = p;
   4.200 +      }
   4.201 +    }
   4.202 +
   4.203 +    /// \brief Returns the item with minimum priority.
   4.204 +    ///
   4.205 +    /// This method returns the item with minimum priority.
   4.206 +    /// \pre The heap must be nonempty.
   4.207 +    Item top() const {
   4.208 +      while (_first[_minimum] == -1) {
   4.209 +        Direction::increase(_minimum);
   4.210 +      }
   4.211 +      return _data[_first[_minimum]].item;
   4.212 +    }
   4.213 +
   4.214 +    /// \brief Returns the minimum priority.
   4.215 +    ///
   4.216 +    /// It returns the minimum priority.
   4.217 +    /// \pre The heap must be nonempty.
   4.218 +    Prio prio() const {
   4.219 +      while (_first[_minimum] == -1) {
   4.220 +        Direction::increase(_minimum);
   4.221 +      }
   4.222 +      return _minimum;
   4.223 +    }
   4.224 +
   4.225 +    /// \brief Deletes the item with minimum priority.
   4.226 +    ///
   4.227 +    /// This method deletes the item with minimum priority from the heap.
   4.228 +    /// \pre The heap must be non-empty.
   4.229 +    void pop() {
   4.230 +      while (_first[_minimum] == -1) {
   4.231 +        Direction::increase(_minimum);
   4.232 +      }
   4.233 +      int idx = _first[_minimum];
   4.234 +      _iim[_data[idx].item] = -2;
   4.235 +      unlace(idx);
   4.236 +      relocate_last(idx);
   4.237 +    }
   4.238 +
   4.239 +    /// \brief Deletes \c i from the heap.
   4.240 +    ///
   4.241 +    /// This method deletes item \c i from the heap, if \c i was
   4.242 +    /// already stored in the heap.
   4.243 +    /// \param i The item to erase.
   4.244 +    void erase(const Item &i) {
   4.245 +      int idx = _iim[i];
   4.246 +      _iim[_data[idx].item] = -2;
   4.247 +      unlace(idx);
   4.248 +      relocate_last(idx);
   4.249 +    }
   4.250 +
   4.251 +
   4.252 +    /// \brief Returns the priority of \c i.
   4.253 +    ///
   4.254 +    /// This function returns the priority of item \c i.
   4.255 +    /// \pre \c i must be in the heap.
   4.256 +    /// \param i The item.
   4.257 +    Prio operator[](const Item &i) const {
   4.258 +      int idx = _iim[i];
   4.259 +      return _data[idx].value;
   4.260 +    }
   4.261 +
   4.262 +    /// \brief \c i gets to the heap with priority \c p independently
   4.263 +    /// if \c i was already there.
   4.264 +    ///
   4.265 +    /// This method calls \ref push(\c i, \c p) if \c i is not stored
   4.266 +    /// in the heap and sets the priority of \c i to \c p otherwise.
   4.267 +    /// \param i The item.
   4.268 +    /// \param p The priority.
   4.269 +    void set(const Item &i, const Prio &p) {
   4.270 +      int idx = _iim[i];
   4.271 +      if (idx < 0) {
   4.272 +        push(i, p);
   4.273 +      } else if (Direction::less(p, _data[idx].value)) {
   4.274 +        decrease(i, p);
   4.275 +      } else {
   4.276 +        increase(i, p);
   4.277 +      }
   4.278 +    }
   4.279 +
   4.280 +    /// \brief Decreases the priority of \c i to \c p.
   4.281 +    ///
   4.282 +    /// This method decreases the priority of item \c i to \c p.
   4.283 +    /// \pre \c i must be stored in the heap with priority at least \c
   4.284 +    /// p relative to \c Compare.
   4.285 +    /// \param i The item.
   4.286 +    /// \param p The priority.
   4.287 +    void decrease(const Item &i, const Prio &p) {
   4.288 +      int idx = _iim[i];
   4.289 +      unlace(idx);
   4.290 +      _data[idx].value = p;
   4.291 +      if (Direction::less(p, _minimum)) {
   4.292 +        _minimum = p;
   4.293 +      }
   4.294 +      lace(idx);
   4.295 +    }
   4.296 +
   4.297 +    /// \brief Increases the priority of \c i to \c p.
   4.298 +    ///
   4.299 +    /// This method sets the priority of item \c i to \c p.
   4.300 +    /// \pre \c i must be stored in the heap with priority at most \c
   4.301 +    /// p relative to \c Compare.
   4.302 +    /// \param i The item.
   4.303 +    /// \param p The priority.
   4.304 +    void increase(const Item &i, const Prio &p) {
   4.305 +      int idx = _iim[i];
   4.306 +      unlace(idx);
   4.307 +      _data[idx].value = p;
   4.308 +      lace(idx);
   4.309 +    }
   4.310 +
   4.311 +    /// \brief Returns if \c item is in, has already been in, or has
   4.312 +    /// never been in the heap.
   4.313 +    ///
   4.314 +    /// This method returns PRE_HEAP if \c item has never been in the
   4.315 +    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   4.316 +    /// otherwise. In the latter case it is possible that \c item will
   4.317 +    /// get back to the heap again.
   4.318 +    /// \param i The item.
   4.319 +    State state(const Item &i) const {
   4.320 +      int idx = _iim[i];
   4.321 +      if (idx >= 0) idx = 0;
   4.322 +      return State(idx);
   4.323 +    }
   4.324 +
   4.325 +    /// \brief Sets the state of the \c item in the heap.
   4.326 +    ///
   4.327 +    /// Sets the state of the \c item in the heap. It can be used to
   4.328 +    /// manually clear the heap when it is important to achive the
   4.329 +    /// better time complexity.
   4.330 +    /// \param i The item.
   4.331 +    /// \param st The state. It should not be \c IN_HEAP.
   4.332 +    void state(const Item& i, State st) {
   4.333 +      switch (st) {
   4.334 +      case POST_HEAP:
   4.335 +      case PRE_HEAP:
   4.336 +        if (state(i) == IN_HEAP) {
   4.337 +          erase(i);
   4.338 +        }
   4.339 +        _iim[i] = st;
   4.340 +        break;
   4.341 +      case IN_HEAP:
   4.342 +        break;
   4.343 +      }
   4.344 +    }
   4.345 +
   4.346 +  private:
   4.347 +
   4.348 +    struct BucketItem {
   4.349 +      BucketItem(const Item& _item, int _value)
   4.350 +        : item(_item), value(_value) {}
   4.351 +
   4.352 +      Item item;
   4.353 +      int value;
   4.354 +
   4.355 +      int prev, next;
   4.356 +    };
   4.357 +
   4.358 +    ItemIntMap& _iim;
   4.359 +    std::vector<int> _first;
   4.360 +    std::vector<BucketItem> _data;
   4.361 +    mutable int _minimum;
   4.362 +
   4.363 +  }; // class BucketHeap
   4.364 +
   4.365 +  /// \ingroup auxdat
   4.366 +  ///
   4.367 +  /// \brief A Simplified Bucket Heap implementation.
   4.368 +  ///
   4.369 +  /// This class implements a simplified \e bucket \e heap data
   4.370 +  /// structure.  It does not provide some functionality but it faster
   4.371 +  /// and simplier data structure than the BucketHeap. The main
   4.372 +  /// difference is that the BucketHeap stores for every key a double
   4.373 +  /// linked list while this class stores just simple lists. In the
   4.374 +  /// other way it does not support erasing each elements just the
   4.375 +  /// minimal and it does not supports key increasing, decreasing.
   4.376 +  ///
   4.377 +  /// \param IM A read and write Item int map, used internally
   4.378 +  /// to handle the cross references.
   4.379 +  /// \param MIN If the given parameter is false then instead of the
   4.380 +  /// minimum value the maximum can be retrivied with the top() and
   4.381 +  /// prio() member functions.
   4.382 +  ///
   4.383 +  /// \sa BucketHeap
   4.384 +  template <typename IM, bool MIN = true >
   4.385 +  class SimpleBucketHeap {
   4.386 +
   4.387 +  public:
   4.388 +    typedef typename IM::Key Item;
   4.389 +    typedef int Prio;
   4.390 +    typedef std::pair<Item, Prio> Pair;
   4.391 +    typedef IM ItemIntMap;
   4.392 +
   4.393 +  private:
   4.394 +
   4.395 +    typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;
   4.396 +
   4.397 +  public:
   4.398 +
   4.399 +    /// \brief Type to represent the items states.
   4.400 +    ///
   4.401 +    /// Each Item element have a state associated to it. It may be "in heap",
   4.402 +    /// "pre heap" or "post heap". The latter two are indifferent from the
   4.403 +    /// heap's point of view, but may be useful to the user.
