alpar@25
|
1 |
/* -*- C++ -*-
|
alpar@25
|
2 |
*
|
alpar@25
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@25
|
4 |
*
|
alpar@39
|
5 |
* Copyright (C) 2003-2008
|
alpar@25
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@25
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@25
|
8 |
*
|
alpar@25
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@25
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@25
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@25
|
12 |
*
|
alpar@25
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@25
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@25
|
15 |
* purpose.
|
alpar@25
|
16 |
*
|
alpar@25
|
17 |
*/
|
alpar@25
|
18 |
|
alpar@25
|
19 |
#ifndef LEMON_MAPS_H
|
alpar@25
|
20 |
#define LEMON_MAPS_H
|
alpar@25
|
21 |
|
alpar@25
|
22 |
#include <iterator>
|
alpar@25
|
23 |
#include <functional>
|
alpar@25
|
24 |
#include <vector>
|
alpar@25
|
25 |
|
alpar@25
|
26 |
#include <lemon/bits/utility.h>
|
alpar@25
|
27 |
// #include <lemon/bits/traits.h>
|
alpar@25
|
28 |
|
alpar@25
|
29 |
///\file
|
alpar@25
|
30 |
///\ingroup maps
|
alpar@25
|
31 |
///\brief Miscellaneous property maps
|
alpar@25
|
32 |
///
|
alpar@25
|
33 |
#include <map>
|
alpar@25
|
34 |
|
alpar@25
|
35 |
namespace lemon {
|
alpar@25
|
36 |
|
alpar@25
|
37 |
/// \addtogroup maps
|
alpar@25
|
38 |
/// @{
|
alpar@25
|
39 |
|
alpar@25
|
40 |
/// Base class of maps.
|
alpar@25
|
41 |
|
alpar@25
|
42 |
/// Base class of maps.
|
alpar@25
|
43 |
/// It provides the necessary <tt>typedef</tt>s required by the map concept.
|
alpar@25
|
44 |
template<typename K, typename T>
|
alpar@25
|
45 |
class MapBase {
|
alpar@25
|
46 |
public:
|
kpeter@33
|
47 |
/// The key type of the map.
|
alpar@25
|
48 |
typedef K Key;
|
kpeter@33
|
49 |
/// The value type of the map. (The type of objects associated with the keys).
|
alpar@25
|
50 |
typedef T Value;
|
alpar@25
|
51 |
};
|
alpar@25
|
52 |
|
alpar@25
|
53 |
/// Null map. (a.k.a. DoNothingMap)
|
alpar@25
|
54 |
|
kpeter@29
|
55 |
/// This map can be used if you have to provide a map only for
|
kpeter@29
|
56 |
/// its type definitions, or if you have to provide a writable map,
|
kpeter@29
|
57 |
/// but data written to it is not required (i.e. it will be sent to
|
kpeter@29
|
58 |
/// <tt>/dev/null</tt>).
|
alpar@25
|
59 |
template<typename K, typename T>
|
alpar@25
|
60 |
class NullMap : public MapBase<K, T> {
|
alpar@25
|
61 |
public:
|
alpar@25
|
62 |
typedef MapBase<K, T> Parent;
|
alpar@25
|
63 |
typedef typename Parent::Key Key;
|
alpar@25
|
64 |
typedef typename Parent::Value Value;
|
alpar@25
|
65 |
|
alpar@25
|
66 |
/// Gives back a default constructed element.
|
alpar@25
|
67 |
T operator[](const K&) const { return T(); }
|
alpar@25
|
68 |
/// Absorbs the value.
|
alpar@25
|
69 |
void set(const K&, const T&) {}
|
alpar@25
|
70 |
};
|
alpar@25
|
71 |
|
kpeter@29
|
72 |
///Returns a \c NullMap class
|
kpeter@29
|
73 |
|
kpeter@29
|
74 |
///This function just returns a \c NullMap class.
|
kpeter@29
|
75 |
///\relates NullMap
|
alpar@25
|
76 |
template <typename K, typename V>
|
alpar@25
|
77 |
NullMap<K, V> nullMap() {
|
alpar@25
|
78 |
return NullMap<K, V>();
|
alpar@25
|
79 |
}
|
alpar@25
|
80 |
|
alpar@25
|
81 |
|
alpar@25
|
82 |
/// Constant map.
|
alpar@25
|
83 |
|
alpar@25
|
84 |
/// This is a readable map which assigns a specified value to each key.
|
alpar@25
|
85 |
/// In other aspects it is equivalent to the \c NullMap.
|
alpar@25
|
86 |
template<typename K, typename T>
|
alpar@25
|
87 |
class ConstMap : public MapBase<K, T> {
|
alpar@25
|
88 |
private:
|
alpar@25
|
89 |
T v;
|
alpar@25
|
90 |
public:
|
alpar@25
|
91 |
|
alpar@25
|
92 |
typedef MapBase<K, T> Parent;
|
alpar@25
|
93 |
typedef typename Parent::Key Key;
|
alpar@25
|
94 |
typedef typename Parent::Value Value;
|
alpar@25
|
95 |
|
alpar@25
|
96 |
/// Default constructor
|
alpar@25
|
97 |
|
kpeter@29
|
98 |
/// Default constructor.
