lemon/network_simplex.h
author Antal Nemes <thoneyvazul@gmail.com>
Mon, 15 Nov 2010 22:23:35 +0100
changeset 916 70bee017b584
parent 895 dca9eed2c375
child 919 e0cef67fe565
child 921 140c953ad5d1
child 1129 b40c2bbb8da5
permissions -rw-r--r--
Port max. card. search alg. from svn -r3512 (#397) and (#56)
kpeter@601
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
kpeter@601
     2
 *
kpeter@601
     3
 * This file is a part of LEMON, a generic C++ optimization library.
kpeter@601
     4
 *
alpar@877
     5
 * Copyright (C) 2003-2010
kpeter@601
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@601
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@601
     8
 *
kpeter@601
     9
 * Permission to use, modify and distribute this software is granted
kpeter@601
    10
 * provided that this copyright notice appears in all copies. For
kpeter@601
    11
 * precise terms see the accompanying LICENSE file.
kpeter@601
    12
 *
kpeter@601
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@601
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@601
    15
 * purpose.
kpeter@601
    16
 *
kpeter@601
    17
 */
kpeter@601
    18
kpeter@601
    19
#ifndef LEMON_NETWORK_SIMPLEX_H
kpeter@601
    20
#define LEMON_NETWORK_SIMPLEX_H
kpeter@601
    21
kpeter@663
    22
/// \ingroup min_cost_flow_algs
kpeter@601
    23
///
kpeter@601
    24
/// \file
kpeter@605
    25
/// \brief Network Simplex algorithm for finding a minimum cost flow.
kpeter@601
    26
kpeter@601
    27
#include <vector>
kpeter@601
    28
#include <limits>
kpeter@601
    29
#include <algorithm>
kpeter@601
    30
kpeter@603
    31
#include <lemon/core.h>
kpeter@601
    32
#include <lemon/math.h>
kpeter@601
    33
kpeter@601
    34
namespace lemon {
kpeter@601
    35
kpeter@663
    36
  /// \addtogroup min_cost_flow_algs
kpeter@601
    37
  /// @{
kpeter@601
    38
kpeter@605
    39
  /// \brief Implementation of the primal Network Simplex algorithm
kpeter@601
    40
  /// for finding a \ref min_cost_flow "minimum cost flow".
kpeter@601
    41
  ///
kpeter@605
    42
  /// \ref NetworkSimplex implements the primal Network Simplex algorithm
kpeter@755
    43
  /// for finding a \ref min_cost_flow "minimum cost flow"
kpeter@755
    44
  /// \ref amo93networkflows, \ref dantzig63linearprog,
kpeter@755
    45
  /// \ref kellyoneill91netsimplex.
kpeter@812
    46
  /// This algorithm is a highly efficient specialized version of the
kpeter@812
    47
  /// linear programming simplex method directly for the minimum cost
kpeter@812
    48
  /// flow problem.
kpeter@606
    49
  ///
kpeter@812
    50
  /// In general, %NetworkSimplex is the fastest implementation available
kpeter@812
    51
  /// in LEMON for this problem.
kpeter@812
    52
  /// Moreover, it supports both directions of the supply/demand inequality
kpeter@786
    53
  /// constraints. For more information, see \ref SupplyType.
kpeter@640
    54
  ///
kpeter@640
    55
  /// Most of the parameters of the problem (except for the digraph)
kpeter@640
    56
  /// can be given using separate functions, and the algorithm can be
kpeter@640
    57
  /// executed using the \ref run() function. If some parameters are not
kpeter@640
    58
  /// specified, then default values will be used.
kpeter@601
    59
  ///
kpeter@605
    60
  /// \tparam GR The digraph type the algorithm runs on.
kpeter@812
    61
  /// \tparam V The number type used for flow amounts, capacity bounds
kpeter@786
    62
  /// and supply values in the algorithm. By default, it is \c int.
kpeter@812
    63
  /// \tparam C The number type used for costs and potentials in the
kpeter@786
    64
  /// algorithm. By default, it is the same as \c V.
kpeter@601
    65
  ///
kpeter@812
    66
  /// \warning Both number types must be signed and all input data must
kpeter@608
    67
  /// be integer.
kpeter@601
    68
  ///
kpeter@605
    69
  /// \note %NetworkSimplex provides five different pivot rule
kpeter@609
    70
  /// implementations, from which the most efficient one is used
kpeter@786
    71
  /// by default. For more information, see \ref PivotRule.
kpeter@641
    72
  template <typename GR, typename V = int, typename C = V>
kpeter@601
    73
  class NetworkSimplex
kpeter@601
    74
  {
kpeter@605
    75
  public:
kpeter@601
    76
kpeter@642
    77
    /// The type of the flow amounts, capacity bounds and supply values
kpeter@641
    78
    typedef V Value;
kpeter@642
    79
    /// The type of the arc costs
kpeter@607
    80
    typedef C Cost;
kpeter@605
    81
kpeter@605
    82
  public:
kpeter@605
    83
kpeter@640
    84
    /// \brief Problem type constants for the \c run() function.
kpeter@605
    85
    ///
kpeter@640
    86
    /// Enum type containing the problem type constants that can be
kpeter@640
    87
    /// returned by the \ref run() function of the algorithm.
kpeter@640
    88
    enum ProblemType {
kpeter@640
    89
      /// The problem has no feasible solution (flow).
kpeter@640
    90
      INFEASIBLE,
kpeter@640
    91
      /// The problem has optimal solution (i.e. it is feasible and
kpeter@640
    92
      /// bounded), and the algorithm has found optimal flow and node
kpeter@640
    93
      /// potentials (primal and dual solutions).
kpeter@640
    94
      OPTIMAL,
kpeter@640
    95
      /// The objective function of the problem is unbounded, i.e.
kpeter@640
    96
      /// there is a directed cycle having negative total cost and
kpeter@640
    97
      /// infinite upper bound.
kpeter@640
    98
      UNBOUNDED
kpeter@640
    99
    };
alpar@877
   100
kpeter@640
   101
    /// \brief Constants for selecting the type of the supply constraints.
kpeter@640
   102
    ///
kpeter@640
   103
    /// Enum type containing constants for selecting the supply type,
kpeter@640
   104
    /// i.e. the direction of the inequalities in the supply/demand
kpeter@640
   105
    /// constraints of the \ref min_cost_flow "minimum cost flow problem".
kpeter@640
   106
    ///
kpeter@663
   107
    /// The default supply type is \c GEQ, the \c LEQ type can be
kpeter@663
   108
    /// selected using \ref supplyType().
kpeter@663
   109
    /// The equality form is a special case of both supply types.
kpeter@640
   110
    enum SupplyType {
kpeter@640
   111
      /// This option means that there are <em>"greater or equal"</em>
kpeter@663
   112
      /// supply/demand constraints in the definition of the problem.
kpeter@640
   113
      GEQ,
kpeter@640
   114
      /// This option means that there are <em>"less or equal"</em>
kpeter@663
   115
      /// supply/demand constraints in the definition of the problem.
kpeter@663
   116
      LEQ
kpeter@640
   117
    };
alpar@877
   118
kpeter@640
   119
    /// \brief Constants for selecting the pivot rule.
kpeter@640
   120
    ///
kpeter@640
   121
    /// Enum type containing constants for selecting the pivot rule for
kpeter@640
   122
    /// the \ref run() function.
kpeter@640
   123
    ///
kpeter@605
   124
    /// \ref NetworkSimplex provides five different pivot rule
kpeter@605
   125
    /// implementations that significantly affect the running time
kpeter@605
   126
    /// of the algorithm.
kpeter@786
   127
    /// By default, \ref BLOCK_SEARCH "Block Search" is used, which
kpeter@605
   128
    /// proved to be the most efficient and the most robust on various
kpeter@812
   129
    /// test inputs.
kpeter@786
   130
    /// However, another pivot rule can be selected using the \ref run()
kpeter@605
   131
    /// function with the proper parameter.
kpeter@605
   132
    enum PivotRule {
kpeter@605
   133
kpeter@786
   134
      /// The \e First \e Eligible pivot rule.
kpeter@605
   135
      /// The next eligible arc is selected in a wraparound fashion
kpeter@605
   136
      /// in every iteration.
kpeter@605
   137
      FIRST_ELIGIBLE,
kpeter@605
   138
kpeter@786
   139
      /// The \e Best \e Eligible pivot rule.
kpeter@605
   140
      /// The best eligible arc is selected in every iteration.
kpeter@605
   141
      BEST_ELIGIBLE,
kpeter@605
   142
kpeter@786
   143
      /// The \e Block \e Search pivot rule.
kpeter@605
   144
      /// A specified number of arcs are examined in every iteration
kpeter@605
   145
      /// in a wraparound fashion and the best eligible arc is selected
kpeter@605
   146
      /// from this block.
kpeter@605
   147
      BLOCK_SEARCH,
kpeter@605
   148
kpeter@786
   149
      /// The \e Candidate \e List pivot rule.
kpeter@605
   150
      /// In a major iteration a candidate list is built from eligible arcs
kpeter@605
   151
      /// in a wraparound fashion and in the following minor iterations
kpeter@605
   152
      /// the best eligible arc is selected from this list.
kpeter@605
   153
      CANDIDATE_LIST,
kpeter@605
   154
kpeter@786
   155
      /// The \e Altering \e Candidate \e List pivot rule.
kpeter@605
   156
      /// It is a modified version of the Candidate List method.
kpeter@605
   157
      /// It keeps only the several best eligible arcs from the former
kpeter@605
   158
      /// candidate list and extends this list in every iteration.