   4.404 +    ///
   4.405 +    /// The item-int map must be initialized in such way that it assigns
   4.406 +    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
   4.407 +    enum State {
   4.408 +      IN_HEAP = 0,    ///< = 0.
   4.409 +      PRE_HEAP = -1,  ///< = -1.
   4.410 +      POST_HEAP = -2  ///< = -2.
   4.411 +    };
   4.412 +
   4.413 +  public:
   4.414 +
   4.415 +    /// \brief The constructor.
   4.416 +    ///
   4.417 +    /// The constructor.
   4.418 +    /// \param map should be given to the constructor, since it is used
   4.419 +    /// internally to handle the cross references. The value of the map
   4.420 +    /// should be PRE_HEAP (-1) for each element.
   4.421 +    explicit SimpleBucketHeap(ItemIntMap &map)
   4.422 +      : _iim(map), _free(-1), _num(0), _minimum(0) {}
   4.423 +
   4.424 +    /// \brief Returns the number of items stored in the heap.
   4.425 +    ///
   4.426 +    /// The number of items stored in the heap.
   4.427 +    int size() const { return _num; }
   4.428 +
   4.429 +    /// \brief Checks if the heap stores no items.
   4.430 +    ///
   4.431 +    /// Returns \c true if and only if the heap stores no items.
   4.432 +    bool empty() const { return _num == 0; }
   4.433 +
   4.434 +    /// \brief Make empty this heap.
   4.435 +    ///
   4.436 +    /// Make empty this heap. It does not change the cross reference
   4.437 +    /// map.  If you want to reuse a heap what is not surely empty you
   4.438 +    /// should first clear the heap and after that you should set the
   4.439 +    /// cross reference map for each item to \c PRE_HEAP.
   4.440 +    void clear() {
   4.441 +      _data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0;
   4.442 +    }
   4.443 +
   4.444 +    /// \brief Insert a pair of item and priority into the heap.
   4.445 +    ///
   4.446 +    /// Adds \c p.first to the heap with priority \c p.second.
   4.447 +    /// \param p The pair to insert.
   4.448 +    void push(const Pair& p) {
   4.449 +      push(p.first, p.second);
   4.450 +    }
   4.451 +
   4.452 +    /// \brief Insert an item into the heap with the given priority.
   4.453 +    ///
   4.454 +    /// Adds \c i to the heap with priority \c p.
   4.455 +    /// \param i The item to insert.
   4.456 +    /// \param p The priority of the item.
   4.457 +    void push(const Item &i, const Prio &p) {
   4.458 +      int idx;
   4.459 +      if (_free == -1) {
   4.460 +        idx = _data.size();
   4.461 +        _data.push_back(BucketItem(i));
   4.462 +      } else {
   4.463 +        idx = _free;
   4.464 +        _free = _data[idx].next;
   4.465 +        _data[idx].item = i;
   4.466 +      }
   4.467 +      _iim[i] = idx;
   4.468 +      if (p >= int(_first.size())) _first.resize(p + 1, -1);
   4.469 +      _data[idx].next = _first[p];
   4.470 +      _first[p] = idx;
   4.471 +      if (Direction::less(p, _minimum)) {
   4.472 +        _minimum = p;
   4.473 +      }
   4.474 +      ++_num;
   4.475 +    }
   4.476 +
   4.477 +    /// \brief Returns the item with minimum priority.
   4.478 +    ///
   4.479 +    /// This method returns the item with minimum priority.
   4.480 +    /// \pre The heap must be nonempty.
   4.481 +    Item top() const {
   4.482 +      while (_first[_minimum] == -1) {
   4.483 +        Direction::increase(_minimum);
   4.484 +      }
   4.485 +      return _data[_first[_minimum]].item;
   4.486 +    }
   4.487 +
   4.488 +    /// \brief Returns the minimum priority.
   4.489 +    ///
   4.490 +    /// It returns the minimum priority.
   4.491 +    /// \pre The heap must be nonempty.
   4.492 +    Prio prio() const {
   4.493 +      while (_first[_minimum] == -1) {
   4.494 +        Direction::increase(_minimum);
   4.495 +      }
   4.496 +      return _minimum;
   4.497 +    }
   4.498 +
   4.499 +    /// \brief Deletes the item with minimum priority.
   4.500 +    ///
   4.501 +    /// This method deletes the item with minimum priority from the heap.
   4.502 +    /// \pre The heap must be non-empty.
   4.503 +    void pop() {
   4.504 +      while (_first[_minimum] == -1) {
   4.505 +        Direction::increase(_minimum);
   4.506 +      }
   4.507 +      int idx = _first[_minimum];
   4.508 +      _iim[_data[idx].item] = -2;
   4.509 +      _first[_minimum] = _data[idx].next;
   4.510 +      _data[idx].next = _free;
   4.511 +      _free = idx;
   4.512 +      --_num;
   4.513 +    }
   4.514 +
   4.515 +    /// \brief Returns the priority of \c i.
   4.516 +    ///
   4.517 +    /// This function returns the priority of item \c i.
   4.518 +    /// \warning This operator is not a constant time function
   4.519 +    /// because it scans the whole data structure to find the proper
   4.520 +    /// value.
   4.521 +    /// \pre \c i must be in the heap.
   4.522 +    /// \param i The item.
   4.523 +    Prio operator[](const Item &i) const {
   4.524 +      for (int k = 0; k < _first.size(); ++k) {
   4.525 +        int idx = _first[k];
   4.526 +        while (idx != -1) {
   4.527 +          if (_data[idx].item == i) {
   4.528 +            return k;
   4.529 +          }
   4.530 +          idx = _data[idx].next;
   4.531 +        }
   4.532 +      }
   4.533 +      return -1;
   4.534 +    }
   4.535 +
   4.536 +    /// \brief Returns if \c item is in, has already been in, or has
   4.537 +    /// never been in the heap.
   4.538 +    ///
   4.539 +    /// This method returns PRE_HEAP if \c item has never been in the
   4.540 +    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   4.541 +    /// otherwise. In the latter case it is possible that \c item will
   4.542 +    /// get back to the heap again.
   4.543 +    /// \param i The item.
   4.544 +    State state(const Item &i) const {
   4.545 +      int idx = _iim[i];
   4.546 +      if (idx >= 0) idx = 0;
   4.547 +      return State(idx);
   4.548 +    }
   4.549 +
   4.550 +  private:
   4.551 +
   4.552 +    struct BucketItem {
   4.553 +      BucketItem(const Item& _item)
   4.554 +        : item(_item) {}
   4.555 +
   4.556 +      Item item;
   4.557 +      int next;
   4.558 +    };
   4.559 +
   4.560 +    ItemIntMap& _iim;
   4.561 +    std::vector<int> _first;
   4.562 +    std::vector<BucketItem> _data;
   4.563 +    int _free, _num;
   4.564 +    mutable int _minimum;
   4.565 +
   4.566 +  }; // class SimpleBucketHeap
   4.567 +
   4.568 +}
   4.569 +
   4.570 +#endif
     5.1 --- a/lemon/concepts/maps.h	Mon Mar 14 08:56:54 2011 +0100
     5.2 +++ b/lemon/concepts/maps.h	Fri Apr 15 09:26:09 2011 +0200
     5.3 @@ -182,7 +182,8 @@
     5.4  
     5.5        template<typename _ReferenceMap>
     5.6        struct Constraints {
     5.7 -        void constraints() {
     5.8 +        typename enable_if<typename _ReferenceMap::ReferenceMapTag, void>::type
     5.9 +        constraints() {
    5.10            checkConcept<ReadWriteMap<K, T>, _ReferenceMap >();
    5.11            ref = m[key];
    5.12            m[key] = val;
     6.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     6.2 +++ b/lemon/fib_heap.h	Fri Apr 15 09:26:09 2011 +0200
     6.3 @@ -0,0 +1,468 @@
     6.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     6.5 + *
     6.6 + * This file is a part of LEMON, a generic C++ optimization library.
     6.7 + *
     6.8 + * Copyright (C) 2003-2009
     6.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    6.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    6.11 + *
    6.12 + * Permission to use, modify and distribute this software is granted
    6.13 + * provided that this copyright notice appears in all copies. For
    6.14 + * precise terms see the accompanying LICENSE file.
    6.15 + *
    6.16 + * This software is provided "AS IS" with no warranty of any kind,
    6.17 + * express or implied, and with no claim as to its suitability for any
    6.18 + * purpose.
    6.19 + *
    6.20 + */
    6.21 +
    6.22 +#ifndef LEMON_FIB_HEAP_H
    6.23 +#define LEMON_FIB_HEAP_H
    6.24 +
    6.25 +///\file
    6.26 +///\ingroup auxdat
    6.27 +///\brief Fibonacci Heap implementation.