|
alpar@25
|
99 |
/// The value of the map will be uninitialized.
|
alpar@25
|
100 |
/// (More exactly it will be default constructed.)
|
alpar@25
|
101 |
ConstMap() {}
|
kpeter@29
|
102 |
|
kpeter@29
|
103 |
/// Constructor with specified initial value
|
alpar@25
|
104 |
|
kpeter@29
|
105 |
/// Constructor with specified initial value.
|
kpeter@29
|
106 |
/// \param _v is the initial value of the map.
|
alpar@25
|
107 |
ConstMap(const T &_v) : v(_v) {}
|
alpar@25
|
108 |
|
alpar@25
|
109 |
///\e
|
alpar@25
|
110 |
T operator[](const K&) const { return v; }
|
alpar@25
|
111 |
|
alpar@25
|
112 |
///\e
|
alpar@25
|
113 |
void setAll(const T &t) {
|
alpar@25
|
114 |
v = t;
|
alpar@25
|
115 |
}
|
alpar@25
|
116 |
|
alpar@25
|
117 |
template<typename T1>
|
alpar@25
|
118 |
struct rebind {
|
alpar@25
|
119 |
typedef ConstMap<K, T1> other;
|
alpar@25
|
120 |
};
|
alpar@25
|
121 |
|
alpar@25
|
122 |
template<typename T1>
|
alpar@25
|
123 |
ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {}
|
alpar@25
|
124 |
};
|
alpar@25
|
125 |
|
alpar@25
|
126 |
///Returns a \c ConstMap class
|
alpar@25
|
127 |
|
alpar@25
|
128 |
///This function just returns a \c ConstMap class.
|
alpar@25
|
129 |
///\relates ConstMap
|
alpar@25
|
130 |
template<typename K, typename V>
|
alpar@25
|
131 |
inline ConstMap<K, V> constMap(const V &v) {
|
alpar@25
|
132 |
return ConstMap<K, V>(v);
|
alpar@25
|
133 |
}
|
alpar@25
|
134 |
|
alpar@25
|
135 |
|
alpar@25
|
136 |
template<typename T, T v>
|
alpar@25
|
137 |
struct Const { };
|
alpar@25
|
138 |
|
alpar@25
|
139 |
/// Constant map with inlined constant value.
|
alpar@25
|
140 |
|
alpar@25
|
141 |
/// This is a readable map which assigns a specified value to each key.
|
alpar@25
|
142 |
/// In other aspects it is equivalent to the \c NullMap.
|
alpar@25
|
143 |
template<typename K, typename V, V v>
|
alpar@25
|
144 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
|
alpar@25
|
145 |
public:
|
alpar@25
|
146 |
typedef MapBase<K, V> Parent;
|
alpar@25
|
147 |
typedef typename Parent::Key Key;
|
alpar@25
|
148 |
typedef typename Parent::Value Value;
|
alpar@25
|
149 |
|
alpar@25
|
150 |
ConstMap() { }
|
alpar@25
|
151 |
///\e
|
alpar@25
|
152 |
V operator[](const K&) const { return v; }
|
alpar@25
|
153 |
///\e
|
alpar@25
|
154 |
void set(const K&, const V&) { }
|
alpar@25
|
155 |
};
|
alpar@25
|
156 |
|
alpar@25
|
157 |
///Returns a \c ConstMap class
|
alpar@25
|
158 |
|
alpar@25
|
159 |
///This function just returns a \c ConstMap class with inlined value.
|
alpar@25
|
160 |
///\relates ConstMap
|
alpar@25
|
161 |
template<typename K, typename V, V v>
|
alpar@25
|
162 |
inline ConstMap<K, Const<V, v> > constMap() {
|
alpar@25
|
163 |
return ConstMap<K, Const<V, v> >();
|
alpar@25
|
164 |
}
|
alpar@25
|
165 |
|
alpar@25
|
166 |
///Map based on std::map
|
alpar@25
|
167 |
|
kpeter@29
|
168 |
///This is essentially a wrapper for \c std::map with addition that
|
kpeter@29
|
169 |
///you can specify a default value different from \c Value().
|
alpar@25
|
170 |
template <typename K, typename T, typename Compare = std::less<K> >
|
alpar@25
|
171 |
class StdMap {
|
alpar@25
|
172 |
template <typename K1, typename T1, typename C1>
|
alpar@25
|
173 |
friend class StdMap;
|
alpar@25
|
174 |
public:
|
alpar@25
|
175 |
|
alpar@25
|
176 |
typedef True ReferenceMapTag;
|
alpar@25
|
177 |
///\e
|
alpar@25
|
178 |
typedef K Key;
|
alpar@25
|
179 |
///\e
|
alpar@25
|
180 |
typedef T Value;
|
alpar@25
|
181 |
///\e
|
alpar@25
|
182 |
typedef T& Reference;
|
alpar@25
|
183 |
///\e
|
alpar@25
|
184 |
typedef const T& ConstReference;
|
alpar@25
|
185 |
|
alpar@25
|
186 |
private:
|
alpar@25
|
187 |
|
alpar@25
|
188 |
typedef std::map<K, T, Compare> Map;
|
alpar@25
|
189 |
Value _value;
|
alpar@25
|
190 |
Map _map;
|
alpar@25
|
191 |
|
alpar@25
|
192 |
public:
|
alpar@25
|
193 |
|
alpar@25
|
194 |
/// Constructor with specified default value
|
alpar@25
|
195 |
StdMap(const T& value = T()) : _value(value) {}
|
alpar@25
|
196 |
/// \brief Constructs the map from an appropriate std::map, and explicitly
|
alpar@25
|
197 |
/// specifies a default value.