kpeter@605
   159
      ALTERING_LIST
kpeter@605
   160
    };
alpar@877
   161
kpeter@605
   162
  private:
kpeter@605
   163
kpeter@605
   164
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@605
   165
kpeter@601
   166
    typedef std::vector<int> IntVector;
kpeter@642
   167
    typedef std::vector<Value> ValueVector;
kpeter@607
   168
    typedef std::vector<Cost> CostVector;
kpeter@895
   169
    typedef std::vector<signed char> CharVector;
kpeter@895
   170
    // Note: vector<signed char> is used instead of vector<ArcState> and 
kpeter@895
   171
    // vector<ArcDirection> for efficiency reasons
kpeter@601
   172
kpeter@601
   173
    // State constants for arcs
kpeter@862
   174
    enum ArcState {
kpeter@601
   175
      STATE_UPPER = -1,
kpeter@601
   176
      STATE_TREE  =  0,
kpeter@601
   177
      STATE_LOWER =  1
kpeter@601
   178
    };
kpeter@601
   179
kpeter@895
   180
    // Direction constants for tree arcs
kpeter@895
   181
    enum ArcDirection {
kpeter@895
   182
      DIR_DOWN = -1,
kpeter@895
   183
      DIR_UP   =  1
kpeter@895
   184
    };
kpeter@862
   185
kpeter@601
   186
  private:
kpeter@601
   187
kpeter@605
   188
    // Data related to the underlying digraph
kpeter@605
   189
    const GR &_graph;
kpeter@605
   190
    int _node_num;
kpeter@605
   191
    int _arc_num;
kpeter@663
   192
    int _all_arc_num;
kpeter@663
   193
    int _search_arc_num;
kpeter@605
   194
kpeter@605
   195
    // Parameters of the problem
kpeter@642
   196
    bool _have_lower;
kpeter@640
   197
    SupplyType _stype;
kpeter@641
   198
    Value _sum_supply;
kpeter@601
   199
kpeter@605
   200
    // Data structures for storing the digraph
kpeter@603
   201
    IntNodeMap _node_id;
kpeter@642
   202
    IntArcMap _arc_id;
kpeter@603
   203
    IntVector _source;
kpeter@603
   204
    IntVector _target;
kpeter@830
   205
    bool _arc_mixing;
kpeter@603
   206
kpeter@605
   207
    // Node and arc data
kpeter@642
   208
    ValueVector _lower;
kpeter@642
   209
    ValueVector _upper;
kpeter@642
   210
    ValueVector _cap;
kpeter@607
   211
    CostVector _cost;
kpeter@642
   212
    ValueVector _supply;
kpeter@642
   213
    ValueVector _flow;
kpeter@607
   214
    CostVector _pi;
kpeter@601
   215
kpeter@603
   216
    // Data for storing the spanning tree structure
kpeter@601
   217
    IntVector _parent;
kpeter@601
   218
    IntVector _pred;
kpeter@601
   219
    IntVector _thread;
kpeter@604
   220
    IntVector _rev_thread;
kpeter@604
   221
    IntVector _succ_num;
kpeter@604
   222
    IntVector _last_succ;
kpeter@895
   223
    CharVector _pred_dir;
kpeter@895
   224
    CharVector _state;
kpeter@604
   225
    IntVector _dirty_revs;
kpeter@601
   226
    int _root;
kpeter@601
   227
kpeter@601
   228
    // Temporary data used in the current pivot iteration
kpeter@603
   229
    int in_arc, join, u_in, v_in, u_out, v_out;
kpeter@641
   230
    Value delta;
kpeter@601
   231
kpeter@811
   232
    const Value MAX;
kpeter@663
   233
kpeter@640
   234
  public:
alpar@877
   235
kpeter@640
   236
    /// \brief Constant for infinite upper bounds (capacities).
kpeter@640
   237
    ///
kpeter@640
   238
    /// Constant for infinite upper bounds (capacities).
kpeter@641
   239
    /// It is \c std::numeric_limits<Value>::infinity() if available,
kpeter@641
   240
    /// \c std::numeric_limits<Value>::max() otherwise.
kpeter@641
   241
    const Value INF;
kpeter@640
   242
kpeter@601
   243
  private:
kpeter@601
   244
kpeter@605
   245
    // Implementation of the First Eligible pivot rule
kpeter@601
   246
    class FirstEligiblePivotRule
kpeter@601
   247
    {
kpeter@601
   248
    private:
kpeter@601
   249
kpeter@601
   250
      // References to the NetworkSimplex class
kpeter@601
   251
      const IntVector  &_source;
kpeter@601
   252
      const IntVector  &_target;
kpeter@607
   253
      const CostVector &_cost;
kpeter@895
   254
      const CharVector &_state;
kpeter@607
   255
      const CostVector &_pi;
kpeter@601
   256
      int &_in_arc;
kpeter@663
   257
      int _search_arc_num;
kpeter@601
   258
kpeter@601
   259
      // Pivot rule data
kpeter@601
   260
      int _next_arc;
kpeter@601
   261
kpeter@601
   262
    public:
kpeter@601
   263
kpeter@605
   264
      // Constructor
kpeter@601
   265
      FirstEligiblePivotRule(NetworkSimplex &ns) :
kpeter@603
   266
        _source(ns._source), _target(ns._target),
kpeter@601
   267
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@663
   268
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
kpeter@663
   269
        _next_arc(0)
kpeter@601
   270
      {}
kpeter@601
   271
kpeter@605
   272
      // Find next entering arc
kpeter@601
   273
      bool findEnteringArc() {
kpeter@607
   274
        Cost c;
kpeter@839
   275
        for (int e = _next_arc; e != _search_arc_num; ++e) {
kpeter@601
   276
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   277
          if (c < 0) {
kpeter@601
   278
            _in_arc = e;
kpeter@601
   279
            _next_arc = e + 1;
kpeter@601
   280
            return true;
kpeter@601
   281
          }
kpeter@601
   282
        }
kpeter@839
   283
        for (int e = 0; e != _next_arc; ++e) {
kpeter@601
   284
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   285
          if (c < 0) {
kpeter@601
   286
            _in_arc = e;
kpeter@601
   287
            _next_arc = e + 1;
kpeter@601
   288
            return true;
kpeter@601
   289
          }
kpeter@601
   290
        }
kpeter@601
   291
        return false;
kpeter@601
   292
      }
kpeter@601
   293
kpeter@601
   294
    }; //class FirstEligiblePivotRule
kpeter@601
   295
kpeter@601
   296
kpeter@605
   297
    // Implementation of the Best Eligible pivot rule
kpeter@601
   298
    class BestEligiblePivotRule
kpeter@601
   299
    {
kpeter@601
   300
    private:
kpeter@601
   301
kpeter@601
   302
      // References to the NetworkSimplex class
kpeter@601
   303
      const IntVector  &_source;
kpeter@601
   304
      const IntVector  &_target;
kpeter@607
   305
      const CostVector &_cost;
kpeter@895
   306
      const CharVector &_state;
kpeter@607
   307
      const CostVector &_pi;
kpeter@601
   308
      int &_in_arc;
kpeter@663
   309
      int _search_arc_num;
kpeter@601
   310
kpeter@601
   311
    public:
kpeter@601
   312
kpeter@605
   313
      // Constructor
kpeter@601
   314
      BestEligiblePivotRule(NetworkSimplex &ns) :
kpeter@603
   315
        _source(ns._source), _target(ns._target),
kpeter@601
   316
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@663
   317
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
kpeter@601
   318
      {}
kpeter@601
   319
kpeter@605
   320
      // Find next entering arc
kpeter@601
   321
      bool findEnteringArc() {
kpeter@607
   322
        Cost c, min = 0;
kpeter@839
   323
        for (int e = 0; e != _search_arc_num; ++e) {
kpeter@601
   324
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   325
          if (c < min) {
kpeter@601
   326
            min = c;
kpeter@601
   327
            _in_arc = e;
kpeter@601
   328
          }
kpeter@601
   329
        }
kpeter@601
   330
        return min < 0;
kpeter@601
   331
      }
kpeter@601
   332
kpeter@601
   333
    }; //class BestEligiblePivotRule
kpeter@601
   334
kpeter@601
   335
kpeter@605
   336
    // Implementation of the Block Search pivot rule
kpeter@601
   337
    class BlockSearchPivotRule
kpeter@601
   338
    {
kpeter@601
   339
    private:
kpeter@601
   340
kpeter@601
   341
      // References to the NetworkSimplex class
kpeter@601
   342
      const IntVector  &_source;
kpeter@601
   343
      const IntVector  &_target;
kpeter@607
   344
      const CostVector &_cost;
kpeter@895
   345
      const CharVector &_state;
kpeter@607
   346
      const CostVector &_pi;
kpeter@601
   347
      int &_in_arc;
kpeter@663
   348
      int _search_arc_num;
kpeter@601
   349
kpeter@601
   350
      // Pivot rule data
kpeter@601
   351
      int _block_size;
kpeter@601
   352
      int _next_arc;
kpeter@601
   353
kpeter@601
   354
    public:
kpeter@601
   355
kpeter@605
   356
      // Constructor
kpeter@601
   357
      BlockSearchPivotRule(NetworkSimplex &ns) :
kpeter@603
   358
        _source(ns._source), _target(ns._target),
kpeter@601
   359
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@663
   360
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
kpeter@663
   361
        _next_arc(0)
kpeter@601
   362
      {
kpeter@601
   363
        // The main parameters of the pivot rule
kpeter@839
   364
        const double BLOCK_SIZE_FACTOR = 1.0;
kpeter@601
   365
        const int MIN_BLOCK_SIZE = 10;
kpeter@601
   366
alpar@612
   367
        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
kpeter@663
   368
                                    std::sqrt(double(_search_arc_num))),
kpeter@601
   369
                                MIN_BLOCK_SIZE );
kpeter@601
   370
      }
kpeter@601
   371
kpeter@605
   372
      // Find next entering arc
kpeter@601
   373
      bool findEnteringArc() {
kpeter@607
   374
        Cost c, min = 0;
kpeter@601
   375
        int cnt = _block_size;
kpeter@727
   376
        int e;
kpeter@839
   377
        for (e = _next_arc; e != _search_arc_num; ++e) {
kpeter@601
   378
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   379
          if (c < min) {
kpeter@601
   380
            min = c;
kpeter@727
   381
            _in_arc = e;
kpeter@601
   382
          }
kpeter@601
   383
          if (--cnt == 0) {
kpeter@727
   384
            if (min < 0) goto search_end;
kpeter@601
   385
            cnt = _block_size;
kpeter@601
   386
          }
kpeter@601
   387
        }
kpeter@839
   388
        for (e = 0; e != _next_arc; ++e) {
kpeter@727
   389
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@727
   390
          if (c < min) {
kpeter@727
   391
            min = c;
kpeter@727
   392
            _in_arc = e;
kpeter@727
   393
          }
kpeter@727
   394
          if (--cnt == 0) {
kpeter@727
   395
            if (min < 0) goto search_end;
kpeter@727
   396
            cnt = _block_size;
kpeter@601
   397
          }
kpeter@601
   398
        }
kpeter@601
   399
        if (min >= 0) return false;
kpeter@727
   400
kpeter@727
   401
      search_end:
kpeter@601
   402
        _next_arc = e;
kpeter@601
   403
        return true;
kpeter@601
   404
      }
kpeter@601
   405
kpeter@601
   406
    }; //class BlockSearchPivotRule
kpeter@601
   407
kpeter@601
   408
kpeter@605
   409
    // Implementation of the Candidate List pivot rule
kpeter@601
   410
    class CandidateListPivotRule
kpeter@601
   411
    {
kpeter@601
   412
    private:
kpeter@601
   413
kpeter@601
   414
      // References to the NetworkSimplex class
kpeter@601
   415
      const IntVector  &_source;
kpeter@601
   416
      const IntVector  &_target;
kpeter@607
   417
      const CostVector &_cost;
kpeter@895
   418
      const CharVector &_state;
kpeter@607
   419
      const CostVector &_pi;
kpeter@601
   420
      int &_in_arc;
kpeter@663
   421