    6.28 +
    6.29 +#include <vector>
    6.30 +#include <functional>
    6.31 +#include <lemon/math.h>
    6.32 +
    6.33 +namespace lemon {
    6.34 +
    6.35 +  /// \ingroup auxdat
    6.36 +  ///
    6.37 +  ///\brief Fibonacci Heap.
    6.38 +  ///
    6.39 +  ///This class implements the \e Fibonacci \e heap data structure. A \e heap
    6.40 +  ///is a data structure for storing items with specified values called \e
    6.41 +  ///priorities in such a way that finding the item with minimum priority is
    6.42 +  ///efficient. \c CMP specifies the ordering of the priorities. In a heap
    6.43 +  ///one can change the priority of an item, add or erase an item, etc.
    6.44 +  ///
    6.45 +  ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
    6.46 +  ///heap. In case of many calls to these operations, it is better to use a
    6.47 +  ///\ref BinHeap "binary heap".
    6.48 +  ///
    6.49 +  ///\param PRIO Type of the priority of the items.
    6.50 +  ///\param IM A read and writable Item int map, used internally
    6.51 +  ///to handle the cross references.
    6.52 +  ///\param CMP A class for the ordering of the priorities. The
    6.53 +  ///default is \c std::less<PRIO>.
    6.54 +  ///
    6.55 +  ///\sa BinHeap
    6.56 +  ///\sa Dijkstra
    6.57 +#ifdef DOXYGEN
    6.58 +  template <typename PRIO, typename IM, typename CMP>
    6.59 +#else
    6.60 +  template <typename PRIO, typename IM, typename CMP = std::less<PRIO> >
    6.61 +#endif
    6.62 +  class FibHeap {
    6.63 +  public:
    6.64 +    ///\e
    6.65 +    typedef IM ItemIntMap;
    6.66 +    ///\e
    6.67 +    typedef PRIO Prio;
    6.68 +    ///\e
    6.69 +    typedef typename ItemIntMap::Key Item;
    6.70 +    ///\e
    6.71 +    typedef std::pair<Item,Prio> Pair;
    6.72 +    ///\e
    6.73 +    typedef CMP Compare;
    6.74 +
    6.75 +  private:
    6.76 +    class Store;
    6.77 +
    6.78 +    std::vector<Store> _data;
    6.79 +    int _minimum;
    6.80 +    ItemIntMap &_iim;
    6.81 +    Compare _comp;
    6.82 +    int _num;
    6.83 +
    6.84 +  public:
    6.85 +
    6.86 +    /// \brief Type to represent the items states.
    6.87 +    ///
    6.88 +    /// Each Item element have a state associated to it. It may be "in heap",
    6.89 +    /// "pre heap" or "post heap". The latter two are indifferent from the
    6.90 +    /// heap's point of view, but may be useful to the user.
    6.91 +    ///
    6.92 +    /// The item-int map must be initialized in such way that it assigns
    6.93 +    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
    6.94 +    enum State {
    6.95 +      IN_HEAP = 0,    ///< = 0.
    6.96 +      PRE_HEAP = -1,  ///< = -1.
    6.97 +      POST_HEAP = -2  ///< = -2.
    6.98 +    };
    6.99 +
   6.100 +    /// \brief The constructor
   6.101 +    ///
   6.102 +    /// \c map should be given to the constructor, since it is
   6.103 +    ///   used internally to handle the cross references.
   6.104 +    explicit FibHeap(ItemIntMap &map)
   6.105 +      : _minimum(0), _iim(map), _num() {}
   6.106 +
   6.107 +    /// \brief The constructor
   6.108 +    ///
   6.109 +    /// \c map should be given to the constructor, since it is used
   6.110 +    /// internally to handle the cross references. \c comp is an
   6.111 +    /// object for ordering of the priorities.
   6.112 +    FibHeap(ItemIntMap &map, const Compare &comp)
   6.113 +      : _minimum(0), _iim(map), _comp(comp), _num() {}
   6.114 +
   6.115 +    /// \brief The number of items stored in the heap.
   6.116 +    ///
   6.117 +    /// Returns the number of items stored in the heap.
   6.118 +    int size() const { return _num; }
   6.119 +
   6.120 +    /// \brief Checks if the heap stores no items.
   6.121 +    ///
   6.122 +    ///   Returns \c true if and only if the heap stores no items.
   6.123 +    bool empty() const { return _num==0; }
   6.124 +
   6.125 +    /// \brief Make empty this heap.
   6.126 +    ///
   6.127 +    /// Make empty this heap. It does not change the cross reference
   6.128 +    /// map.  If you want to reuse a heap what is not surely empty you
   6.129 +    /// should first clear the heap and after that you should set the
   6.130 +    /// cross reference map for each item to \c PRE_HEAP.
   6.131 +    void clear() {
   6.132 +      _data.clear(); _minimum = 0; _num = 0;
   6.133 +    }
   6.134 +
   6.135 +    /// \brief \c item gets to the heap with priority \c value independently
   6.136 +    /// if \c item was already there.
   6.137 +    ///
   6.138 +    /// This method calls \ref push(\c item, \c value) if \c item is not
   6.139 +    /// stored in the heap and it calls \ref decrease(\c item, \c value) or
   6.140 +    /// \ref increase(\c item, \c value) otherwise.
   6.141 +    void set (const Item& item, const Prio& value) {
   6.142 +      int i=_iim[item];
   6.143 +      if ( i >= 0 && _data[i].in ) {
   6.144 +        if ( _comp(value, _data[i].prio) ) decrease(item, value);
   6.145 +        if ( _comp(_data[i].prio, value) ) increase(item, value);
   6.146 +      } else push(item, value);
   6.147 +    }
   6.148 +
   6.149 +    /// \brief Adds \c item to the heap with priority \c value.
   6.150 +    ///
   6.151 +    /// Adds \c item to the heap with priority \c value.
   6.152 +    /// \pre \c item must not be stored in the heap.
   6.153 +    void push (const Item& item, const Prio& value) {
   6.154 +      int i=_iim[item];
   6.155 +      if ( i < 0 ) {
   6.156 +        int s=_data.size();
   6.157 +        _iim.set( item, s );
   6.158 +        Store st;
   6.159 +        st.name=item;
   6.160 +        _data.push_back(st);
   6.161 +        i=s;
   6.162 +      } else {
   6.163 +        _data[i].parent=_data[i].child=-1;
   6.164 +        _data[i].degree=0;
   6.165 +        _data[i].in=true;
   6.166 +        _data[i].marked=false;
   6.167 +      }
   6.168 +
   6.169 +      if ( _num ) {
   6.170 +        _data[_data[_minimum].right_neighbor].left_neighbor=i;
   6.171 +        _data[i].right_neighbor=_data[_minimum].right_neighbor;
   6.172 +        _data[_minimum].right_neighbor=i;
   6.173 +        _data[i].left_neighbor=_minimum;
   6.174 +        if ( _comp( value, _data[_minimum].prio) ) _minimum=i;
   6.175 +      } else {
   6.176 +        _data[i].right_neighbor=_data[i].left_neighbor=i;
   6.177 +        _minimum=i;
   6.178 +      }
   6.179 +      _data[i].prio=value;
   6.180 +      ++_num;
   6.181 +    }
   6.182 +
   6.183 +    /// \brief Returns the item with minimum priority relative to \c Compare.
   6.184 +    ///
   6.185 +    /// This method returns the item with minimum priority relative to \c
   6.186 +    /// Compare.
   6.187 +    /// \pre The heap must be nonempty.
   6.188 +    Item top() const { return _data[_minimum].name; }
   6.189 +
   6.190 +    /// \brief Returns the minimum priority relative to \c Compare.
   6.191 +    ///
   6.192 +    /// It returns the minimum priority relative to \c Compare.
   6.193 +    /// \pre The heap must be nonempty.
   6.194 +    const Prio& prio() const { return _data[_minimum].prio; }
   6.195 +
   6.196 +    /// \brief Returns the priority of \c item.
   6.197 +    ///
   6.198 +    /// It returns the priority of \c item.
   6.199 +    /// \pre \c item must be in the heap.
   6.200 +    const Prio& operator[](const Item& item) const {
   6.201 +      return _data[_iim[item]].prio;
   6.202 +    }
   6.203 +
   6.204 +    /// \brief Deletes the item with minimum priority relative to \c Compare.
   6.205 +    ///
   6.206 +    /// This method deletes the item with minimum priority relative to \c
   6.207 +    /// Compare from the heap.
   6.208 +    /// \pre The heap must be non-empty.