|
alpar@25
|
198 |
template <typename T1, typename Comp1>
|
alpar@25
|
199 |
StdMap(const std::map<Key, T1, Comp1> &map, const T& value = T())
|
alpar@25
|
200 |
: _map(map.begin(), map.end()), _value(value) {}
|
alpar@25
|
201 |
|
alpar@25
|
202 |
/// \brief Constructs a map from an other StdMap.
|
alpar@25
|
203 |
template<typename T1, typename Comp1>
|
alpar@25
|
204 |
StdMap(const StdMap<Key, T1, Comp1> &c)
|
alpar@25
|
205 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {}
|
alpar@25
|
206 |
|
alpar@25
|
207 |
private:
|
alpar@25
|
208 |
|
alpar@25
|
209 |
StdMap& operator=(const StdMap&);
|
alpar@25
|
210 |
|
alpar@25
|
211 |
public:
|
alpar@25
|
212 |
|
alpar@25
|
213 |
///\e
|
alpar@25
|
214 |
Reference operator[](const Key &k) {
|
alpar@25
|
215 |
typename Map::iterator it = _map.lower_bound(k);
|
alpar@25
|
216 |
if (it != _map.end() && !_map.key_comp()(k, it->first))
|
alpar@25
|
217 |
return it->second;
|
alpar@25
|
218 |
else
|
alpar@25
|
219 |
return _map.insert(it, std::make_pair(k, _value))->second;
|
alpar@25
|
220 |
}
|
alpar@25
|
221 |
|
alpar@25
|
222 |
/// \e
|
alpar@25
|
223 |
ConstReference operator[](const Key &k) const {
|
alpar@25
|
224 |
typename Map::const_iterator it = _map.find(k);
|
alpar@25
|
225 |
if (it != _map.end())
|
alpar@25
|
226 |
return it->second;
|
alpar@25
|
227 |
else
|
alpar@25
|
228 |
return _value;
|
alpar@25
|
229 |
}
|
alpar@25
|
230 |
|
alpar@25
|
231 |
/// \e
|
alpar@25
|
232 |
void set(const Key &k, const T &t) {
|
alpar@25
|
233 |
typename Map::iterator it = _map.lower_bound(k);
|
alpar@25
|
234 |
if (it != _map.end() && !_map.key_comp()(k, it->first))
|
alpar@25
|
235 |
it->second = t;
|
alpar@25
|
236 |
else
|
alpar@25
|
237 |
_map.insert(it, std::make_pair(k, t));
|
alpar@25
|
238 |
}
|
alpar@25
|
239 |
|
alpar@25
|
240 |
/// \e
|
alpar@25
|
241 |
void setAll(const T &t) {
|
alpar@25
|
242 |
_value = t;
|
alpar@25
|
243 |
_map.clear();
|
alpar@25
|
244 |
}
|
alpar@25
|
245 |
|
alpar@25
|
246 |
template <typename T1, typename C1 = std::less<T1> >
|
alpar@25
|
247 |
struct rebind {
|
alpar@25
|
248 |
typedef StdMap<Key, T1, C1> other;
|
alpar@25
|
249 |
};
|
alpar@25
|
250 |
};
|
alpar@25
|
251 |
|
kpeter@33
|
252 |
/// \brief Map for storing values for keys from the range <tt>[0..size-1]</tt>
|
alpar@25
|
253 |
///
|
kpeter@33
|
254 |
/// The current map has the <tt>[0..size-1]</tt> keyset and the values
|
alpar@25
|
255 |
/// are stored in a \c std::vector<T> container. It can be used with
|
alpar@25
|
256 |
/// some data structures, for example \c UnionFind, \c BinHeap, when
|
alpar@26
|
257 |
/// the used items are small integer numbers.