      int _search_arc_num;
kpeter@601
   422
kpeter@601
   423
      // Pivot rule data
kpeter@601
   424
      IntVector _candidates;
kpeter@601
   425
      int _list_length, _minor_limit;
kpeter@601
   426
      int _curr_length, _minor_count;
kpeter@601
   427
      int _next_arc;
kpeter@601
   428
kpeter@601
   429
    public:
kpeter@601
   430
kpeter@601
   431
      /// Constructor
kpeter@601
   432
      CandidateListPivotRule(NetworkSimplex &ns) :
kpeter@603
   433
        _source(ns._source), _target(ns._target),
kpeter@601
   434
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@663
   435
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
kpeter@663
   436
        _next_arc(0)
kpeter@601
   437
      {
kpeter@601
   438
        // The main parameters of the pivot rule
kpeter@727
   439
        const double LIST_LENGTH_FACTOR = 0.25;
kpeter@601
   440
        const int MIN_LIST_LENGTH = 10;
kpeter@601
   441
        const double MINOR_LIMIT_FACTOR = 0.1;
kpeter@601
   442
        const int MIN_MINOR_LIMIT = 3;
kpeter@601
   443
alpar@612
   444
        _list_length = std::max( int(LIST_LENGTH_FACTOR *
kpeter@663
   445
                                     std::sqrt(double(_search_arc_num))),
kpeter@601
   446
                                 MIN_LIST_LENGTH );
kpeter@601
   447
        _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
kpeter@601
   448
                                 MIN_MINOR_LIMIT );
kpeter@601
   449
        _curr_length = _minor_count = 0;
kpeter@601
   450
        _candidates.resize(_list_length);
kpeter@601
   451
      }
kpeter@601
   452
kpeter@601
   453
      /// Find next entering arc
kpeter@601
   454
      bool findEnteringArc() {
kpeter@607
   455
        Cost min, c;
kpeter@727
   456
        int e;
kpeter@601
   457
        if (_curr_length > 0 && _minor_count < _minor_limit) {
kpeter@601
   458
          // Minor iteration: select the best eligible arc from the
kpeter@601
   459
          // current candidate list
kpeter@601
   460
          ++_minor_count;
kpeter@601
   461
          min = 0;
kpeter@601
   462
          for (int i = 0; i < _curr_length; ++i) {
kpeter@601
   463
            e = _candidates[i];
kpeter@601
   464
            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   465
            if (c < min) {
kpeter@601
   466
              min = c;
kpeter@727
   467
              _in_arc = e;
kpeter@601
   468
            }
kpeter@727
   469
            else if (c >= 0) {
kpeter@601
   470
              _candidates[i--] = _candidates[--_curr_length];
kpeter@601
   471
            }
kpeter@601
   472
          }
kpeter@727
   473
          if (min < 0) return true;
kpeter@601
   474
        }
kpeter@601
   475
kpeter@601
   476
        // Major iteration: build a new candidate list
kpeter@601
   477
        min = 0;
kpeter@601
   478
        _curr_length = 0;
kpeter@839
   479
        for (e = _next_arc; e != _search_arc_num; ++e) {
kpeter@601
   480
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   481
          if (c < 0) {
kpeter@601
   482
            _candidates[_curr_length++] = e;
kpeter@601
   483
            if (c < min) {
kpeter@601
   484
              min = c;
kpeter@727
   485
              _in_arc = e;
kpeter@601
   486
            }
kpeter@727
   487
            if (_curr_length == _list_length) goto search_end;
kpeter@601
   488
          }
kpeter@601
   489
        }
kpeter@839
   490
        for (e = 0; e != _next_arc; ++e) {
kpeter@727
   491
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@727
   492
          if (c < 0) {
kpeter@727
   493
            _candidates[_curr_length++] = e;
kpeter@727
   494
            if (c < min) {
kpeter@727
   495
              min = c;
kpeter@727
   496
              _in_arc = e;
kpeter@601
   497
            }
kpeter@727
   498
            if (_curr_length == _list_length) goto search_end;
kpeter@601
   499
          }
kpeter@601
   500
        }
kpeter@601
   501
        if (_curr_length == 0) return false;
alpar@877
   502
alpar@877
   503
      search_end:
kpeter@601
   504
        _minor_count = 1;
kpeter@601
   505
        _next_arc = e;
kpeter@601
   506
        return true;
kpeter@601
   507
      }
kpeter@601
   508
kpeter@601
   509
    }; //class CandidateListPivotRule
kpeter@601
   510
kpeter@601
   511
kpeter@605
   512
    // Implementation of the Altering Candidate List pivot rule
kpeter@601
   513
    class AlteringListPivotRule
kpeter@601
   514
    {
kpeter@601
   515
    private:
kpeter@601
   516
kpeter@601
   517
      // References to the NetworkSimplex class
kpeter@601
   518
      const IntVector  &_source;
kpeter@601
   519
      const IntVector  &_target;
kpeter@607
   520
      const CostVector &_cost;
kpeter@895
   521
      const CharVector &_state;
kpeter@607
   522
      const CostVector &_pi;
kpeter@601
   523
      int &_in_arc;
kpeter@663
   524
      int _search_arc_num;
kpeter@601
   525
kpeter@601
   526
      // Pivot rule data
kpeter@601
   527
      int _block_size, _head_length, _curr_length;
kpeter@601
   528
      int _next_arc;
kpeter@601
   529
      IntVector _candidates;
kpeter@607
   530
      CostVector _cand_cost;
kpeter@601
   531
kpeter@601
   532
      // Functor class to compare arcs during sort of the candidate list
kpeter@601
   533
      class SortFunc
kpeter@601
   534
      {
kpeter@601
   535
      private:
kpeter@607
   536
        const CostVector &_map;
kpeter@601
   537
      public:
kpeter@607
   538
        SortFunc(const CostVector &map) : _map(map) {}
kpeter@601
   539
        bool operator()(int left, int right) {
kpeter@601
   540
          return _map[left] > _map[right];
kpeter@601
   541
        }
kpeter@601
   542
      };
kpeter@601
   543
kpeter@601
   544
      SortFunc _sort_func;
kpeter@601
   545
kpeter@601
   546
    public:
kpeter@601
   547
kpeter@605
   548
      // Constructor
kpeter@601
   549
      AlteringListPivotRule(NetworkSimplex &ns) :
kpeter@603
   550
        _source(ns._source), _target(ns._target),
kpeter@601
   551
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@663
   552
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
kpeter@663
   553
        _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
kpeter@601
   554
      {
kpeter@601
   555
        // The main parameters of the pivot rule
kpeter@727
   556
        const double BLOCK_SIZE_FACTOR = 1.0;
kpeter@601
   557
        const int MIN_BLOCK_SIZE = 10;
kpeter@601
   558
        const double HEAD_LENGTH_FACTOR = 0.1;
kpeter@601
   559
        const int MIN_HEAD_LENGTH = 3;
kpeter@601
   560
alpar@612
   561
        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
kpeter@663
   562
                                    std::sqrt(double(_search_arc_num))),
kpeter@601
   563
                                MIN_BLOCK_SIZE );
kpeter@601
   564
        _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
kpeter@601
   565
                                 MIN_HEAD_LENGTH );
kpeter@601
   566
        _candidates.resize(_head_length + _block_size);
kpeter@601
   567
        _curr_length = 0;
kpeter@601
   568
      }
kpeter@601
   569
kpeter@605
   570
      // Find next entering arc
kpeter@601
   571
      bool findEnteringArc() {
kpeter@601
   572
        // Check the current candidate list
kpeter@601
   573
        int e;
kpeter@895
   574
        Cost c;
kpeter@839
   575
        for (int i = 0; i != _curr_length; ++i) {
kpeter@601
   576
          e = _candidates[i];
kpeter@895
   577
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@895
   578
          if (c < 0) {
kpeter@895
   579
            _cand_cost[e] = c;
kpeter@895
   580
          } else {
kpeter@601
   581
            _candidates[i--] = _candidates[--_curr_length];
kpeter@601
   582
          }
kpeter@601
   583
        }
kpeter@601
   584
kpeter@601
   585
        // Extend the list
kpeter@601
   586
        int cnt = _block_size;
kpeter@601
   587
        int limit = _head_length;
kpeter@601
   588
kpeter@839
   589
        for (e = _next_arc; e != _search_arc_num; ++e) {
kpeter@895
   590
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@895
   591
          if (c < 0) {
kpeter@895
   592
            _cand_cost[e] = c;
kpeter@601
   593
            _candidates[_curr_length++] = e;
kpeter@601
   594
          }
kpeter@601
   595
          if (--cnt == 0) {
kpeter@727
   596
            if (_curr_length > limit) goto search_end;
kpeter@601
   597
            limit = 0;
kpeter@601
   598
            cnt = _block_size;
kpeter@601
   599
          }
kpeter@601
   600
        }
kpeter@839
   601
        for (e = 0; e != _next_arc; ++e) {
kpeter@727
   602
          _cand_cost[e] = _state[e] *
kpeter@727
   603
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@727
   604
          if (_cand_cost[e] < 0) {
kpeter@727
   605
            _candidates[_curr_length++] = e;
kpeter@727
   606
          }
kpeter@727
   607
          if (--cnt == 0) {
kpeter@727
   608
            if (_curr_length > limit) goto search_end;
kpeter@727
   609
            limit = 0;
kpeter@727
   610
            cnt = _block_size;
kpeter@601
   611
          }
kpeter@601
   612
        }
kpeter@601
   613
        if (_curr_length == 0) return false;
alpar@877
   614
kpeter@727
   615
      search_end:
kpeter@601
   616
kpeter@601
   617
        // Make heap of the candidate list (approximating a partial sort)
kpeter@601
   618
        make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
kpeter@601
   619
                   _sort_func );
kpeter@601
   620
kpeter@601
   621
        // Pop the first element of the heap
kpeter@601
   622
        _in_arc = _candidates[0];
kpeter@727
   623
        _next_arc = e;
kpeter@601
   624
        pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
kpeter@601
   625
                  _sort_func );
kpeter@601
   626
        _curr_length = std::min(_head_length, _curr_length - 1);
kpeter@601
   627
        return true;
kpeter@601
   628
      }
kpeter@601
   629
kpeter@601
   630
    }; //class AlteringListPivotRule
kpeter@601
   631
kpeter@601
   632
  public:
kpeter@601
   633
kpeter@605
   634
    /// \brief Constructor.
kpeter@601
   635
    ///
kpeter@609
   636
    /// The constructor of the class.
kpeter@601
   637
    ///
kpeter@603
   638
    /// \param graph The digraph the algorithm runs on.
kpeter@896
   639
    /// \param arc_mixing Indicate if the arcs will be stored in a
alpar@877
   640
    /// mixed order in the internal data structure.
kpeter@896
   641
    /// In general, it leads to similar performance as using the original
kpeter@896
   642
    /// arc order, but it makes the algorithm more robust and in special
kpeter@896
   643
    /// cases, even significantly faster. Therefore, it is enabled by default.
kpeter@896
   644
    NetworkSimplex(const GR& graph, bool arc_mixing = true) :
kpeter@642
   645
      _graph(graph), _node_id(graph), _arc_id(graph),
kpeter@830
   646
      _arc_mixing(arc_mixing),
kpeter@811
   647
      MAX(std::numeric_limits<Value>::max()),
kpeter@641
   648
      INF(std::numeric_limits<Value>::has_infinity ?