   6.209 +    void pop() {
   6.210 +      /*The first case is that there are only one root.*/
   6.211 +      if ( _data[_minimum].left_neighbor==_minimum ) {
   6.212 +        _data[_minimum].in=false;
   6.213 +        if ( _data[_minimum].degree!=0 ) {
   6.214 +          makeroot(_data[_minimum].child);
   6.215 +          _minimum=_data[_minimum].child;
   6.216 +          balance();
   6.217 +        }
   6.218 +      } else {
   6.219 +        int right=_data[_minimum].right_neighbor;
   6.220 +        unlace(_minimum);
   6.221 +        _data[_minimum].in=false;
   6.222 +        if ( _data[_minimum].degree > 0 ) {
   6.223 +          int left=_data[_minimum].left_neighbor;
   6.224 +          int child=_data[_minimum].child;
   6.225 +          int last_child=_data[child].left_neighbor;
   6.226 +
   6.227 +          makeroot(child);
   6.228 +
   6.229 +          _data[left].right_neighbor=child;
   6.230 +          _data[child].left_neighbor=left;
   6.231 +          _data[right].left_neighbor=last_child;
   6.232 +          _data[last_child].right_neighbor=right;
   6.233 +        }
   6.234 +        _minimum=right;
   6.235 +        balance();
   6.236 +      } // the case where there are more roots
   6.237 +      --_num;
   6.238 +    }
   6.239 +
   6.240 +    /// \brief Deletes \c item from the heap.
   6.241 +    ///
   6.242 +    /// This method deletes \c item from the heap, if \c item was already
   6.243 +    /// stored in the heap. It is quite inefficient in Fibonacci heaps.
   6.244 +    void erase (const Item& item) {
   6.245 +      int i=_iim[item];
   6.246 +
   6.247 +      if ( i >= 0 && _data[i].in ) {
   6.248 +        if ( _data[i].parent!=-1 ) {
   6.249 +          int p=_data[i].parent;
   6.250 +          cut(i,p);
   6.251 +          cascade(p);
   6.252 +        }
   6.253 +        _minimum=i;     //As if its prio would be -infinity
   6.254 +        pop();
   6.255 +      }
   6.256 +    }
   6.257 +
   6.258 +    /// \brief Decreases the priority of \c item to \c value.
   6.259 +    ///
   6.260 +    /// This method decreases the priority of \c item to \c value.
   6.261 +    /// \pre \c item must be stored in the heap with priority at least \c
   6.262 +    ///   value relative to \c Compare.
   6.263 +    void decrease (Item item, const Prio& value) {
   6.264 +      int i=_iim[item];
   6.265 +      _data[i].prio=value;
   6.266 +      int p=_data[i].parent;
   6.267 +
   6.268 +      if ( p!=-1 && _comp(value, _data[p].prio) ) {
   6.269 +        cut(i,p);
   6.270 +        cascade(p);
   6.271 +      }
   6.272 +      if ( _comp(value, _data[_minimum].prio) ) _minimum=i;
   6.273 +    }
   6.274 +
   6.275 +    /// \brief Increases the priority of \c item to \c value.
   6.276 +    ///
   6.277 +    /// This method sets the priority of \c item to \c value. Though
   6.278 +    /// there is no precondition on the priority of \c item, this
   6.279 +    /// method should be used only if it is indeed necessary to increase
   6.280 +    /// (relative to \c Compare) the priority of \c item, because this
   6.281 +    /// method is inefficient.
   6.282 +    void increase (Item item, const Prio& value) {
   6.283 +      erase(item);
   6.284 +      push(item, value);
   6.285 +    }
   6.286 +
   6.287 +
   6.288 +    /// \brief Returns if \c item is in, has already been in, or has never
   6.289 +    /// been in the heap.
   6.290 +    ///
   6.291 +    /// This method returns PRE_HEAP if \c item has never been in the
   6.292 +    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   6.293 +    /// otherwise. In the latter case it is possible that \c item will
   6.294 +    /// get back to the heap again.
   6.295 +    State state(const Item &item) const {
   6.296 +      int i=_iim[item];
   6.297 +      if( i>=0 ) {
   6.298 +        if ( _data[i].in ) i=0;
   6.299 +        else i=-2;
   6.300 +      }
   6.301 +      return State(i);
   6.302 +    }
   6.303 +
   6.304 +    /// \brief Sets the state of the \c item in the heap.
   6.305 +    ///
   6.306 +    /// Sets the state of the \c item in the heap. It can be used to
   6.307 +    /// manually clear the heap when it is important to achive the
   6.308 +    /// better time _complexity.
   6.309 +    /// \param i The item.
   6.310 +    /// \param st The state. It should not be \c IN_HEAP.
   6.311 +    void state(const Item& i, State st) {
   6.312 +      switch (st) {
   6.313 +      case POST_HEAP:
   6.314 +      case PRE_HEAP:
   6.315 +        if (state(i) == IN_HEAP) {
   6.316 +          erase(i);
   6.317 +        }
   6.318 +        _iim[i] = st;
   6.319 +        break;
   6.320 +      case IN_HEAP:
   6.321 +        break;
   6.322 +      }
   6.323 +    }
   6.324 +
   6.325 +  private:
   6.326 +
   6.327 +    void balance() {
   6.328 +
   6.329 +      int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1;
   6.330 +
   6.331 +      std::vector<int> A(maxdeg,-1);
   6.332 +
   6.333 +      /*
   6.334 +       *Recall that now minimum does not point to the minimum prio element.
   6.335 +       *We set minimum to this during balance().
   6.336 +       */
   6.337 +      int anchor=_data[_minimum].left_neighbor;
   6.338 +      int next=_minimum;
   6.339 +      bool end=false;
   6.340 +
   6.341 +      do {
   6.342 +        int active=next;
   6.343 +        if ( anchor==active ) end=true;
   6.344 +        int d=_data[active].degree;
   6.345 +        next=_data[active].right_neighbor;
   6.346 +
   6.347 +        while (A[d]!=-1) {
   6.348 +          if( _comp(_data[active].prio, _data[A[d]].prio) ) {
   6.349 +            fuse(active,A[d]);
   6.350 +          } else {
   6.351 +            fuse(A[d],active);
   6.352 +            active=A[d];
   6.353 +          }
   6.354 +          A[d]=-1;
   6.355 +          ++d;
   6.356 +        }
   6.357 +        A[d]=active;
   6.358 +      } while ( !end );
   6.359 +
   6.360 +
   6.361 +      while ( _data[_minimum].parent >=0 )
   6.362 +        _minimum=_data[_minimum].parent;
   6.363 +      int s=_minimum;
   6.364 +      int m=_minimum;
   6.365 +      do {
   6.366 +        if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;
   6.367 +        s=_data[s].right_neighbor;
   6.368 +      } while ( s != m );
   6.369 +    }
   6.370 +
   6.371 +    void makeroot(int c) {
   6.372 +      int s=c;
   6.373 +      do {
   6.374 +        _data[s].parent=-1;
   6.375 +        s=_data[s].right_neighbor;
   6.376 +      } while ( s != c );
   6.377 +    }
   6.378 +
   6.379 +    void cut(int a, int b) {
   6.380 +      /*
   6.381 +       *Replacing a from the children of b.
   6.382 +       */
   6.383 +      --_data[b].degree;
   6.384 +
   6.385 +      if ( _data[b].degree !=0 ) {
   6.386 +        int child=_data[b].child;
   6.387 +        if ( child==a )
   6.388 +          _data[b].child=_data[child].right_neighbor;
   6.389 +        unlace(a);
   6.390 +      }
   6.391 +
   6.392 +
   6.393 +      /*Lacing a to the roots.*/
   6.394 +      int right=_data[_minimum].right_neighbor;
   6.395 +      _data[_minimum].right_neighbor=a;
   6.396 +      _data[a].left_neighbor=_minimum;
   6.397 +      _data[a].right_neighbor=right;
   6.398 +      _data[right].left_neighbor=a;
   6.399 +
   6.400 +      _data[a].parent=-1;
   6.401 +      _data[a].marked=false;
   6.402 +    }
   6.403 +
   6.404 +    void cascade(int a) {
   6.405 +      if ( _data[a].parent!=-1 ) {
   6.406 +        int p=_data[a].parent;
   6.407 +
   6.408 +        if ( _data[a].marked==false ) _data[a].marked=true;
   6.409 +        else {
   6.410 +          cut(a,p);
   6.411 +          cascade(p);
   6.412 +        }
   6.413 +      }
   6.414 +    }
   6.415 +
   6.416 +    void fuse(int a, int b) {
   6.417 +      unlace(b);
   6.418 +
   6.419 +      /*Lacing b under a.*/
   6.420 +      _data[b].parent=a;
   6.421 +
   6.422 +      if (_data[a].degree==0) {
   6.423 +        _data[b].left_neighbor=b;
   6.424 +        _data[b].right_neighbor=b;
   6.425 +        _data[a].child=b;
   6.426 +      } else {
   6.427 +        int child=_data[a].child;
   6.428 +        int last_child=_data[child].left_neighbor;
   6.429 +        _data[child].left_neighbor=b;
   6.430 +        _data[b].right_neighbor=child;
   6.431 +        _data[last_child].right_neighbor=b;
   6.432 +        _data[b].left_neighbor=last_child;
   6.433 +      }
   6.434 +
   6.435 +      ++_data[a].degree;
   6.436 +
   6.437 +      _data[b].marked=false;
   6.438 +    }
   6.439 +
   6.440 +    /*
   6.441 +     *It is invoked only if a has siblings.