|
alpar@26
|
258 |
///
|
alpar@26
|
259 |
/// \todo Revise its name
|
alpar@25
|
260 |
template <typename T>
|
alpar@25
|
261 |
class IntegerMap {
|
alpar@25
|
262 |
|
alpar@25
|
263 |
template <typename T1>
|
alpar@25
|
264 |
friend class IntegerMap;
|
alpar@25
|
265 |
|
alpar@25
|
266 |
public:
|
alpar@25
|
267 |
|
alpar@25
|
268 |
typedef True ReferenceMapTag;
|
alpar@25
|
269 |
///\e
|
alpar@25
|
270 |
typedef int Key;
|
alpar@25
|
271 |
///\e
|
alpar@25
|
272 |
typedef T Value;
|
alpar@25
|
273 |
///\e
|
alpar@25
|
274 |
typedef T& Reference;
|
alpar@25
|
275 |
///\e
|
alpar@25
|
276 |
typedef const T& ConstReference;
|
alpar@25
|
277 |
|
alpar@25
|
278 |
private:
|
alpar@25
|
279 |
|
alpar@25
|
280 |
typedef std::vector<T> Vector;
|
alpar@25
|
281 |
Vector _vector;
|
alpar@25
|
282 |
|
alpar@25
|
283 |
public:
|
alpar@25
|
284 |
|
alpar@25
|
285 |
/// Constructor with specified default value
|
alpar@25
|
286 |
IntegerMap(int size = 0, const T& value = T()) : _vector(size, value) {}
|
alpar@25
|
287 |
|
alpar@25
|
288 |
/// \brief Constructs the map from an appropriate std::vector.
|
alpar@25
|
289 |
template <typename T1>
|
alpar@25
|
290 |
IntegerMap(const std::vector<T1>& vector)
|
alpar@25
|
291 |
: _vector(vector.begin(), vector.end()) {}
|
alpar@25
|
292 |
|
alpar@25
|
293 |
/// \brief Constructs a map from an other IntegerMap.
|
alpar@25
|
294 |
template <typename T1>
|
alpar@25
|
295 |
IntegerMap(const IntegerMap<T1> &c)
|
alpar@25
|
296 |
: _vector(c._vector.begin(), c._vector.end()) {}
|
alpar@25
|
297 |
|
alpar@25
|
298 |
/// \brief Resize the container
|
alpar@25
|
299 |
void resize(int size, const T& value = T()) {
|
alpar@25
|
300 |
_vector.resize(size, value);
|
alpar@25
|
301 |
}
|
alpar@25
|
302 |
|
alpar@25
|
303 |
private:
|
alpar@25
|
304 |
|
alpar@25
|
305 |
IntegerMap& operator=(const IntegerMap&);
|
alpar@25
|
306 |
|
alpar@25
|
307 |
public:
|
alpar@25
|
308 |
|
alpar@25
|
309 |
///\e
|
alpar@25
|
310 |
Reference operator[](Key k) {
|
alpar@25
|
311 |
return _vector[k];
|
alpar@25
|
312 |
}
|
alpar@25
|
313 |
|
alpar@25
|
314 |
/// \e
|
alpar@25
|
315 |
ConstReference operator[](Key k) const {
|
alpar@25
|
316 |
return _vector[k];
|
alpar@25
|
317 |
}
|
alpar@25
|
318 |
|
alpar@25
|
319 |
/// \e
|
alpar@25
|
320 |
void set(const Key &k, const T& t) {
|
alpar@25
|
321 |
_vector[k] = t;
|
alpar@25
|
322 |
}
|
alpar@25
|
323 |
|
alpar@25
|
324 |
};
|
alpar@25
|
325 |
|
alpar@25
|
326 |
/// @}
|
alpar@25
|
327 |
|
alpar@25
|
328 |
/// \addtogroup map_adaptors
|
alpar@25
|
329 |
/// @{
|
alpar@25
|
330 |
|
kpeter@29
|
331 |
/// \brief Identity map.
|
alpar@25
|
332 |
///
|
kpeter@29
|
333 |
/// This map gives back the given key as value without any
|
alpar@25
|
334 |
/// modification.
|
alpar@25
|
335 |
template <typename T>
|
alpar@25
|
336 |
class IdentityMap : public MapBase<T, T> {
|
alpar@25
|
337 |
public:
|
alpar@25
|
338 |
typedef MapBase<T, T> Parent;
|
alpar@25
|
339 |
typedef typename Parent::Key Key;
|
alpar@25
|
340 |
typedef typename Parent::Value Value;
|
alpar@25
|
341 |
|
alpar@25
|
342 |
/// \e
|
alpar@25
|
343 |
const T& operator[](const T& t) const {
|
alpar@25
|
344 |
return t;
|
alpar@25
|
345 |
}
|
alpar@25
|
346 |
};
|
alpar@25
|
347 |
|
alpar@25
|
348 |
///Returns an \c IdentityMap class
|
alpar@25
|
349 |
|
alpar@25
|
350 |
///This function just returns an \c IdentityMap class.
|
alpar@25
|
351 |
///\relates IdentityMap
|
alpar@25
|
352 |
template<typename T>
|
alpar@25
|
353 |
inline IdentityMap<T> identityMap() {
|
alpar@25
|
354 |
return IdentityMap<T>();
|
alpar@25
|
355 |
}
|
alpar@25
|
356 |
|
alpar@25
|
357 |
|
alpar@26
|
358 |
///\brief Convert the \c Value of a map to another type using
|
alpar@26
|
359 |
///the default conversion.
|
alpar@26
|
360 |
///
|
alpar@25
|
361 |
///This \c concepts::ReadMap "read only map"
|
kpeter@29
|
362 |
///converts the \c Value of a map to type \c T.
|
alpar@25
|
363 |
///Its \c Key is inherited from \c M.