kpeter@811
   649
          std::numeric_limits<Value>::infinity() : MAX)
kpeter@605
   650
    {
kpeter@812
   651
      // Check the number types
kpeter@641
   652
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
kpeter@640
   653
        "The flow type of NetworkSimplex must be signed");
kpeter@640
   654
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
kpeter@640
   655
        "The cost type of NetworkSimplex must be signed");
kpeter@601
   656
kpeter@830
   657
      // Reset data structures
kpeter@729
   658
      reset();
kpeter@601
   659
    }
kpeter@601
   660
kpeter@609
   661
    /// \name Parameters
kpeter@609
   662
    /// The parameters of the algorithm can be specified using these
kpeter@609
   663
    /// functions.
kpeter@609
   664
kpeter@609
   665
    /// @{
kpeter@609
   666
kpeter@605
   667
    /// \brief Set the lower bounds on the arcs.
kpeter@605
   668
    ///
kpeter@605
   669
    /// This function sets the lower bounds on the arcs.
kpeter@640
   670
    /// If it is not used before calling \ref run(), the lower bounds
kpeter@640
   671
    /// will be set to zero on all arcs.
kpeter@605
   672
    ///
kpeter@605
   673
    /// \param map An arc map storing the lower bounds.
kpeter@641
   674
    /// Its \c Value type must be convertible to the \c Value type
kpeter@605
   675
    /// of the algorithm.
kpeter@605
   676
    ///
kpeter@605
   677
    /// \return <tt>(*this)</tt>
kpeter@640
   678
    template <typename LowerMap>
kpeter@640
   679
    NetworkSimplex& lowerMap(const LowerMap& map) {
kpeter@642
   680
      _have_lower = true;
kpeter@605
   681
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@642
   682
        _lower[_arc_id[a]] = map[a];
kpeter@605
   683
      }
kpeter@605
   684
      return *this;
kpeter@605
   685
    }
kpeter@605
   686
kpeter@605
   687
    /// \brief Set the upper bounds (capacities) on the arcs.
kpeter@605
   688
    ///
kpeter@605
   689
    /// This function sets the upper bounds (capacities) on the arcs.
kpeter@640
   690
    /// If it is not used before calling \ref run(), the upper bounds
kpeter@640
   691
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
kpeter@812
   692
    /// unbounded from above).
kpeter@605
   693
    ///
kpeter@605
   694
    /// \param map An arc map storing the upper bounds.
kpeter@641
   695
    /// Its \c Value type must be convertible to the \c Value type
kpeter@605
   696
    /// of the algorithm.
kpeter@605
   697
    ///
kpeter@605
   698
    /// \return <tt>(*this)</tt>
kpeter@640
   699
    template<typename UpperMap>
kpeter@640
   700
    NetworkSimplex& upperMap(const UpperMap& map) {
kpeter@605
   701
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@642
   702
        _upper[_arc_id[a]] = map[a];
kpeter@605
   703
      }
kpeter@605
   704
      return *this;
kpeter@605
   705
    }
kpeter@605
   706
kpeter@605
   707
    /// \brief Set the costs of the arcs.
kpeter@605
   708
    ///
kpeter@605
   709
    /// This function sets the costs of the arcs.
kpeter@605
   710
    /// If it is not used before calling \ref run(), the costs
kpeter@605
   711
    /// will be set to \c 1 on all arcs.
kpeter@605
   712
    ///
kpeter@605
   713
    /// \param map An arc map storing the costs.
kpeter@607
   714
    /// Its \c Value type must be convertible to the \c Cost type
kpeter@605
   715
    /// of the algorithm.
kpeter@605
   716
    ///
kpeter@605
   717
    /// \return <tt>(*this)</tt>
kpeter@640
   718
    template<typename CostMap>
kpeter@640
   719
    NetworkSimplex& costMap(const CostMap& map) {
kpeter@605
   720
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@642
   721
        _cost[_arc_id[a]] = map[a];
kpeter@605
   722
      }
kpeter@605
   723
      return *this;
kpeter@605
   724
    }
kpeter@605
   725
kpeter@605
   726
    /// \brief Set the supply values of the nodes.
kpeter@605
   727
    ///
kpeter@605
   728
    /// This function sets the supply values of the nodes.
kpeter@605
   729
    /// If neither this function nor \ref stSupply() is used before
kpeter@605
   730
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@605
   731
    ///
kpeter@605
   732
    /// \param map A node map storing the supply values.
kpeter@641
   733
    /// Its \c Value type must be convertible to the \c Value type
kpeter@605
   734
    /// of the algorithm.
kpeter@605
   735
    ///
kpeter@605
   736
    /// \return <tt>(*this)</tt>
kpeter@640
   737
    template<typename SupplyMap>
kpeter@640
   738
    NetworkSimplex& supplyMap(const SupplyMap& map) {
kpeter@605
   739
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@642
   740
        _supply[_node_id[n]] = map[n];
kpeter@605
   741
      }
kpeter@605
   742
      return *this;
kpeter@605
   743
    }
kpeter@605
   744
kpeter@605
   745
    /// \brief Set single source and target nodes and a supply value.
kpeter@605
   746
    ///
kpeter@605
   747
    /// This function sets a single source node and a single target node
kpeter@605
   748
    /// and the required flow value.
kpeter@605
   749
    /// If neither this function nor \ref supplyMap() is used before
kpeter@605
   750
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@605
   751
    ///
kpeter@640
   752
    /// Using this function has the same effect as using \ref supplyMap()
kpeter@640
   753
    /// with such a map in which \c k is assigned to \c s, \c -k is
kpeter@640
   754
    /// assigned to \c t and all other nodes have zero supply value.
kpeter@640
   755
    ///
kpeter@605
   756
    /// \param s The source node.
kpeter@605
   757
    /// \param t The target node.
kpeter@605
   758
    /// \param k The required amount of flow from node \c s to node \c t
kpeter@605
   759
    /// (i.e. the supply of \c s and the demand of \c t).
kpeter@605
   760
    ///
kpeter@605
   761
    /// \return <tt>(*this)</tt>
kpeter@641
   762
    NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
kpeter@642
   763
      for (int i = 0; i != _node_num; ++i) {
kpeter@642
   764
        _supply[i] = 0;
kpeter@642
   765
      }
kpeter@642
   766
      _supply[_node_id[s]] =  k;
kpeter@642
   767
      _supply[_node_id[t]] = -k;
kpeter@605
   768
      return *this;
kpeter@605
   769
    }
alpar@877
   770
kpeter@640
   771
    /// \brief Set the type of the supply constraints.
kpeter@609
   772
    ///
kpeter@640
   773
    /// This function sets the type of the supply/demand constraints.
kpeter@640
   774
    /// If it is not used before calling \ref run(), the \ref GEQ supply
kpeter@609
   775
    /// type will be used.
kpeter@609
   776
    ///
kpeter@786
   777
    /// For more information, see \ref SupplyType.
kpeter@609
   778
    ///
kpeter@609
   779
    /// \return <tt>(*this)</tt>
kpeter@640
   780
    NetworkSimplex& supplyType(SupplyType supply_type) {
kpeter@640
   781
      _stype = supply_type;
kpeter@609
   782
      return *this;
kpeter@609
   783
    }
kpeter@605
   784
kpeter@609
   785
    /// @}
kpeter@601
   786
kpeter@605
   787
    /// \name Execution Control
kpeter@605
   788
    /// The algorithm can be executed using \ref run().
kpeter@605
   789
kpeter@601
   790
    /// @{
kpeter@601
   791
kpeter@601
   792
    /// \brief Run the algorithm.
kpeter@601
   793
    ///
kpeter@601
   794
    /// This function runs the algorithm.
kpeter@609
   795
    /// The paramters can be specified using functions \ref lowerMap(),
alpar@877
   796
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
kpeter@642
   797
    /// \ref supplyType().
kpeter@609
   798
    /// For example,
kpeter@605
   799
    /// \code
kpeter@605
   800
    ///   NetworkSimplex<ListDigraph> ns(graph);
kpeter@640
   801
    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@605
   802
    ///     .supplyMap(sup).run();
kpeter@605
   803
    /// \endcode
kpeter@601
   804
    ///
kpeter@830
   805
    /// This function can be called more than once. All the given parameters
kpeter@830
   806
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
kpeter@830
   807
    /// is used, thus only the modified parameters have to be set again.
kpeter@830
   808
    /// If the underlying digraph was also modified after the construction
kpeter@830
   809
    /// of the class (or the last \ref reset() call), then the \ref reset()
kpeter@830
   810
    /// function must be called.
kpeter@606
   811
    ///
kpeter@605
   812
    /// \param pivot_rule The pivot rule that will be used during the
kpeter@786
   813
    /// algorithm. For more information, see \ref PivotRule.
kpeter@601
   814
    ///
kpeter@640
   815
    /// \return \c INFEASIBLE if no feasible flow exists,
kpeter@640
   816
    /// \n \c OPTIMAL if the problem has optimal solution
kpeter@640
   817
    /// (i.e. it is feasible and bounded), and the algorithm has found
kpeter@640
   818
    /// optimal flow and node potentials (primal and dual solutions),
kpeter@640
   819
    /// \n \c UNBOUNDED if the objective function of the problem is
kpeter@640
   820
    /// unbounded, i.e. there is a directed cycle having negative total
kpeter@640
   821
    /// cost and infinite upper bound.
kpeter@640
   822
    ///
kpeter@640
   823
    /// \see ProblemType, PivotRule
kpeter@830
   824
    /// \see resetParams(), reset()
kpeter@640
   825
    ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
kpeter@640
   826
      if (!init()) return INFEASIBLE;
kpeter@640
   827
      return start(pivot_rule);
kpeter@601
   828
    }
kpeter@601
   829
kpeter@606
   830
    /// \brief Reset all the parameters that have been given before.
kpeter@606
   831
    ///
kpeter@606
   832
    /// This function resets all the paramaters that have been given
kpeter@609
   833
    /// before using functions \ref lowerMap(), \ref upperMap(),
kpeter@642
   834
    /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
kpeter@606
   835
    ///
kpeter@830
   836
    /// It is useful for multiple \ref run() calls. Basically, all the given
kpeter@830
   837
    /// parameters are kept for the next \ref run() call, unless
kpeter@830
   838
    /// \ref resetParams() or \ref reset() is used.
kpeter@830
   839
    /// If the underlying digraph was also modified after the construction
kpeter@830
   840
    /// of the class or the last \ref reset() call, then the \ref reset()
kpeter@830
   841
    /// function must be used, otherwise \ref resetParams() is sufficient.