   6.442 +     */
   6.443 +    void unlace(int a) {
   6.444 +      int leftn=_data[a].left_neighbor;
   6.445 +      int rightn=_data[a].right_neighbor;
   6.446 +      _data[leftn].right_neighbor=rightn;
   6.447 +      _data[rightn].left_neighbor=leftn;
   6.448 +    }
   6.449 +
   6.450 +
   6.451 +    class Store {
   6.452 +      friend class FibHeap;
   6.453 +
   6.454 +      Item name;
   6.455 +      int parent;
   6.456 +      int left_neighbor;
   6.457 +      int right_neighbor;
   6.458 +      int child;
   6.459 +      int degree;
   6.460 +      bool marked;
   6.461 +      bool in;
   6.462 +      Prio prio;
   6.463 +
   6.464 +      Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
   6.465 +    };
   6.466 +  };
   6.467 +
   6.468 +} //namespace lemon
   6.469 +
   6.470 +#endif //LEMON_FIB_HEAP_H
   6.471 +
     7.1 --- a/lemon/glpk.h	Mon Mar 14 08:56:54 2011 +0100
     7.2 +++ b/lemon/glpk.h	Fri Apr 15 09:26:09 2011 +0200
     7.3 @@ -25,16 +25,28 @@
     7.4  
     7.5  #include <lemon/lp_base.h>
     7.6  
     7.7 -// forward declaration
     7.8 -#if !defined _GLP_PROB && !defined GLP_PROB
     7.9 -#define _GLP_PROB
    7.10 -#define GLP_PROB
    7.11 -typedef struct { double _opaque_prob; } glp_prob;
    7.12 -/* LP/MIP problem object */
    7.13 -#endif
    7.14 -
    7.15  namespace lemon {
    7.16  
    7.17 +  namespace _solver_bits {
    7.18 +    class VoidPtr {
    7.19 +    private:
    7.20 +      void *_ptr;      
    7.21 +    public:
    7.22 +      VoidPtr() : _ptr(0) {}
    7.23 +
    7.24 +      template <typename T>
    7.25 +      VoidPtr(T* ptr) : _ptr(reinterpret_cast<void*>(ptr)) {}
    7.26 +
    7.27 +      template <typename T>
    7.28 +      VoidPtr& operator=(T* ptr) { 
    7.29 +        _ptr = reinterpret_cast<void*>(ptr); 
    7.30 +        return *this;
    7.31 +      }
    7.32 +
    7.33 +      template <typename T>
    7.34 +      operator T*() const { return reinterpret_cast<T*>(_ptr); }
    7.35 +    };
    7.36 +  }
    7.37  
    7.38    /// \brief Base interface for the GLPK LP and MIP solver
    7.39    ///
    7.40 @@ -43,8 +55,7 @@
    7.41    class GlpkBase : virtual public LpBase {
    7.42    protected:
    7.43  
    7.44 -    typedef glp_prob LPX;
    7.45 -    glp_prob* lp;
    7.46 +    _solver_bits::VoidPtr lp;
    7.47  
    7.48      GlpkBase();
    7.49      GlpkBase(const GlpkBase&);
    7.50 @@ -122,9 +133,9 @@
    7.51    public:
    7.52  
    7.53      ///Pointer to the underlying GLPK data structure.
    7.54 -    LPX *lpx() {return lp;}
    7.55 +    _solver_bits::VoidPtr lpx() {return lp;}
    7.56      ///Const pointer to the underlying GLPK data structure.
    7.57 -    const LPX *lpx() const {return lp;}
    7.58 +    _solver_bits::VoidPtr lpx() const {return lp;}
    7.59  
    7.60      ///Returns the constraint identifier understood by GLPK.
    7.61      int lpxRow(Row r) const { return rows(id(r)); }
     8.1 --- a/lemon/path.h	Mon Mar 14 08:56:54 2011 +0100
     8.2 +++ b/lemon/path.h	Fri Apr 15 09:26:09 2011 +0200
     8.3 @@ -70,7 +70,7 @@
     8.4      /// It simply makes a copy of the given path.
     8.5      template <typename CPath>
     8.6      Path(const CPath& cpath) {
     8.7 -      copyPath(*this, cpath);
     8.8 +      pathCopy(cpath, *this);
     8.9      }
    8.10  
    8.11      /// \brief Template copy assignment
    8.12 @@ -78,7 +78,7 @@
    8.13      /// This operator makes a copy of a path of any other type.
    8.14      template <typename CPath>
    8.15      Path& operator=(const CPath& cpath) {
    8.16 -      copyPath(*this, cpath);
    8.17 +      pathCopy(cpath, *this);
    8.18        return *this;
    8.19      }
    8.20  
    8.21 @@ -258,7 +258,7 @@
    8.22      /// makes a copy of the given path.
    8.23      template <typename CPath>
    8.24      SimplePath(const CPath& cpath) {
    8.25 -      copyPath(*this, cpath);
    8.26 +      pathCopy(cpath, *this);
    8.27      }
    8.28  
    8.29      /// \brief Template copy assignment
    8.30 @@ -267,7 +267,7 @@
    8.31      /// makes a copy of the given path.
    8.32      template <typename CPath>
    8.33      SimplePath& operator=(const CPath& cpath) {
    8.34 -      copyPath(*this, cpath);
    8.35 +      pathCopy(cpath, *this);
    8.36        return *this;
    8.37      }
    8.38  
    8.39 @@ -437,7 +437,7 @@
    8.40      /// makes a copy of the given path.
    8.41      template <typename CPath>
    8.42      ListPath(const CPath& cpath) : first(0), last(0) {
    8.43 -      copyPath(*this, cpath);
    8.44 +      pathCopy(cpath, *this);
    8.45      }
    8.46  
    8.47      /// \brief Destructor of the path
    8.48 @@ -453,7 +453,7 @@
    8.49      /// makes a copy of the given path.
    8.50      template <typename CPath>
    8.51      ListPath& operator=(const CPath& cpath) {
    8.52 -      copyPath(*this, cpath);
    8.53 +      pathCopy(cpath, *this);
    8.54        return *this;
    8.55      }
    8.56  
    8.57 @@ -763,7 +763,7 @@
    8.58      /// This path can be initialized from any other path type.
    8.59      template <typename CPath>
    8.60      StaticPath(const CPath& cpath) : arcs(0) {
    8.61 -      copyPath(*this, cpath);
    8.62 +      pathCopy(cpath, *this);
    8.63      }
    8.64  
    8.65      /// \brief Destructor of the path
    8.66 @@ -779,7 +779,7 @@
    8.67      /// makes a copy of the given path.