|
alpar@25
|
364 |
template <typename M, typename T>
|
alpar@25
|
365 |
class ConvertMap : public MapBase<typename M::Key, T> {
|
alpar@25
|
366 |
const M& m;
|
alpar@25
|
367 |
public:
|
alpar@25
|
368 |
typedef MapBase<typename M::Key, T> Parent;
|
alpar@25
|
369 |
typedef typename Parent::Key Key;
|
alpar@25
|
370 |
typedef typename Parent::Value Value;
|
alpar@25
|
371 |
|
alpar@25
|
372 |
///Constructor
|
alpar@25
|
373 |
|
kpeter@29
|
374 |
///Constructor.
|
kpeter@29
|
375 |
///\param _m is the underlying map.
|
alpar@25
|
376 |
ConvertMap(const M &_m) : m(_m) {};
|
alpar@25
|
377 |
|
alpar@25
|
378 |
/// \brief The subscript operator.
|
alpar@25
|
379 |
///
|
alpar@25
|
380 |
/// The subscript operator.
|
alpar@25
|
381 |
Value operator[](const Key& k) const {return m[k];}
|
alpar@25
|
382 |
};
|
alpar@25
|
383 |
|
kpeter@29
|
384 |
///Returns a \c ConvertMap class
|
alpar@25
|
385 |
|
kpeter@29
|
386 |
///This function just returns a \c ConvertMap class.
|
alpar@25
|
387 |
///\relates ConvertMap
|
alpar@25
|
388 |
template<typename T, typename M>
|
alpar@25
|
389 |
inline ConvertMap<M, T> convertMap(const M &m) {
|
alpar@25
|
390 |
return ConvertMap<M, T>(m);
|
alpar@25
|
391 |
}
|
alpar@25
|
392 |
|
kpeter@29
|
393 |
///Simple wrapping of a map
|
alpar@25
|
394 |
|
alpar@25
|
395 |
///This \c concepts::ReadMap "read only map" returns the simple
|
alpar@25
|
396 |
///wrapping of the given map. Sometimes the reference maps cannot be
|
alpar@25
|
397 |
///combined with simple read maps. This map adaptor wraps the given
|
alpar@25
|
398 |
///map to simple read map.
|
alpar@26
|
399 |
///
|
kpeter@29
|
400 |
///\sa SimpleWriteMap
|
kpeter@29
|
401 |
///
|
kpeter@29
|
402 |
/// \todo Revise the misleading name
|
alpar@25
|
403 |
template<typename M>
|
alpar@25
|
404 |
class SimpleMap : public MapBase<typename M::Key, typename M::Value> {
|
alpar@25
|
405 |
const M& m;
|
alpar@25
|
406 |
|
alpar@25
|
407 |
public:
|
alpar@25
|
408 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
409 |
typedef typename Parent::Key Key;
|
alpar@25
|
410 |
typedef typename Parent::Value Value;
|
alpar@25
|
411 |
|
alpar@25
|
412 |
///Constructor
|
alpar@25
|
413 |
SimpleMap(const M &_m) : m(_m) {};
|
alpar@25
|
414 |
///\e
|
alpar@25
|
415 |
Value operator[](Key k) const {return m[k];}
|
alpar@25
|
416 |
};
|
alpar@25
|
417 |
|
kpeter@29
|
418 |
///Simple writable wrapping of the map
|
alpar@25
|
419 |
|
alpar@26
|
420 |
///This \c concepts::WriteMap "write map" returns the simple
|
alpar@25
|
421 |
///wrapping of the given map. Sometimes the reference maps cannot be
|
alpar@25
|
422 |
///combined with simple read-write maps. This map adaptor wraps the
|
alpar@25
|
423 |
///given map to simple read-write map.
|
alpar@26
|
424 |
///
|
kpeter@29
|
425 |
///\sa SimpleMap
|
kpeter@29
|
426 |
///
|
alpar@26
|
427 |
/// \todo Revise the misleading name
|
alpar@25
|
428 |
template<typename M>
|
alpar@25
|
429 |
class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
alpar@25
|
430 |
M& m;
|
alpar@25
|
431 |
|
alpar@25
|
432 |
public:
|
alpar@25
|
433 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
434 |
typedef typename Parent::Key Key;
|
alpar@25
|
435 |
typedef typename Parent::Value Value;
|
alpar@25
|
436 |
|
alpar@25
|
437 |
///Constructor
|
alpar@25
|
438 |
SimpleWriteMap(M &_m) : m(_m) {};
|
alpar@25
|
439 |
///\e
|
alpar@25
|
440 |
Value operator[](Key k) const {return m[k];}
|
alpar@25
|
441 |
///\e
|
alpar@25
|
442 |
void set(Key k, const Value& c) { m.set(k, c); }
|
alpar@25
|
443 |
};
|
alpar@25
|
444 |
|
alpar@25
|
445 |
///Sum of two maps
|
alpar@25
|
446 |
|
alpar@25
|
447 |
///This \c concepts::ReadMap "read only map" returns the sum of the two
|
kpeter@29
|
448 |
///given maps.