kpeter@606
   842
    ///
kpeter@606
   843
    /// For example,
kpeter@606
   844
    /// \code
kpeter@606
   845
    ///   NetworkSimplex<ListDigraph> ns(graph);
kpeter@606
   846
    ///
kpeter@606
   847
    ///   // First run
kpeter@640
   848
    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@606
   849
    ///     .supplyMap(sup).run();
kpeter@606
   850
    ///
kpeter@830
   851
    ///   // Run again with modified cost map (resetParams() is not called,
kpeter@606
   852
    ///   // so only the cost map have to be set again)
kpeter@606
   853
    ///   cost[e] += 100;
kpeter@606
   854
    ///   ns.costMap(cost).run();
kpeter@606
   855
    ///
kpeter@830
   856
    ///   // Run again from scratch using resetParams()
kpeter@606
   857
    ///   // (the lower bounds will be set to zero on all arcs)
kpeter@830
   858
    ///   ns.resetParams();
kpeter@640
   859
    ///   ns.upperMap(capacity).costMap(cost)
kpeter@606
   860
    ///     .supplyMap(sup).run();
kpeter@606
   861
    /// \endcode
kpeter@606
   862
    ///
kpeter@606
   863
    /// \return <tt>(*this)</tt>
kpeter@830
   864
    ///
kpeter@830
   865
    /// \see reset(), run()
kpeter@830
   866
    NetworkSimplex& resetParams() {
kpeter@642
   867
      for (int i = 0; i != _node_num; ++i) {
kpeter@642
   868
        _supply[i] = 0;
kpeter@642
   869
      }
kpeter@642
   870
      for (int i = 0; i != _arc_num; ++i) {
kpeter@642
   871
        _lower[i] = 0;
kpeter@642
   872
        _upper[i] = INF;
kpeter@642
   873
        _cost[i] = 1;
kpeter@642
   874
      }
kpeter@642
   875
      _have_lower = false;
kpeter@640
   876
      _stype = GEQ;
kpeter@606
   877
      return *this;
kpeter@606
   878
    }
kpeter@606
   879
kpeter@830
   880
    /// \brief Reset the internal data structures and all the parameters
kpeter@830
   881
    /// that have been given before.
kpeter@830
   882
    ///
kpeter@830
   883
    /// This function resets the internal data structures and all the
kpeter@830
   884
    /// paramaters that have been given before using functions \ref lowerMap(),
kpeter@830
   885
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
kpeter@830
   886
    /// \ref supplyType().
kpeter@830
   887
    ///
kpeter@830
   888
    /// It is useful for multiple \ref run() calls. Basically, all the given
kpeter@830
   889
    /// parameters are kept for the next \ref run() call, unless
kpeter@830
   890
    /// \ref resetParams() or \ref reset() is used.
kpeter@830
   891
    /// If the underlying digraph was also modified after the construction
kpeter@830
   892
    /// of the class or the last \ref reset() call, then the \ref reset()
kpeter@830
   893
    /// function must be used, otherwise \ref resetParams() is sufficient.
kpeter@830
   894
    ///
kpeter@830
   895
    /// See \ref resetParams() for examples.
kpeter@830
   896
    ///
kpeter@830
   897
    /// \return <tt>(*this)</tt>
kpeter@830
   898
    ///
kpeter@830
   899
    /// \see resetParams(), run()
kpeter@830
   900
    NetworkSimplex& reset() {
kpeter@830
   901
      // Resize vectors
kpeter@830
   902
      _node_num = countNodes(_graph);
kpeter@830
   903
      _arc_num = countArcs(_graph);
kpeter@830
   904
      int all_node_num = _node_num + 1;
kpeter@830
   905
      int max_arc_num = _arc_num + 2 * _node_num;
kpeter@830
   906
kpeter@830
   907
      _source.resize(max_arc_num);
kpeter@830
   908
      _target.resize(max_arc_num);
kpeter@830
   909
kpeter@830
   910
      _lower.resize(_arc_num);
kpeter@830
   911
      _upper.resize(_arc_num);
kpeter@830
   912
      _cap.resize(max_arc_num);
kpeter@830
   913
      _cost.resize(max_arc_num);
kpeter@830
   914
      _supply.resize(all_node_num);
kpeter@830
   915
      _flow.resize(max_arc_num);
kpeter@830
   916
      _pi.resize(all_node_num);
kpeter@830
   917
kpeter@830
   918
      _parent.resize(all_node_num);
kpeter@830
   919
      _pred.resize(all_node_num);
kpeter@895
   920
      _pred_dir.resize(all_node_num);
kpeter@830
   921
      _thread.resize(all_node_num);
kpeter@830
   922
      _rev_thread.resize(all_node_num);
kpeter@830
   923
      _succ_num.resize(all_node_num);
kpeter@830
   924
      _last_succ.resize(all_node_num);
kpeter@830
   925
      _state.resize(max_arc_num);
kpeter@830
   926
kpeter@830
   927
      // Copy the graph
kpeter@830
   928
      int i = 0;
kpeter@830
   929
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@830
   930
        _node_id[n] = i;
kpeter@830
   931
      }
kpeter@830
   932
      if (_arc_mixing) {
kpeter@830
   933
        // Store the arcs in a mixed order
kpeter@896
   934
        const int skip = std::max(_arc_num / _node_num, 3);
kpeter@830
   935
        int i = 0, j = 0;
kpeter@830
   936
        for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@830
   937
          _arc_id[a] = i;
kpeter@830
   938
          _source[i] = _node_id[_graph.source(a)];
kpeter@830
   939
          _target[i] = _node_id[_graph.target(a)];
kpeter@896
   940
          if ((i += skip) >= _arc_num) i = ++j;
kpeter@830
   941
        }
kpeter@830
   942
      } else {
kpeter@830
   943
        // Store the arcs in the original order
kpeter@830
   944
        int i = 0;
kpeter@830
   945
        for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
kpeter@830
   946
          _arc_id[a] = i;
kpeter@830
   947
          _source[i] = _node_id[_graph.source(a)];
kpeter@830
   948
          _target[i] = _node_id[_graph.target(a)];
kpeter@830
   949
        }
kpeter@830
   950
      }
alpar@877
   951
kpeter@830
   952
      // Reset parameters
kpeter@830
   953
      resetParams();
kpeter@830
   954
      return *this;
kpeter@830
   955
    }
alpar@877
   956
kpeter@601
   957
    /// @}
kpeter@601
   958
kpeter@601
   959
    /// \name Query Functions
kpeter@601
   960
    /// The results of the algorithm can be obtained using these
kpeter@601
   961
    /// functions.\n
kpeter@605
   962
    /// The \ref run() function must be called before using them.
kpeter@605
   963
kpeter@601
   964
    /// @{
kpeter@601
   965
kpeter@605
   966
    /// \brief Return the total cost of the found flow.
kpeter@605
   967
    ///
kpeter@605
   968
    /// This function returns the total cost of the found flow.
kpeter@640
   969
    /// Its complexity is O(e).
kpeter@605
   970
    ///
kpeter@605
   971
    /// \note The return type of the function can be specified as a
kpeter@605
   972
    /// template parameter. For example,
kpeter@605
   973
    /// \code
kpeter@605
   974
    ///   ns.totalCost<double>();
kpeter@605
   975
    /// \endcode
kpeter@607
   976
    /// It is useful if the total cost cannot be stored in the \c Cost
kpeter@605
   977
    /// type of the algorithm, which is the default return type of the
kpeter@605
   978
    /// function.
kpeter@605
   979
    ///
kpeter@605
   980
    /// \pre \ref run() must be called before using this function.
kpeter@642
   981
    template <typename Number>
kpeter@642
   982
    Number totalCost() const {
kpeter@642
   983
      Number c = 0;
kpeter@642
   984
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@642
   985
        int i = _arc_id[a];
kpeter@642
   986
        c += Number(_flow[i]) * Number(_cost[i]);
kpeter@605
   987
      }
kpeter@605
   988
      return c;
kpeter@605
   989
    }
kpeter@605
   990
kpeter@605
   991
#ifndef DOXYGEN
kpeter@607
   992
    Cost totalCost() const {
kpeter@607
   993
      return totalCost<Cost>();
kpeter@605
   994
    }
kpeter@605
   995
#endif
kpeter@605
   996
kpeter@605
   997
    /// \brief Return the flow on the given arc.
kpeter@605
   998
    ///
kpeter@605
   999
    /// This function returns the flow on the given arc.
kpeter@605
  1000
    ///
kpeter@605
  1001
    /// \pre \ref run() must be called before using this function.
kpeter@641
  1002
    Value flow(const Arc& a) const {
kpeter@642
  1003
      return _flow[_arc_id[a]];
kpeter@605
  1004
    }
kpeter@605
  1005
kpeter@642
  1006
    /// \brief Return the flow map (the primal solution).
kpeter@601
  1007
    ///
kpeter@642
  1008
    /// This function copies the flow value on each arc into the given
kpeter@642
  1009
    /// map. The \c Value type of the algorithm must be convertible to
kpeter@642
  1010
    /// the \c Value type of the map.
kpeter@601
  1011
    ///
kpeter@601
  1012
    /// \pre \ref run() must be called before using this function.
kpeter@642
  1013
    template <typename FlowMap>
kpeter@642
  1014
    void flowMap(FlowMap &map) const {
kpeter@642
  1015
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@642
  1016
        map.set(a, _flow[_arc_id[a]]);
kpeter@642
  1017
      }
kpeter@601
  1018
    }
kpeter@601
  1019
kpeter@605
  1020
    /// \brief Return the potential (dual value) of the given node.
kpeter@605
  1021
    ///
kpeter@605
  1022
    /// This function returns the potential (dual value) of the
kpeter@605
  1023
    /// given node.
kpeter@605
  1024
    ///
kpeter@605
  1025
    /// \pre \ref run() must be called before using this function.
kpeter@607
  1026
    Cost potential(const Node& n) const {
kpeter@642
  1027
      return _pi[_node_id[n]];
kpeter@605
  1028
    }
kpeter@605
  1029
kpeter@642
  1030
    /// \brief Return the potential map (the dual solution).
kpeter@601
  1031
    ///
kpeter@642
  1032
    /// This function copies the potential (dual value) of each node
kpeter@642
  1033
    /// into the given map.
kpeter@642
  1034
    /// The \c Cost type of the algorithm must be convertible to the
kpeter@642
  1035
    /// \c Value type of the map.
kpeter@601
  1036
    ///
kpeter@601
  1037
    /// \pre \ref run() must be called before using this function.