    8.68      template <typename CPath>
    8.69      StaticPath& operator=(const CPath& cpath) {
    8.70 -      copyPath(*this, cpath);
    8.71 +      pathCopy(cpath, *this);
    8.72        return *this;
    8.73      }
    8.74  
    8.75 @@ -928,57 +928,57 @@
    8.76        static const bool value = true;
    8.77      };
    8.78  
    8.79 -    template <typename Target, typename Source,
    8.80 -              bool buildEnable = BuildTagIndicator<Target>::value>
    8.81 +    template <typename From, typename To,
    8.82 +              bool buildEnable = BuildTagIndicator<To>::value>
    8.83      struct PathCopySelectorForward {
    8.84 -      static void copy(Target& target, const Source& source) {
    8.85 -        target.clear();
    8.86 -        for (typename Source::ArcIt it(source); it != INVALID; ++it) {
    8.87 -          target.addBack(it);
    8.88 +      static void copy(const From& from, To& to) {
    8.89 +        to.clear();
    8.90 +        for (typename From::ArcIt it(from); it != INVALID; ++it) {
    8.91 +          to.addBack(it);
    8.92          }
    8.93        }
    8.94      };
    8.95  
    8.96 -    template <typename Target, typename Source>
    8.97 -    struct PathCopySelectorForward<Target, Source, true> {
    8.98 -      static void copy(Target& target, const Source& source) {
    8.99 -        target.clear();
   8.100 -        target.build(source);
   8.101 +    template <typename From, typename To>
   8.102 +    struct PathCopySelectorForward<From, To, true> {
   8.103 +      static void copy(const From& from, To& to) {
   8.104 +        to.clear();
   8.105 +        to.build(from);
   8.106        }
   8.107      };
   8.108  
   8.109 -    template <typename Target, typename Source,
   8.110 -              bool buildEnable = BuildTagIndicator<Target>::value>
   8.111 +    template <typename From, typename To,
   8.112 +              bool buildEnable = BuildTagIndicator<To>::value>
   8.113      struct PathCopySelectorBackward {
   8.114 -      static void copy(Target& target, const Source& source) {
   8.115 -        target.clear();
   8.116 -        for (typename Source::RevArcIt it(source); it != INVALID; ++it) {
   8.117 -          target.addFront(it);
   8.118 +      static void copy(const From& from, To& to) {
   8.119 +        to.clear();
   8.120 +        for (typename From::RevArcIt it(from); it != INVALID; ++it) {
   8.121 +          to.addFront(it);
   8.122          }
   8.123        }
   8.124      };
   8.125  
   8.126 -    template <typename Target, typename Source>
   8.127 -    struct PathCopySelectorBackward<Target, Source, true> {
   8.128 -      static void copy(Target& target, const Source& source) {
   8.129 -        target.clear();
   8.130 -        target.buildRev(source);
   8.131 +    template <typename From, typename To>
   8.132 +    struct PathCopySelectorBackward<From, To, true> {
   8.133 +      static void copy(const From& from, To& to) {
   8.134 +        to.clear();
   8.135 +        to.buildRev(from);
   8.136        }
   8.137      };
   8.138  
   8.139      
   8.140 -    template <typename Target, typename Source,
   8.141 -              bool revEnable = RevPathTagIndicator<Source>::value>
   8.142 +    template <typename From, typename To,
   8.143 +              bool revEnable = RevPathTagIndicator<From>::value>
   8.144      struct PathCopySelector {
   8.145 -      static void copy(Target& target, const Source& source) {
   8.146 -        PathCopySelectorForward<Target, Source>::copy(target, source);
   8.147 +      static void copy(const From& from, To& to) {
   8.148 +        PathCopySelectorForward<From, To>::copy(from, to);
   8.149        }      
   8.150      };
   8.151  
   8.152 -    template <typename Target, typename Source>
   8.153 -    struct PathCopySelector<Target, Source, true> {
   8.154 -      static void copy(Target& target, const Source& source) {
   8.155 -        PathCopySelectorBackward<Target, Source>::copy(target, source);
   8.156 +    template <typename From, typename To>
   8.157 +    struct PathCopySelector<From, To, true> {
   8.158 +      static void copy(const From& from, To& to) {
   8.159 +        PathCopySelectorBackward<From, To>::copy(from, to);
   8.160        }      
   8.161      };
   8.162  
   8.163 @@ -987,11 +987,19 @@
   8.164  
   8.165    /// \brief Make a copy of a path.
   8.166    ///
   8.167 -  ///  This function makes a copy of a path.
   8.168 -  template <typename Target, typename Source>
   8.169 -  void copyPath(Target& target, const Source& source) {
   8.170 -    checkConcept<concepts::PathDumper<typename Source::Digraph>, Source>();
   8.171 -    _path_bits::PathCopySelector<Target, Source>::copy(target, source);
   8.172 +  /// This function makes a copy of a path.
   8.173 +  template <typename From, typename To>
   8.174 +  void pathCopy(const From& from, To& to) {
   8.175 +    checkConcept<concepts::PathDumper<typename From::Digraph>, From>();
   8.176 +    _path_bits::PathCopySelector<From, To>::copy(from, to);
   8.177 +  }
   8.178 +
   8.179 +  /// \brief Deprecated version of \ref pathCopy().
   8.180 +  ///
   8.181 +  /// Deprecated version of \ref pathCopy() (only for reverse compatibility).
   8.182 +  template <typename To, typename From>
   8.183 +  void copyPath(To& to, const From& from) {
   8.184 +    pathCopy(from, to);
   8.185    }
   8.186  
   8.187    /// \brief Check the consistency of a path.
   8.188 @@ -1015,18 +1023,20 @@
   8.189  
   8.190    /// \brief The source of a path
   8.191    ///
   8.192 -  /// This function returns the source of the given path.
   8.193 +  /// This function returns the source node of the given path.
   8.194 +  /// If the path is empty, then it returns \c INVALID.
   8.195    template <typename Digraph, typename Path>
   8.196    typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) {
   8.197 -    return digraph.source(path.front());
   8.198 +    return path.empty() ? INVALID : digraph.source(path.front());
   8.199    }
   8.200  
   8.201    /// \brief The target of a path
   8.202    ///
   8.203 -  /// This function returns the target of the given path.
   8.204 +  /// This function returns the target node of the given path.
   8.205 +  /// If the path is empty, then it returns \c INVALID.
   8.206    template <typename Digraph, typename Path>
   8.207    typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) {
   8.208 -    return digraph.target(path.back());
   8.209 +    return path.empty() ? INVALID : digraph.target(path.back());
   8.210    }
   8.211  
   8.212    /// \brief Class which helps to iterate through the nodes of a path
     9.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     9.2 +++ b/lemon/radix_heap.h	Fri Apr 15 09:26:09 2011 +0200
     9.3 @@ -0,0 +1,433 @@
     9.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     9.5 + *
     9.6 + * This file is a part of LEMON, a generic C++ optimization library.
     9.7 + *
     9.8 + * Copyright (C) 2003-2009
     9.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    9.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    9.11 + *
    9.12 + * Permission to use, modify and distribute this software is granted
    9.13 + * provided that this copyright notice appears in all copies. For
    9.14 + * precise terms see the accompanying LICENSE file.
    9.15 + *
    9.16 + * This software is provided "AS IS" with no warranty of any kind,
    9.17 + * express or implied, and with no claim as to its suitability for any
    9.18 + * purpose.
    9.19 + *
    9.20 + */
    9.21 +
    9.22 +#ifndef LEMON_RADIX_HEAP_H
    9.23 +#define LEMON_RADIX_HEAP_H
    9.24 +
    9.25 +///\ingroup auxdat
    9.26 +///\file
    9.27 +///\brief Radix Heap implementation.
    9.28 +
    9.29 +#include <vector>
    9.30 +#include <lemon/error.h>
    9.31 +
    9.32 +namespace lemon {
    9.33 +
    9.34 +
    9.35 +  /// \ingroup auxdata
    9.36 +  ///
    9.37 +  /// \brief A Radix Heap implementation.
    9.38 +  ///
    9.39 +  /// This class implements the \e radix \e heap data structure. A \e heap
    9.40 +  /// is a data structure for storing items with specified values called \e
    9.41 +  /// priorities in such a way that finding the item with minimum priority is
    9.42 +  /// efficient. This heap type can store only items with \e int priority.
    9.43 +  /// In a heap one can change the priority of an item, add or erase an
    9.44 +  /// item, but the priority cannot be decreased under the last removed
    9.45 +  /// item's priority.
    9.46 +  ///
    9.47 +  /// \param IM A read and writable Item int map, used internally
    9.48 +  /// to handle the cross references.
    9.49 +  ///
    9.50 +  /// \see BinHeap
    9.51 +  /// \see Dijkstra
    9.52 +  template <typename IM>
    9.53 +  class RadixHeap {
    9.54 +
    9.55 +  public:
    9.56 +    typedef typename IM::Key Item;
    9.57 +    typedef int Prio;
    9.58 +    typedef IM ItemIntMap;
    9.59 +
    9.60 +    /// \brief Exception thrown by RadixHeap.
    9.61 +    ///
    9.62 +    /// This Exception is thrown when a smaller priority
    9.63 +    /// is inserted into the \e RadixHeap then the last time erased.
    9.64 +    /// \see RadixHeap
    9.65 +
    9.66 +    class UnderFlowPriorityError : public Exception {
    9.67 +    public:
    9.68 +      virtual const char* what() const throw() {
    9.69 +        return "lemon::RadixHeap::UnderFlowPriorityError";
    9.70 +      }
    9.71 +    };
    9.72 +
    9.73 +    /// \brief Type to represent the items states.
    9.74 +    ///
    9.75 +    /// Each Item element have a state associated to it. It may be "in heap",
    9.76 +    /// "pre heap" or "post heap". The latter two are indifferent from the
    9.77 +    /// heap's point of view, but may be useful to the user.