|
kpeter@29
|
449 |
///Its \c Key and \c Value are inherited from \c M1.
|
alpar@25
|
450 |
///The \c Key and \c Value of M2 must be convertible to those of \c M1.
|
alpar@25
|
451 |
template<typename M1, typename M2>
|
alpar@25
|
452 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
|
alpar@25
|
453 |
const M1& m1;
|
alpar@25
|
454 |
const M2& m2;
|
alpar@25
|
455 |
|
alpar@25
|
456 |
public:
|
alpar@25
|
457 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
alpar@25
|
458 |
typedef typename Parent::Key Key;
|
alpar@25
|
459 |
typedef typename Parent::Value Value;
|
alpar@25
|
460 |
|
alpar@25
|
461 |
///Constructor
|
alpar@25
|
462 |
AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@25
|
463 |
///\e
|
alpar@25
|
464 |
Value operator[](Key k) const {return m1[k]+m2[k];}
|
alpar@25
|
465 |
};
|
alpar@25
|
466 |
|
alpar@25
|
467 |
///Returns an \c AddMap class
|
alpar@25
|
468 |
|
alpar@25
|
469 |
///This function just returns an \c AddMap class.
|
alpar@25
|
470 |
///\todo How to call these type of functions?
|
alpar@25
|
471 |
///
|
alpar@25
|
472 |
///\relates AddMap
|
alpar@25
|
473 |
template<typename M1, typename M2>
|
alpar@25
|
474 |
inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
|
alpar@25
|
475 |
return AddMap<M1, M2>(m1,m2);
|
alpar@25
|
476 |
}
|
alpar@25
|
477 |
|
alpar@25
|
478 |
///Shift a map with a constant.
|
alpar@25
|
479 |
|
alpar@25
|
480 |
///This \c concepts::ReadMap "read only map" returns the sum of the
|
alpar@25
|
481 |
///given map and a constant value.
|
kpeter@29
|
482 |
///Its \c Key and \c Value are inherited from \c M.
|
alpar@25
|
483 |
///
|
alpar@25
|
484 |
///Actually,
|
alpar@25
|
485 |
///\code
|
alpar@25
|
486 |
/// ShiftMap<X> sh(x,v);
|
alpar@25
|
487 |
///\endcode
|
kpeter@29
|
488 |
///is equivalent to
|
alpar@25
|
489 |
///\code
|
alpar@25
|
490 |
/// ConstMap<X::Key, X::Value> c_tmp(v);
|
alpar@25
|
491 |
/// AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
|
alpar@25
|
492 |
///\endcode
|
kpeter@29
|
493 |
///
|
kpeter@29
|
494 |
///\sa ShiftWriteMap
|
alpar@25
|
495 |
template<typename M, typename C = typename M::Value>
|
alpar@25
|
496 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
|
alpar@25
|
497 |
const M& m;
|
alpar@25
|
498 |
C v;
|
alpar@25
|
499 |
public:
|
alpar@25
|
500 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
501 |
typedef typename Parent::Key Key;
|
alpar@25
|
502 |
typedef typename Parent::Value Value;
|
alpar@25
|
503 |
|
alpar@25
|
504 |
///Constructor
|
alpar@25
|
505 |
|
kpeter@29
|
506 |
///Constructor.
|
kpeter@29
|
507 |
///\param _m is the undelying map.
|
kpeter@29
|
508 |
///\param _v is the shift value.
|
alpar@25
|
509 |
ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
|
alpar@25
|
510 |
///\e
|
alpar@25
|
511 |
Value operator[](Key k) const {return m[k] + v;}
|
alpar@25
|
512 |
};
|
alpar@25
|
513 |
|
kpeter@29
|
514 |
///Shift a map with a constant (ReadWrite version).
|
alpar@25
|
515 |
|
alpar@25
|
516 |
///This \c concepts::ReadWriteMap "read-write map" returns the sum of the
|
alpar@25
|
517 |
///given map and a constant value. It makes also possible to write the map.
|
kpeter@29
|
518 |
///Its \c Key and \c Value are inherited from \c M.
|
alpar@25
|
519 |
///
|
kpeter@29
|
520 |
///\sa ShiftMap
|
alpar@25
|
521 |
template<typename M, typename C = typename M::Value>
|
alpar@25
|
522 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
alpar@25
|
523 |
M& m;
|
alpar@25
|
524 |
C v;
|
alpar@25
|
525 |
public:
|
alpar@25
|
526 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
527 |
typedef typename Parent::Key Key;
|
alpar@25
|
528 |
typedef typename Parent::Value Value;
|
alpar@25
|
529 |
|
alpar@25
|
530 |
///Constructor
|
alpar@25
|
531 |
|
kpeter@29
|
532 |
///Constructor.
|
kpeter@29
|
533 |
///\param _m is the undelying map.
|
kpeter@29
|
534 |
///\param _v is the shift value.