kpeter@642
  1038
    template <typename PotentialMap>
kpeter@642
  1039
    void potentialMap(PotentialMap &map) const {
kpeter@642
  1040
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@642
  1041
        map.set(n, _pi[_node_id[n]]);
kpeter@642
  1042
      }
kpeter@601
  1043
    }
kpeter@601
  1044
kpeter@601
  1045
    /// @}
kpeter@601
  1046
kpeter@601
  1047
  private:
kpeter@601
  1048
kpeter@601
  1049
    // Initialize internal data structures
kpeter@601
  1050
    bool init() {
kpeter@605
  1051
      if (_node_num == 0) return false;
kpeter@601
  1052
kpeter@642
  1053
      // Check the sum of supply values
kpeter@642
  1054
      _sum_supply = 0;
kpeter@642
  1055
      for (int i = 0; i != _node_num; ++i) {
kpeter@642
  1056
        _sum_supply += _supply[i];
kpeter@642
  1057
      }
alpar@643
  1058
      if ( !((_stype == GEQ && _sum_supply <= 0) ||
alpar@643
  1059
             (_stype == LEQ && _sum_supply >= 0)) ) return false;
kpeter@601
  1060
kpeter@642
  1061
      // Remove non-zero lower bounds
kpeter@642
  1062
      if (_have_lower) {
kpeter@642
  1063
        for (int i = 0; i != _arc_num; ++i) {
kpeter@642
  1064
          Value c = _lower[i];
kpeter@642
  1065
          if (c >= 0) {
kpeter@811
  1066
            _cap[i] = _upper[i] < MAX ? _upper[i] - c : INF;
kpeter@642
  1067
          } else {
kpeter@811
  1068
            _cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF;
kpeter@642
  1069
          }
kpeter@642
  1070
          _supply[_source[i]] -= c;
kpeter@642
  1071
          _supply[_target[i]] += c;
kpeter@642
  1072
        }
kpeter@642
  1073
      } else {
kpeter@642
  1074
        for (int i = 0; i != _arc_num; ++i) {
kpeter@642
  1075
          _cap[i] = _upper[i];
kpeter@642
  1076
        }
kpeter@605
  1077
      }
kpeter@601
  1078
kpeter@609
  1079
      // Initialize artifical cost
kpeter@640
  1080
      Cost ART_COST;
kpeter@609
  1081
      if (std::numeric_limits<Cost>::is_exact) {
kpeter@663
  1082
        ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
kpeter@609
  1083
      } else {
kpeter@888
  1084
        ART_COST = 0;
kpeter@609
  1085
        for (int i = 0; i != _arc_num; ++i) {
kpeter@640
  1086
          if (_cost[i] > ART_COST) ART_COST = _cost[i];
kpeter@609
  1087
        }
kpeter@640
  1088
        ART_COST = (ART_COST + 1) * _node_num;
kpeter@609
  1089
      }
kpeter@609
  1090
kpeter@642
  1091
      // Initialize arc maps
kpeter@642
  1092
      for (int i = 0; i != _arc_num; ++i) {
kpeter@642
  1093
        _flow[i] = 0;
kpeter@642
  1094
        _state[i] = STATE_LOWER;
kpeter@642
  1095
      }
alpar@877
  1096
kpeter@601
  1097
      // Set data for the artificial root node
kpeter@601
  1098
      _root = _node_num;
kpeter@601
  1099
      _parent[_root] = -1;
kpeter@601
  1100
      _pred[_root] = -1;
kpeter@601
  1101
      _thread[_root] = 0;
kpeter@604
  1102
      _rev_thread[0] = _root;
kpeter@642
  1103
      _succ_num[_root] = _node_num + 1;
kpeter@604
  1104
      _last_succ[_root] = _root - 1;
kpeter@640
  1105
      _supply[_root] = -_sum_supply;
kpeter@663
  1106
      _pi[_root] = 0;
kpeter@601
  1107
kpeter@601
  1108
      // Add artificial arcs and initialize the spanning tree data structure
kpeter@663
  1109
      if (_sum_supply == 0) {
kpeter@663
  1110
        // EQ supply constraints
kpeter@663
  1111
        _search_arc_num = _arc_num;
kpeter@663
  1112
        _all_arc_num = _arc_num + _node_num;
kpeter@663
  1113
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
kpeter@663
  1114
          _parent[u] = _root;
kpeter@663
  1115
          _pred[u] = e;
kpeter@663
  1116
          _thread[u] = u + 1;
kpeter@663
  1117
          _rev_thread[u + 1] = u;
kpeter@663
  1118
          _succ_num[u] = 1;
kpeter@663
  1119
          _last_succ[u] = u;
kpeter@663
  1120
          _cap[e] = INF;
kpeter@663
  1121
          _state[e] = STATE_TREE;
kpeter@663
  1122
          if (_supply[u] >= 0) {
kpeter@895
  1123
            _pred_dir[u] = DIR_UP;
kpeter@663
  1124
            _pi[u] = 0;
kpeter@663
  1125
            _source[e] = u;
kpeter@663
  1126
            _target[e] = _root;
kpeter@663
  1127
            _flow[e] = _supply[u];
kpeter@663
  1128
            _cost[e] = 0;
kpeter@663
  1129
          } else {
kpeter@895
  1130
            _pred_dir[u] = DIR_DOWN;
kpeter@663
  1131
            _pi[u] = ART_COST;
kpeter@663
  1132
            _source[e] = _root;
kpeter@663
  1133
            _target[e] = u;
kpeter@663
  1134
            _flow[e] = -_supply[u];
kpeter@663
  1135
            _cost[e] = ART_COST;
kpeter@663
  1136
          }
kpeter@601
  1137
        }
kpeter@601
  1138
      }
kpeter@663
  1139
      else if (_sum_supply > 0) {
kpeter@663
  1140
        // LEQ supply constraints
kpeter@663
  1141
        _search_arc_num = _arc_num + _node_num;
kpeter@663
  1142
        int f = _arc_num + _node_num;
kpeter@663
  1143
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
kpeter@663
  1144
          _parent[u] = _root;
kpeter@663
  1145
          _thread[u] = u + 1;
kpeter@663
  1146
          _rev_thread[u + 1] = u;
kpeter@663
  1147
          _succ_num[u] = 1;
kpeter@663
  1148
          _last_succ[u] = u;
kpeter@663
  1149
          if (_supply[u] >= 0) {
kpeter@895
  1150
            _pred_dir[u] = DIR_UP;
kpeter@663
  1151
            _pi[u] = 0;
kpeter@663
  1152
            _pred[u] = e;
kpeter@663
  1153
            _source[e] = u;
kpeter@663
  1154
            _target[e] = _root;
kpeter@663
  1155
            _cap[e] = INF;
kpeter@663
  1156
            _flow[e] = _supply[u];
kpeter@663
  1157
            _cost[e] = 0;
kpeter@663
  1158
            _state[e] = STATE_TREE;
kpeter@663
  1159
          } else {
kpeter@895
  1160
            _pred_dir[u] = DIR_DOWN;
kpeter@663
  1161
            _pi[u] = ART_COST;
kpeter@663
  1162
            _pred[u] = f;
kpeter@663
  1163
            _source[f] = _root;
kpeter@663
  1164
            _target[f] = u;
kpeter@663
  1165
            _cap[f] = INF;
kpeter@663
  1166
            _flow[f] = -_supply[u];
kpeter@663
  1167
            _cost[f] = ART_COST;
kpeter@663
  1168
            _state[f] = STATE_TREE;
kpeter@663
  1169
            _source[e] = u;
kpeter@663
  1170
            _target[e] = _root;
kpeter@663
  1171
            _cap[e] = INF;
kpeter@663
  1172
            _flow[e] = 0;
kpeter@663
  1173
            _cost[e] = 0;
kpeter@663
  1174
            _state[e] = STATE_LOWER;
kpeter@663
  1175
            ++f;
kpeter@663
  1176
          }
kpeter@663
  1177
        }
kpeter@663
  1178
        _all_arc_num = f;
kpeter@663
  1179
      }
kpeter@663
  1180
      else {
kpeter@663
  1181
        // GEQ supply constraints
kpeter@663
  1182
        _search_arc_num = _arc_num + _node_num;
kpeter@663
  1183
        int f = _arc_num + _node_num;
kpeter@663
  1184
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
kpeter@663
  1185
          _parent[u] = _root;
kpeter@663
  1186
          _thread[u] = u + 1;
kpeter@663
  1187
          _rev_thread[u + 1] = u;
kpeter@663
  1188
          _succ_num[u] = 1;
kpeter@663
  1189
          _last_succ[u] = u;
kpeter@663
  1190
          if (_supply[u] <= 0) {
kpeter@895
  1191
            _pred_dir[u] = DIR_DOWN;
kpeter@663
  1192
            _pi[u] = 0;
kpeter@663
  1193
            _pred[u] = e;
kpeter@663
  1194
            _source[e] = _root;
kpeter@663
  1195
            _target[e] = u;
kpeter@663
  1196
            _cap[e] = INF;
kpeter@663
  1197
            _flow[e] = -_supply[u];
kpeter@663
  1198
            _cost[e] = 0;
kpeter@663
  1199
            _state[e] = STATE_TREE;
kpeter@663
  1200
          } else {
kpeter@895
  1201
            _pred_dir[u] = DIR_UP;
kpeter@663
  1202
            _pi[u] = -ART_COST;
kpeter@663
  1203
            _pred[u] = f;
kpeter@663
  1204
            _source[f] = u;
kpeter@663
  1205
            _target[f] = _root;
kpeter@663
  1206
            _cap[f] = INF;
kpeter@663
  1207
            _flow[f] = _supply[u];
kpeter@663
  1208
            _state[f] = STATE_TREE;
kpeter@663
  1209
            _cost[f] = ART_COST;
kpeter@663
  1210
            _source[e] = _root;
kpeter@663
  1211
            _target[e] = u;
kpeter@663
  1212
            _cap[e] = INF;
kpeter@663
  1213
            _flow[e] = 0;
kpeter@663
  1214
            _cost[e] = 0;
kpeter@663
  1215
            _state[e] = STATE_LOWER;
kpeter@663
  1216
            ++f;
kpeter@663
  1217
          }
kpeter@663
  1218
        }
kpeter@663
  1219
        _all_arc_num = f;
kpeter@663
  1220
      }
kpeter@601
  1221
kpeter@601
  1222
      return true;
kpeter@601
  1223
    }
kpeter@601
  1224
kpeter@601
  1225
    // Find the join node
kpeter@601
  1226
    void findJoinNode() {
kpeter@603
  1227
      int u = _source[in_arc];
kpeter@603
  1228
      int v = _target[in_arc];
kpeter@601
  1229
      while (u != v) {
kpeter@604
  1230
        if (_succ_num[u] < _succ_num[v]) {
kpeter@604
  1231
          u = _parent[u];
kpeter@604
  1232
        } else {
kpeter@604
  1233
          v = _parent[v];
kpeter@604
  1234
        }
kpeter@601
  1235
      }
kpeter@601
  1236
      join = u;
kpeter@601
  1237
    }
kpeter@601
  1238
kpeter@601
  1239
    // Find the leaving arc of the cycle and returns true if the
kpeter@601
  1240
    // leaving arc is not the same as the entering arc
kpeter@601
  1241
    bool findLeavingArc() {
kpeter@601
  1242
      // Initialize first and second nodes according to the direction
kpeter@601
  1243
      // of the cycle
kpeter@895
  1244
      int first, second;
kpeter@603
  1245
      if (_state[in_arc] == STATE_LOWER) {
kpeter@603
  1246
        first  = _source[in_arc];
kpeter@603
  1247