    9.78 +    ///
    9.79 +    /// The ItemIntMap \e should be initialized in such way that it maps
    9.80 +    /// PRE_HEAP (-1) to any element to be put in the heap...
    9.81 +    enum State {
    9.82 +      IN_HEAP = 0,
    9.83 +      PRE_HEAP = -1,
    9.84 +      POST_HEAP = -2
    9.85 +    };
    9.86 +
    9.87 +  private:
    9.88 +
    9.89 +    struct RadixItem {
    9.90 +      int prev, next, box;
    9.91 +      Item item;
    9.92 +      int prio;
    9.93 +      RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {}
    9.94 +    };
    9.95 +
    9.96 +    struct RadixBox {
    9.97 +      int first;
    9.98 +      int min, size;
    9.99 +      RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
   9.100 +    };
   9.101 +
   9.102 +    std::vector<RadixItem> data;
   9.103 +    std::vector<RadixBox> boxes;
   9.104 +
   9.105 +    ItemIntMap &_iim;
   9.106 +
   9.107 +
   9.108 +  public:
   9.109 +    /// \brief The constructor.
   9.110 +    ///
   9.111 +    /// The constructor.
   9.112 +    ///
   9.113 +    /// \param map It should be given to the constructor, since it is used
   9.114 +    /// internally to handle the cross references. The value of the map
   9.115 +    /// should be PRE_HEAP (-1) for each element.
   9.116 +    ///
   9.117 +    /// \param minimal The initial minimal value of the heap.
   9.118 +    /// \param capacity It determines the initial capacity of the heap.
   9.119 +    RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0)
   9.120 +      : _iim(map) {
   9.121 +      boxes.push_back(RadixBox(minimal, 1));
   9.122 +      boxes.push_back(RadixBox(minimal + 1, 1));
   9.123 +      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
   9.124 +        extend();
   9.125 +      }
   9.126 +    }
   9.127 +
   9.128 +    /// The number of items stored in the heap.
   9.129 +    ///
   9.130 +    /// \brief Returns the number of items stored in the heap.
   9.131 +    int size() const { return data.size(); }
   9.132 +    /// \brief Checks if the heap stores no items.
   9.133 +    ///
   9.134 +    /// Returns \c true if and only if the heap stores no items.
   9.135 +    bool empty() const { return data.empty(); }
   9.136 +
   9.137 +    /// \brief Make empty this heap.
   9.138 +    ///
   9.139 +    /// Make empty this heap. It does not change the cross reference
   9.140 +    /// map.  If you want to reuse a heap what is not surely empty you
   9.141 +    /// should first clear the heap and after that you should set the
   9.142 +    /// cross reference map for each item to \c PRE_HEAP.
   9.143 +    void clear(int minimal = 0, int capacity = 0) {
   9.144 +      data.clear(); boxes.clear();
   9.145 +      boxes.push_back(RadixBox(minimal, 1));
   9.146 +      boxes.push_back(RadixBox(minimal + 1, 1));
   9.147 +      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
   9.148 +        extend();
   9.149 +      }
   9.150 +    }
   9.151 +
   9.152 +  private:
   9.153 +
   9.154 +    bool upper(int box, Prio pr) {
   9.155 +      return pr < boxes[box].min;
   9.156 +    }
   9.157 +
   9.158 +    bool lower(int box, Prio pr) {
   9.159 +      return pr >= boxes[box].min + boxes[box].size;
   9.160 +    }
   9.161 +
   9.162 +    /// \brief Remove item from the box list.
   9.163 +    void remove(int index) {
   9.164 +      if (data[index].prev >= 0) {
   9.165 +        data[data[index].prev].next = data[index].next;
   9.166 +      } else {
   9.167 +        boxes[data[index].box].first = data[index].next;
   9.168 +      }
   9.169 +      if (data[index].next >= 0) {
   9.170 +        data[data[index].next].prev = data[index].prev;
   9.171 +      }
   9.172 +    }
   9.173 +
   9.174 +    /// \brief Insert item into the box list.
   9.175 +    void insert(int box, int index) {
   9.176 +      if (boxes[box].first == -1) {
   9.177 +        boxes[box].first = index;
   9.178 +        data[index].next = data[index].prev = -1;
   9.179 +      } else {
   9.180 +        data[index].next = boxes[box].first;
   9.181 +        data[boxes[box].first].prev = index;
   9.182 +        data[index].prev = -1;
   9.183 +        boxes[box].first = index;
   9.184 +      }
   9.185 +      data[index].box = box;
   9.186 +    }
   9.187 +
   9.188 +    /// \brief Add a new box to the box list.
   9.189 +    void extend() {
   9.190 +      int min = boxes.back().min + boxes.back().size;
   9.191 +      int bs = 2 * boxes.back().size;
   9.192 +      boxes.push_back(RadixBox(min, bs));
   9.193 +    }
   9.194 +
   9.195 +    /// \brief Move an item up into the proper box.
   9.196 +    void bubble_up(int index) {
   9.197 +      if (!lower(data[index].box, data[index].prio)) return;
   9.198 +      remove(index);
   9.199 +      int box = findUp(data[index].box, data[index].prio);
   9.200 +      insert(box, index);
   9.201 +    }
   9.202 +
   9.203 +    /// \brief Find up the proper box for the item with the given prio.
   9.204 +    int findUp(int start, int pr) {
   9.205 +      while (lower(start, pr)) {
   9.206 +        if (++start == int(boxes.size())) {
   9.207 +          extend();
   9.208 +        }
   9.209 +      }
   9.210 +      return start;
   9.211 +    }
   9.212 +
   9.213 +    /// \brief Move an item down into the proper box.
   9.214 +    void bubble_down(int index) {
   9.215 +      if (!upper(data[index].box, data[index].prio)) return;
   9.216 +      remove(index);
   9.217 +      int box = findDown(data[index].box, data[index].prio);
   9.218 +      insert(box, index);
   9.219 +    }
   9.220 +
   9.221 +    /// \brief Find up the proper box for the item with the given prio.
   9.222 +    int findDown(int start, int pr) {
   9.223 +      while (upper(start, pr)) {
   9.224 +        if (--start < 0) throw UnderFlowPriorityError();
   9.225 +      }
   9.226 +      return start;
   9.227 +    }
   9.228 +
   9.229 +    /// \brief Find the first not empty box.
   9.230 +    int findFirst() {
   9.231 +      int first = 0;
   9.232 +      while (boxes[first].first == -1) ++first;
   9.233 +      return first;
   9.234 +    }
   9.235 +
   9.236 +    /// \brief Gives back the minimal prio of the box.
   9.237 +    int minValue(int box) {
   9.238 +      int min = data[boxes[box].first].prio;
   9.239 +      for (int k = boxes[box].first; k != -1; k = data[k].next) {
   9.240 +        if (data[k].prio < min) min = data[k].prio;
   9.241 +      }
   9.242 +      return min;
   9.243 +    }
   9.244 +
   9.245 +    /// \brief Rearrange the items of the heap and makes the
   9.246 +    /// first box not empty.
   9.247 +    void moveDown() {
   9.248 +      int box = findFirst();
   9.249 +      if (box == 0) return;
   9.250 +      int min = minValue(box);
   9.251 +      for (int i = 0; i <= box; ++i) {
   9.252 +        boxes[i].min = min;
   9.253 +        min += boxes[i].size;
   9.254 +      }
   9.255 +      int curr = boxes[box].first, next;
   9.256 +      while (curr != -1) {
   9.257 +        next = data[curr].next;
   9.258 +        bubble_down(curr);
   9.259 +        curr = next;
   9.260 +      }
   9.261 +    }
   9.262 +
   9.263 +    void relocate_last(int index) {
   9.264 +      if (index != int(data.size()) - 1) {
   9.265 +        data[index] = data.back();
   9.266 +        if (data[index].prev != -1) {
   9.267 +          data[data[index].prev].next = index;
   9.268 +        } else {
   9.269 +          boxes[data[index].box].first = index;
   9.270 +        }
   9.271 +        if (data[index].next != -1) {
   9.272 +          data[data[index].next].prev = index;
   9.273 +        }
   9.274 +        _iim[data[index].item] = index;
   9.275 +      }
   9.276 +      data.pop_back();
   9.277 +    }
   9.278 +
   9.279 +  public:
   9.280 +
   9.281 +    /// \brief Insert an item into the heap with the given priority.
   9.282 +    ///
   9.283 +    /// Adds \c i to the heap with priority \c p.
   9.284 +    /// \param i The item to insert.
   9.285 +    /// \param p The priority of the item.