|
alpar@25
|
535 |
ShiftWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
|
alpar@25
|
536 |
/// \e
|
alpar@25
|
537 |
Value operator[](Key k) const {return m[k] + v;}
|
alpar@25
|
538 |
/// \e
|
alpar@25
|
539 |
void set(Key k, const Value& c) { m.set(k, c - v); }
|
alpar@25
|
540 |
};
|
alpar@25
|
541 |
|
kpeter@29
|
542 |
///Returns a \c ShiftMap class
|
alpar@25
|
543 |
|
kpeter@29
|
544 |
///This function just returns a \c ShiftMap class.
|
alpar@25
|
545 |
///\relates ShiftMap
|
alpar@25
|
546 |
template<typename M, typename C>
|
alpar@25
|
547 |
inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
|
alpar@25
|
548 |
return ShiftMap<M, C>(m,v);
|
alpar@25
|
549 |
}
|
alpar@25
|
550 |
|
kpeter@29
|
551 |
///Returns a \c ShiftWriteMap class
|
kpeter@29
|
552 |
|
kpeter@29
|
553 |
///This function just returns a \c ShiftWriteMap class.
|
kpeter@29
|
554 |
///\relates ShiftWriteMap
|
alpar@25
|
555 |
template<typename M, typename C>
|
alpar@25
|
556 |
inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) {
|
alpar@25
|
557 |
return ShiftWriteMap<M, C>(m,v);
|
alpar@25
|
558 |
}
|
alpar@25
|
559 |
|
alpar@25
|
560 |
///Difference of two maps
|
alpar@25
|
561 |
|
alpar@25
|
562 |
///This \c concepts::ReadMap "read only map" returns the difference
|
kpeter@29
|
563 |
///of the values of the two given maps.
|
kpeter@29
|
564 |
///Its \c Key and \c Value are inherited from \c M1.
|
alpar@25
|
565 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
|
alpar@26
|
566 |
///
|
alpar@26
|
567 |
/// \todo Revise the misleading name
|
alpar@25
|
568 |
template<typename M1, typename M2>
|
alpar@25
|
569 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
|
alpar@25
|
570 |
const M1& m1;
|
alpar@25
|
571 |
const M2& m2;
|
alpar@25
|
572 |
public:
|
alpar@25
|
573 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
alpar@25
|
574 |
typedef typename Parent::Key Key;
|
alpar@25
|
575 |
typedef typename Parent::Value Value;
|
alpar@25
|
576 |
|
alpar@25
|
577 |
///Constructor
|
alpar@25
|
578 |
SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@25
|
579 |
/// \e
|
alpar@25
|
580 |
Value operator[](Key k) const {return m1[k]-m2[k];}
|
alpar@25
|
581 |
};
|
alpar@25
|
582 |
|
alpar@25
|
583 |
///Returns a \c SubMap class
|
alpar@25
|
584 |
|
alpar@25
|
585 |
///This function just returns a \c SubMap class.
|
alpar@25
|
586 |
///
|
alpar@25
|
587 |
///\relates SubMap
|
alpar@25
|
588 |
template<typename M1, typename M2>
|
alpar@25
|
589 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
|
alpar@25
|
590 |
return SubMap<M1, M2>(m1, m2);
|
alpar@25
|
591 |
}
|
alpar@25
|
592 |
|
alpar@25
|
593 |
///Product of two maps
|
alpar@25
|
594 |
|
alpar@25
|
595 |
///This \c concepts::ReadMap "read only map" returns the product of the
|
kpeter@29
|
596 |
///values of the two given maps.
|
kpeter@29
|
597 |
///Its \c Key and \c Value are inherited from \c M1.
|
alpar@25
|
598 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
|
alpar@25
|
599 |
template<typename M1, typename M2>
|
alpar@25
|
600 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
|
alpar@25
|
601 |
const M1& m1;
|
alpar@25
|
602 |
const M2& m2;
|
alpar@25
|
603 |
public:
|
alpar@25
|
604 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
alpar@25
|
605 |
typedef typename Parent::Key Key;
|
alpar@25
|
606 |
typedef typename Parent::Value Value;
|
alpar@25
|
607 |
|
alpar@25
|
608 |
///Constructor
|
alpar@25
|
609 |
MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@25
|
610 |
/// \e
|
alpar@25
|
611 |
Value operator[](Key k) const {return m1[k]*m2[k];}
|
alpar@25
|
612 |
};
|
alpar@25
|
613 |
|
alpar@25
|
614 |
///Returns a \c MulMap class
|
alpar@25
|
615 |
|
alpar@25
|
616 |
///This function just returns a \c MulMap class.
|
alpar@25
|
617 |
///\relates MulMap
|
alpar@25
|
618 |
template<typename M1, typename M2>
|
alpar@25
|
619 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
|
alpar@25
|
620 |
return MulMap<M1, M2>(m1,m2);
|
alpar@25
|
621 |
}
|
alpar@25
|
622 |
|
kpeter@29
|
623 |
///Scales a map with a constant.
|
alpar@25
|
624 |
|
alpar@25
|
625 |
///This \c concepts::ReadMap "read only map" returns the value of the
|
alpar@25
|
626 |
///given map multiplied from the left side with a constant value.
|
kpeter@29
|
627 |
///Its \c Key and \c Value are inherited from \c M.