        second = _target[in_arc];
kpeter@601
  1248
      } else {
kpeter@603
  1249
        first  = _target[in_arc];
kpeter@603
  1250
        second = _source[in_arc];
kpeter@601
  1251
      }
kpeter@603
  1252
      delta = _cap[in_arc];
kpeter@601
  1253
      int result = 0;
kpeter@895
  1254
      Value c, d;
kpeter@601
  1255
      int e;
kpeter@601
  1256
kpeter@895
  1257
      // Search the cycle form the first node to the join node
kpeter@601
  1258
      for (int u = first; u != join; u = _parent[u]) {
kpeter@601
  1259
        e = _pred[u];
kpeter@895
  1260
        d = _flow[e];
kpeter@895
  1261
        if (_pred_dir[u] == DIR_DOWN) {
kpeter@895
  1262
          c = _cap[e];
kpeter@895
  1263
          d = c >= MAX ? INF : c - d;
kpeter@895
  1264
        }
kpeter@601
  1265
        if (d < delta) {
kpeter@601
  1266
          delta = d;
kpeter@601
  1267
          u_out = u;
kpeter@601
  1268
          result = 1;
kpeter@601
  1269
        }
kpeter@601
  1270
      }
kpeter@895
  1271
kpeter@895
  1272
      // Search the cycle form the second node to the join node
kpeter@601
  1273
      for (int u = second; u != join; u = _parent[u]) {
kpeter@601
  1274
        e = _pred[u];
kpeter@895
  1275
        d = _flow[e];
kpeter@895
  1276
        if (_pred_dir[u] == DIR_UP) {
kpeter@895
  1277
          c = _cap[e];
kpeter@895
  1278
          d = c >= MAX ? INF : c - d;
kpeter@895
  1279
        }
kpeter@601
  1280
        if (d <= delta) {
kpeter@601
  1281
          delta = d;
kpeter@601
  1282
          u_out = u;
kpeter@601
  1283
          result = 2;
kpeter@601
  1284
        }
kpeter@601
  1285
      }
kpeter@601
  1286
kpeter@601
  1287
      if (result == 1) {
kpeter@601
  1288
        u_in = first;
kpeter@601
  1289
        v_in = second;
kpeter@601
  1290
      } else {
kpeter@601
  1291
        u_in = second;
kpeter@601
  1292
        v_in = first;
kpeter@601
  1293
      }
kpeter@601
  1294
      return result != 0;
kpeter@601
  1295
    }
kpeter@601
  1296
kpeter@601
  1297
    // Change _flow and _state vectors
kpeter@601
  1298
    void changeFlow(bool change) {
kpeter@601
  1299
      // Augment along the cycle
kpeter@601
  1300
      if (delta > 0) {
kpeter@641
  1301
        Value val = _state[in_arc] * delta;
kpeter@603
  1302
        _flow[in_arc] += val;
kpeter@603
  1303
        for (int u = _source[in_arc]; u != join; u = _parent[u]) {
kpeter@895
  1304
          _flow[_pred[u]] -= _pred_dir[u] * val;
kpeter@601
  1305
        }
kpeter@603
  1306
        for (int u = _target[in_arc]; u != join; u = _parent[u]) {
kpeter@895
  1307
          _flow[_pred[u]] += _pred_dir[u] * val;
kpeter@601
  1308
        }
kpeter@601
  1309
      }
kpeter@601
  1310
      // Update the state of the entering and leaving arcs
kpeter@601
  1311
      if (change) {
kpeter@603
  1312
        _state[in_arc] = STATE_TREE;
kpeter@601
  1313
        _state[_pred[u_out]] =
kpeter@601
  1314
          (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
kpeter@601
  1315
      } else {
kpeter@603
  1316
        _state[in_arc] = -_state[in_arc];
kpeter@601
  1317
      }
kpeter@601
  1318
    }
kpeter@601
  1319
kpeter@604
  1320
    // Update the tree structure
kpeter@604
  1321
    void updateTreeStructure() {
kpeter@604
  1322
      int old_rev_thread = _rev_thread[u_out];
kpeter@604
  1323
      int old_succ_num = _succ_num[u_out];
kpeter@604
  1324
      int old_last_succ = _last_succ[u_out];
kpeter@601
  1325
      v_out = _parent[u_out];
kpeter@601
  1326
kpeter@895
  1327
      // Check if u_in and u_out coincide
kpeter@895
  1328
      if (u_in == u_out) {
kpeter@895
  1329
        // Update _parent, _pred, _pred_dir
kpeter@895
  1330
        _parent[u_in] = v_in;
kpeter@895
  1331
        _pred[u_in] = in_arc;
kpeter@895
  1332
        _pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN;
kpeter@604
  1333
kpeter@895
  1334
        // Update _thread and _rev_thread
kpeter@895
  1335
        if (_thread[v_in] != u_out) {
kpeter@895
  1336
          int after = _thread[old_last_succ];
kpeter@895
  1337
          _thread[old_rev_thread] = after;
kpeter@895
  1338
          _rev_thread[after] = old_rev_thread;
kpeter@895
  1339
          after = _thread[v_in];
kpeter@895
  1340
          _thread[v_in] = u_out;
kpeter@895
  1341
          _rev_thread[u_out] = v_in;
kpeter@895
  1342
          _thread[old_last_succ] = after;
kpeter@895
  1343
          _rev_thread[after] = old_last_succ;
kpeter@895
  1344
        }
kpeter@604
  1345
      } else {
kpeter@895
  1346
        // Handle the case when old_rev_thread equals to v_in
kpeter@895
  1347
        // (it also means that join and v_out coincide)
kpeter@895
  1348
        int thread_continue = old_rev_thread == v_in ?
kpeter@895
  1349
          _thread[old_last_succ] : _thread[v_in];
kpeter@601
  1350
kpeter@895
  1351
        // Update _thread and _parent along the stem nodes (i.e. the nodes
kpeter@895
  1352
        // between u_in and u_out, whose parent have to be changed)
kpeter@895
  1353
        int stem = u_in;              // the current stem node
kpeter@895
  1354
        int par_stem = v_in;          // the new parent of stem
kpeter@895
  1355
        int next_stem;                // the next stem node
kpeter@895
  1356
        int last = _last_succ[u_in];  // the last successor of stem
kpeter@895
  1357
        int before, after = _thread[last];
kpeter@895
  1358
        _thread[v_in] = u_in;
kpeter@895
  1359
        _dirty_revs.clear();
kpeter@895
  1360
        _dirty_revs.push_back(v_in);
kpeter@895
  1361
        while (stem != u_out) {
kpeter@895
  1362
          // Insert the next stem node into the thread list
kpeter@895
  1363
          next_stem = _parent[stem];
kpeter@895
  1364
          _thread[last] = next_stem;
kpeter@895
  1365
          _dirty_revs.push_back(last);
kpeter@601
  1366
kpeter@895
  1367
          // Remove the subtree of stem from the thread list
kpeter@895
  1368
          before = _rev_thread[stem];
kpeter@895
  1369
          _thread[before] = after;
kpeter@895
  1370
          _rev_thread[after] = before;
kpeter@601
  1371
kpeter@895
  1372
          // Change the parent node and shift stem nodes
kpeter@895
  1373
          _parent[stem] = par_stem;
kpeter@895
  1374
          par_stem = stem;
kpeter@895
  1375
          stem = next_stem;
kpeter@601
  1376
kpeter@895
  1377
          // Update last and after
kpeter@895
  1378
          last = _last_succ[stem] == _last_succ[par_stem] ?
kpeter@895
  1379
            _rev_thread[par_stem] : _last_succ[stem];
kpeter@895
  1380
          after = _thread[last];
kpeter@895
  1381
        }
kpeter@895
  1382
        _parent[u_out] = par_stem;
kpeter@895
  1383
        _thread[last] = thread_continue;
kpeter@895
  1384
        _rev_thread[thread_continue] = last;
kpeter@895
  1385
        _last_succ[u_out] = last;
kpeter@601
  1386
kpeter@895
  1387
        // Remove the subtree of u_out from the thread list except for
kpeter@895
  1388
        // the case when old_rev_thread equals to v_in
kpeter@895
  1389
        if (old_rev_thread != v_in) {
kpeter@895
  1390
          _thread[old_rev_thread] = after;
kpeter@895
  1391
          _rev_thread[after] = old_rev_thread;
kpeter@895
  1392
        }
kpeter@604
  1393
kpeter@895
  1394
        // Update _rev_thread using the new _thread values
kpeter@895
  1395
        for (int i = 0; i != int(_dirty_revs.size()); ++i) {
kpeter@895
  1396
          int u = _dirty_revs[i];
kpeter@895
  1397
          _rev_thread[_thread[u]] = u;
kpeter@895
  1398
        }
kpeter@604
  1399
kpeter@895
  1400
        // Update _pred, _pred_dir, _last_succ and _succ_num for the
kpeter@895
  1401
        // stem nodes from u_out to u_in
kpeter@895
  1402
        int tmp_sc = 0, tmp_ls = _last_succ[u_out];
kpeter@895
  1403
        for (int u = u_out, p = _parent[u]; u != u_in; u = p, p = _parent[u]) {
kpeter@895
  1404
          _pred[u] = _pred[p];
kpeter@895
  1405
          _pred_dir[u] = -_pred_dir[p];
kpeter@895
  1406
          tmp_sc += _succ_num[u] - _succ_num[p];
kpeter@895
  1407
          _succ_num[u] = tmp_sc;
kpeter@895
  1408
          _last_succ[p] = tmp_ls;
kpeter@895
  1409
        }
kpeter@895
  1410
        _pred[u_in] = in_arc;
kpeter@895
  1411
        _pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN;
kpeter@895
  1412
        _succ_num[u_in] = old_succ_num;
kpeter@604
  1413
      }
kpeter@604
  1414
kpeter@604
  1415
      // Update _last_succ from v_in towards the root
kpeter@895
  1416
      int up_limit_out = _last_succ[join] == v_in ? join : -1;
kpeter@895
  1417
      int last_succ_out = _last_succ[u_out];
kpeter@895
  1418
      for (int u = v_in; u != -1 && _last_succ[u] == v_in; u = _parent[u]) {
kpeter@895
  1419
        _last_succ[u] = last_succ_out;
kpeter@604
  1420
      }
kpeter@895
  1421
kpeter@604
  1422
      // Update _last_succ from v_out towards the root
kpeter@604
  1423
      if (join != old_rev_thread && v_in != old_rev_thread) {
kpeter@895
  1424
        for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
kpeter@604
  1425
             u = _parent[u]) {
kpeter@604
  1426
          _last_succ[u] = old_rev_thread;
kpeter@604
  1427
        }
kpeter@895
  1428
      }
kpeter@895
  1429
      else if (last_succ_out != old_last_succ) {
kpeter@895
  1430
        for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
kpeter@604
  1431
             u = _parent[u]) {
kpeter@895
  1432
          _last_succ[u] = last_succ_out;
kpeter@604
  1433
        }
kpeter@604
  1434
      }
kpeter@604
  1435
kpeter@604
  1436
      // Update _succ_num from v_in to join
kpeter@895
  1437
      for (int u = v_in; u != join; u = _parent[u]) {