   9.286 +    void push(const Item &i, const Prio &p) {
   9.287 +      int n = data.size();
   9.288 +      _iim.set(i, n);
   9.289 +      data.push_back(RadixItem(i, p));
   9.290 +      while (lower(boxes.size() - 1, p)) {
   9.291 +        extend();
   9.292 +      }
   9.293 +      int box = findDown(boxes.size() - 1, p);
   9.294 +      insert(box, n);
   9.295 +    }
   9.296 +
   9.297 +    /// \brief Returns the item with minimum priority.
   9.298 +    ///
   9.299 +    /// This method returns the item with minimum priority.
   9.300 +    /// \pre The heap must be nonempty.
   9.301 +    Item top() const {
   9.302 +      const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
   9.303 +      return data[boxes[0].first].item;
   9.304 +    }
   9.305 +
   9.306 +    /// \brief Returns the minimum priority.
   9.307 +    ///
   9.308 +    /// It returns the minimum priority.
   9.309 +    /// \pre The heap must be nonempty.
   9.310 +    Prio prio() const {
   9.311 +      const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
   9.312 +      return data[boxes[0].first].prio;
   9.313 +     }
   9.314 +
   9.315 +    /// \brief Deletes the item with minimum priority.
   9.316 +    ///
   9.317 +    /// This method deletes the item with minimum priority.
   9.318 +    /// \pre The heap must be non-empty.
   9.319 +    void pop() {
   9.320 +      moveDown();
   9.321 +      int index = boxes[0].first;
   9.322 +      _iim[data[index].item] = POST_HEAP;
   9.323 +      remove(index);
   9.324 +      relocate_last(index);
   9.325 +    }
   9.326 +
   9.327 +    /// \brief Deletes \c i from the heap.
   9.328 +    ///
   9.329 +    /// This method deletes item \c i from the heap, if \c i was
   9.330 +    /// already stored in the heap.
   9.331 +    /// \param i The item to erase.
   9.332 +    void erase(const Item &i) {
   9.333 +      int index = _iim[i];
   9.334 +      _iim[i] = POST_HEAP;
   9.335 +      remove(index);
   9.336 +      relocate_last(index);
   9.337 +   }
   9.338 +
   9.339 +    /// \brief Returns the priority of \c i.
   9.340 +    ///
   9.341 +    /// This function returns the priority of item \c i.
   9.342 +    /// \pre \c i must be in the heap.
   9.343 +    /// \param i The item.
   9.344 +    Prio operator[](const Item &i) const {
   9.345 +      int idx = _iim[i];
   9.346 +      return data[idx].prio;
   9.347 +    }
   9.348 +
   9.349 +    /// \brief \c i gets to the heap with priority \c p independently
   9.350 +    /// if \c i was already there.
   9.351 +    ///
   9.352 +    /// This method calls \ref push(\c i, \c p) if \c i is not stored
   9.353 +    /// in the heap and sets the priority of \c i to \c p otherwise.
   9.354 +    /// It may throw an \e UnderFlowPriorityException.
   9.355 +    /// \param i The item.
   9.356 +    /// \param p The priority.
   9.357 +    void set(const Item &i, const Prio &p) {
   9.358 +      int idx = _iim[i];
   9.359 +      if( idx < 0 ) {
   9.360 +        push(i, p);
   9.361 +      }
   9.362 +      else if( p >= data[idx].prio ) {
   9.363 +        data[idx].prio = p;
   9.364 +        bubble_up(idx);
   9.365 +      } else {
   9.366 +        data[idx].prio = p;
   9.367 +        bubble_down(idx);
   9.368 +      }
   9.369 +    }
   9.370 +
   9.371 +
   9.372 +    /// \brief Decreases the priority of \c i to \c p.
   9.373 +    ///
   9.374 +    /// This method decreases the priority of item \c i to \c p.
   9.375 +    /// \pre \c i must be stored in the heap with priority at least \c p, and
   9.376 +    /// \c should be greater or equal to the last removed item's priority.
   9.377 +    /// \param i The item.
   9.378 +    /// \param p The priority.
   9.379 +    void decrease(const Item &i, const Prio &p) {
   9.380 +      int idx = _iim[i];
   9.381 +      data[idx].prio = p;
   9.382 +      bubble_down(idx);
   9.383 +    }
   9.384 +
   9.385 +    /// \brief Increases the priority of \c i to \c p.
   9.386 +    ///
   9.387 +    /// This method sets the priority of item \c i to \c p.
   9.388 +    /// \pre \c i must be stored in the heap with priority at most \c p
   9.389 +    /// \param i The item.
   9.390 +    /// \param p The priority.
   9.391 +    void increase(const Item &i, const Prio &p) {
   9.392 +      int idx = _iim[i];
   9.393 +      data[idx].prio = p;
   9.394 +      bubble_up(idx);
   9.395 +    }
   9.396 +
   9.397 +    /// \brief Returns if \c item is in, has already been in, or has
   9.398 +    /// never been in the heap.
   9.399 +    ///
   9.400 +    /// This method returns PRE_HEAP if \c item has never been in the
   9.401 +    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   9.402 +    /// otherwise. In the latter case it is possible that \c item will
   9.403 +    /// get back to the heap again.
   9.404 +    /// \param i The item.
   9.405 +    State state(const Item &i) const {
   9.406 +      int s = _iim[i];
   9.407 +      if( s >= 0 ) s = 0;
   9.408 +      return State(s);
   9.409 +    }
   9.410 +
   9.411 +    /// \brief Sets the state of the \c item in the heap.
   9.412 +    ///
   9.413 +    /// Sets the state of the \c item in the heap. It can be used to
   9.414 +    /// manually clear the heap when it is important to achive the
   9.415 +    /// better time complexity.
   9.416 +    /// \param i The item.
   9.417 +    /// \param st The state. It should not be \c IN_HEAP.
   9.418 +    void state(const Item& i, State st) {
   9.419 +      switch (st) {
   9.420 +      case POST_HEAP:
   9.421 +      case PRE_HEAP:
   9.422 +        if (state(i) == IN_HEAP) {
   9.423 +          erase(i);
   9.424 +        }
   9.425 +        _iim[i] = st;
   9.426 +        break;
   9.427 +      case IN_HEAP:
   9.428 +        break;
   9.429 +      }
   9.430 +    }
   9.431 +
   9.432 +  }; // class RadixHeap
   9.433 +
   9.434 +} // namespace lemon
   9.435 +
   9.436 +#endif // LEMON_RADIX_HEAP_H
    10.1 --- a/test/heap_test.cc	Mon Mar 14 08:56:54 2011 +0100
    10.2 +++ b/test/heap_test.cc	Fri Apr 15 09:26:09 2011 +0200
    10.3 @@ -31,6 +31,9 @@
    10.4  #include <lemon/maps.h>
    10.5  
    10.6  #include <lemon/bin_heap.h>
    10.7 +#include <lemon/fib_heap.h>
    10.8 +#include <lemon/radix_heap.h>
    10.9 +#include <lemon/bucket_heap.h>
   10.10  
   10.11  #include "test_tools.h"
   10.12  
   10.13 @@ -183,5 +186,39 @@
   10.14      dijkstraHeapTest<NodeHeap>(digraph, length, source);
   10.15    }
   10.16  
   10.17 +  {
   10.18 +    typedef FibHeap<Prio, ItemIntMap> IntHeap;
   10.19 +    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
   10.20 +    heapSortTest<IntHeap>();
   10.21 +    heapIncreaseTest<IntHeap>();
   10.22 +
   10.23 +    typedef FibHeap<Prio, IntNodeMap > NodeHeap;
   10.24 +    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
   10.25 +    dijkstraHeapTest<NodeHeap>(digraph, length, source);
   10.26 +  }
   10.27 +
   10.28 +  {
   10.29 +    typedef RadixHeap<ItemIntMap> IntHeap;
   10.30 +    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
   10.31 +    heapSortTest<IntHeap>();
   10.32 +    heapIncreaseTest<IntHeap>();
   10.33 +
   10.34 +    typedef RadixHeap<IntNodeMap > NodeHeap;
   10.35 +    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
   10.36 +    dijkstraHeapTest<NodeHeap>(digraph, length, source);
   10.37 +  }
   10.38 +
   10.39 +  {
   10.40 +    typedef BucketHeap<ItemIntMap> IntHeap;
   10.41 +    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
   10.42 +    heapSortTest<IntHeap>();
   10.43 +    heapIncreaseTest<IntHeap>();
   10.44 +
   10.45 +    typedef BucketHeap<IntNodeMap > NodeHeap;
   10.46 +    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
   10.47 +    dijkstraHeapTest<NodeHeap>(digraph, length, source);
   10.48 +  }
   10.49 +
   10.50 +
   10.51    return 0;
   10.52  }