kpeter@604
  1438
        _succ_num[u] += old_succ_num;
kpeter@604
  1439
      }
kpeter@604
  1440
      // Update _succ_num from v_out to join
kpeter@895
  1441
      for (int u = v_out; u != join; u = _parent[u]) {
kpeter@604
  1442
        _succ_num[u] -= old_succ_num;
kpeter@601
  1443
      }
kpeter@601
  1444
    }
kpeter@601
  1445
kpeter@895
  1446
    // Update potentials in the subtree that has been moved
kpeter@604
  1447
    void updatePotential() {
kpeter@895
  1448
      Cost sigma = _pi[v_in] - _pi[u_in] -
kpeter@895
  1449
                   _pred_dir[u_in] * _cost[in_arc];
kpeter@608
  1450
      int end = _thread[_last_succ[u_in]];
kpeter@608
  1451
      for (int u = u_in; u != end; u = _thread[u]) {
kpeter@608
  1452
        _pi[u] += sigma;
kpeter@601
  1453
      }
kpeter@601
  1454
    }
kpeter@601
  1455
kpeter@839
  1456
    // Heuristic initial pivots
kpeter@839
  1457
    bool initialPivots() {
kpeter@839
  1458
      Value curr, total = 0;
kpeter@839
  1459
      std::vector<Node> supply_nodes, demand_nodes;
kpeter@839
  1460
      for (NodeIt u(_graph); u != INVALID; ++u) {
kpeter@839
  1461
        curr = _supply[_node_id[u]];
kpeter@839
  1462
        if (curr > 0) {
kpeter@839
  1463
          total += curr;
kpeter@839
  1464
          supply_nodes.push_back(u);
kpeter@839
  1465
        }
kpeter@839
  1466
        else if (curr < 0) {
kpeter@839
  1467
          demand_nodes.push_back(u);
kpeter@839
  1468
        }
kpeter@839
  1469
      }
kpeter@839
  1470
      if (_sum_supply > 0) total -= _sum_supply;
kpeter@839
  1471
      if (total <= 0) return true;
kpeter@839
  1472
kpeter@839
  1473
      IntVector arc_vector;
kpeter@839
  1474
      if (_sum_supply >= 0) {
kpeter@839
  1475
        if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
kpeter@839
  1476
          // Perform a reverse graph search from the sink to the source
kpeter@839
  1477
          typename GR::template NodeMap<bool> reached(_graph, false);
kpeter@839
  1478
          Node s = supply_nodes[0], t = demand_nodes[0];
kpeter@839
  1479
          std::vector<Node> stack;
kpeter@839
  1480
          reached[t] = true;
kpeter@839
  1481
          stack.push_back(t);
kpeter@839
  1482
          while (!stack.empty()) {
kpeter@839
  1483
            Node u, v = stack.back();
kpeter@839
  1484
            stack.pop_back();
kpeter@839
  1485
            if (v == s) break;
kpeter@839
  1486
            for (InArcIt a(_graph, v); a != INVALID; ++a) {
kpeter@839
  1487
              if (reached[u = _graph.source(a)]) continue;
kpeter@839
  1488
              int j = _arc_id[a];
kpeter@839
  1489
              if (_cap[j] >= total) {
kpeter@839
  1490
                arc_vector.push_back(j);
kpeter@839
  1491
                reached[u] = true;
kpeter@839
  1492
                stack.push_back(u);
kpeter@839
  1493
              }
kpeter@839
  1494
            }
kpeter@839
  1495
          }
kpeter@839
  1496
        } else {
kpeter@839
  1497
          // Find the min. cost incomming arc for each demand node
kpeter@839
  1498
          for (int i = 0; i != int(demand_nodes.size()); ++i) {
kpeter@839
  1499
            Node v = demand_nodes[i];
kpeter@839
  1500
            Cost c, min_cost = std::numeric_limits<Cost>::max();
kpeter@839
  1501
            Arc min_arc = INVALID;
kpeter@839
  1502
            for (InArcIt a(_graph, v); a != INVALID; ++a) {
kpeter@839
  1503
              c = _cost[_arc_id[a]];
kpeter@839
  1504
              if (c < min_cost) {
kpeter@839
  1505
                min_cost = c;
kpeter@839
  1506
                min_arc = a;
kpeter@839
  1507
              }
kpeter@839
  1508
            }
kpeter@839
  1509
            if (min_arc != INVALID) {
kpeter@839
  1510
              arc_vector.push_back(_arc_id[min_arc]);
kpeter@839
  1511
            }
kpeter@839
  1512
          }
kpeter@839
  1513
        }
kpeter@839
  1514
      } else {
kpeter@839
  1515
        // Find the min. cost outgoing arc for each supply node
kpeter@839
  1516
        for (int i = 0; i != int(supply_nodes.size()); ++i) {
kpeter@839
  1517
          Node u = supply_nodes[i];
kpeter@839
  1518
          Cost c, min_cost = std::numeric_limits<Cost>::max();
kpeter@839
  1519
          Arc min_arc = INVALID;
kpeter@839
  1520
          for (OutArcIt a(_graph, u); a != INVALID; ++a) {
kpeter@839
  1521
            c = _cost[_arc_id[a]];
kpeter@839
  1522
            if (c < min_cost) {
kpeter@839
  1523
              min_cost = c;
kpeter@839
  1524
              min_arc = a;
kpeter@839
  1525
            }
kpeter@839
  1526
          }
kpeter@839
  1527
          if (min_arc != INVALID) {
kpeter@839
  1528
            arc_vector.push_back(_arc_id[min_arc]);
kpeter@839
  1529
          }
kpeter@839
  1530
        }
kpeter@839
  1531
      }
kpeter@839
  1532
kpeter@839
  1533
      // Perform heuristic initial pivots
kpeter@839
  1534
      for (int i = 0; i != int(arc_vector.size()); ++i) {
kpeter@839
  1535
        in_arc = arc_vector[i];
kpeter@839
  1536
        if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -
kpeter@839
  1537
            _pi[_target[in_arc]]) >= 0) continue;
kpeter@839
  1538
        findJoinNode();
kpeter@839
  1539
        bool change = findLeavingArc();
kpeter@839
  1540
        if (delta >= MAX) return false;
kpeter@839
  1541
        changeFlow(change);
kpeter@839
  1542
        if (change) {
kpeter@839
  1543
          updateTreeStructure();
kpeter@839
  1544
          updatePotential();
kpeter@839
  1545
        }
kpeter@839
  1546
      }
kpeter@839
  1547
      return true;
kpeter@839
  1548
    }
kpeter@839
  1549
kpeter@601
  1550
    // Execute the algorithm
kpeter@640
  1551
    ProblemType start(PivotRule pivot_rule) {
kpeter@601
  1552
      // Select the pivot rule implementation
kpeter@601
  1553
      switch (pivot_rule) {
kpeter@605
  1554
        case FIRST_ELIGIBLE:
kpeter@601
  1555
          return start<FirstEligiblePivotRule>();
kpeter@605
  1556
        case BEST_ELIGIBLE:
kpeter@601
  1557
          return start<BestEligiblePivotRule>();
kpeter@605
  1558
        case BLOCK_SEARCH:
kpeter@601
  1559
          return start<BlockSearchPivotRule>();
kpeter@605
  1560
        case CANDIDATE_LIST:
kpeter@601
  1561
          return start<CandidateListPivotRule>();
kpeter@605
  1562
        case ALTERING_LIST:
kpeter@601
  1563
          return start<AlteringListPivotRule>();
kpeter@601
  1564
      }
kpeter@640
  1565
      return INFEASIBLE; // avoid warning
kpeter@601
  1566
    }
kpeter@601
  1567
kpeter@605
  1568
    template <typename PivotRuleImpl>
kpeter@640
  1569
    ProblemType start() {
kpeter@605
  1570
      PivotRuleImpl pivot(*this);
kpeter@601
  1571
kpeter@839
  1572
      // Perform heuristic initial pivots
kpeter@839
  1573
      if (!initialPivots()) return UNBOUNDED;
kpeter@839
  1574
kpeter@605
  1575
      // Execute the Network Simplex algorithm
kpeter@601
  1576
      while (pivot.findEnteringArc()) {
kpeter@601
  1577
        findJoinNode();
kpeter@601
  1578
        bool change = findLeavingArc();
kpeter@811
  1579
        if (delta >= MAX) return UNBOUNDED;
kpeter@601
  1580
        changeFlow(change);
kpeter@601
  1581
        if (change) {
kpeter@604
  1582
          updateTreeStructure();
kpeter@604
  1583
          updatePotential();
kpeter@601
  1584
        }
kpeter@601
  1585
      }
alpar@877
  1586
kpeter@640
  1587
      // Check feasibility
kpeter@663
  1588
      for (int e = _search_arc_num; e != _all_arc_num; ++e) {
kpeter@663
  1589
        if (_flow[e] != 0) return INFEASIBLE;
kpeter@640
  1590
      }
kpeter@601
  1591
kpeter@642
  1592
      // Transform the solution and the supply map to the original form
kpeter@642
  1593
      if (_have_lower) {
kpeter@601
  1594
        for (int i = 0; i != _arc_num; ++i) {
kpeter@642
  1595
          Value c = _lower[i];
kpeter@642
  1596
          if (c != 0) {
kpeter@642
  1597
            _flow[i] += c;
kpeter@642
  1598
            _supply[_source[i]] += c;
kpeter@642
  1599
            _supply[_target[i]] -= c;
kpeter@642
  1600
          }
kpeter@601
  1601
        }
kpeter@601
  1602
      }
alpar@877
  1603
kpeter@663
  1604
      // Shift potentials to meet the requirements of the GEQ/LEQ type
kpeter@663
  1605
      // optimality conditions
kpeter@663
  1606
      if (_sum_supply == 0) {
kpeter@663
  1607
        if (_stype == GEQ) {
kpeter@888
  1608
          Cost max_pot = -std::numeric_limits<Cost>::max();
kpeter@663
  1609
          for (int i = 0; i != _node_num; ++i) {
kpeter@663
  1610
            if (_pi[i] > max_pot) max_pot = _pi[i];
kpeter@663
  1611
          }
kpeter@663
  1612
          if (max_pot > 0) {
kpeter@663
  1613
            for (int i = 0; i != _node_num; ++i)
kpeter@663
  1614
              _pi[i] -= max_pot;
kpeter@663
  1615
          }
kpeter@663
  1616
        } else {
kpeter@663
  1617
          Cost min_pot = std::numeric_limits<Cost>::max();
kpeter@663
  1618
          for (int i = 0; i != _node_num; ++i) {
kpeter@663
  1619
            if (_pi[i] < min_pot) min_pot = _pi[i];
kpeter@663
  1620
          }
kpeter@663
  1621
          if (min_pot < 0) {
kpeter@663
  1622
            for (int i = 0; i != _node_num; ++i)
kpeter@663
  1623
              _pi[i] -= min_pot;
kpeter@663
  1624
          }
kpeter@663
  1625
        }
kpeter@663
  1626
      }
kpeter@601
  1627
kpeter@640
  1628
      return OPTIMAL;
kpeter@601
  1629
    }
kpeter@601
  1630
kpeter@601
  1631
  }; //class NetworkSimplex
kpeter@601
  1632
kpeter@601
  1633
  ///@}
kpeter@601
  1634
kpeter@601
  1635
} //namespace lemon
kpeter@601
  1636
kpeter@601
  1637
#endif //LEMON_NETWORK_SIMPLEX_H