|
alpar@25
|
628 |
///
|
alpar@25
|
629 |
///Actually,
|
alpar@25
|
630 |
///\code
|
alpar@25
|
631 |
/// ScaleMap<X> sc(x,v);
|
alpar@25
|
632 |
///\endcode
|
kpeter@29
|
633 |
///is equivalent to
|
alpar@25
|
634 |
///\code
|
alpar@25
|
635 |
/// ConstMap<X::Key, X::Value> c_tmp(v);
|
alpar@25
|
636 |
/// MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
|
alpar@25
|
637 |
///\endcode
|
kpeter@29
|
638 |
///
|
kpeter@29
|
639 |
///\sa ScaleWriteMap
|
alpar@25
|
640 |
template<typename M, typename C = typename M::Value>
|
alpar@25
|
641 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
|
alpar@25
|
642 |
const M& m;
|
alpar@25
|
643 |
C v;
|
alpar@25
|
644 |
public:
|
alpar@25
|
645 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
646 |
typedef typename Parent::Key Key;
|
alpar@25
|
647 |
typedef typename Parent::Value Value;
|
alpar@25
|
648 |
|
alpar@25
|
649 |
///Constructor
|
alpar@25
|
650 |
|
kpeter@29
|
651 |
///Constructor.
|
kpeter@29
|
652 |
///\param _m is the undelying map.
|
kpeter@29
|
653 |
///\param _v is the scaling value.
|
alpar@25
|
654 |
ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
|
alpar@25
|
655 |
/// \e
|
alpar@25
|
656 |
Value operator[](Key k) const {return v * m[k];}
|
alpar@25
|
657 |
};
|
alpar@25
|
658 |
|
kpeter@29
|
659 |
///Scales a map with a constant (ReadWrite version).
|
alpar@25
|
660 |
|
alpar@25
|
661 |
///This \c concepts::ReadWriteMap "read-write map" returns the value of the
|
alpar@25
|
662 |
///given map multiplied from the left side with a constant value. It can
|
kpeter@29
|
663 |
///also be used as write map if the \c / operator is defined between
|
kpeter@29
|
664 |
///\c Value and \c C and the given multiplier is not zero.
|
kpeter@29
|
665 |
///Its \c Key and \c Value are inherited from \c M.
|
kpeter@29
|
666 |
///
|
kpeter@29
|
667 |
///\sa ScaleMap
|
alpar@25
|
668 |
template<typename M, typename C = typename M::Value>
|
alpar@25
|
669 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
alpar@25
|
670 |
M& m;
|
alpar@25
|
671 |
C v;
|
alpar@25
|
672 |
public:
|
alpar@25
|
673 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
674 |
typedef typename Parent::Key Key;
|
alpar@25
|
675 |
typedef typename Parent::Value Value;
|
alpar@25
|
676 |
|
alpar@25
|
677 |
///Constructor
|
alpar@25
|
678 |
|
kpeter@29
|
679 |
///Constructor.
|
kpeter@29
|
680 |
///\param _m is the undelying map.
|
kpeter@29
|
681 |
///\param _v is the scaling value.
|
alpar@25
|
682 |
ScaleWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
|
alpar@25
|
683 |
/// \e
|
alpar@25
|
684 |
Value operator[](Key k) const {return v * m[k];}
|
alpar@25
|
685 |
/// \e
|
alpar@25
|
686 |
void set(Key k, const Value& c) { m.set(k, c / v);}
|
alpar@25
|
687 |
};
|
alpar@25
|
688 |
|
kpeter@29
|
689 |
///Returns a \c ScaleMap class
|
alpar@25
|
690 |
|
kpeter@29
|
691 |
///This function just returns a \c ScaleMap class.
|
alpar@25
|
692 |
///\relates ScaleMap
|
alpar@25
|
693 |
template<typename M, typename C>
|
alpar@25
|
694 |
inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
|
alpar@25
|
695 |
return ScaleMap<M, C>(m,v);
|
alpar@25
|
696 |
}
|
alpar@25
|
697 |
|
kpeter@29
|
698 |
///Returns a \c ScaleWriteMap class
|
kpeter@29
|
699 |
|
kpeter@29
|
700 |
///This function just returns a \c ScaleWriteMap class.
|
kpeter@29
|
701 |
///\relates ScaleWriteMap
|
alpar@25
|
702 |
template<typename M, typename C>
|
alpar@25
|
703 |
inline ScaleWriteMap<M, C> scaleMap(M &m,const C &v) {
|
alpar@25
|
704 |
return ScaleWriteMap<M, C>(m,v);
|
alpar@25
|
705 |
}
|
alpar@25
|
706 |
|
alpar@25
|
707 |
///Quotient of two maps
|
alpar@25
|
708 |
|
alpar@25
|
709 |
///This \c concepts::ReadMap "read only map" returns the quotient of the
|
kpeter@29
|
710 |
///values of the two given maps.
|
kpeter@29
|
711 |
///Its \c Key and \c Value are inherited from \c M1.
|
alpar@25
|
712 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
|
alpar@25
|
713 |
template<typename M1, typename M2>
|
alpar@25
|
714 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
|
alpar@25
|
715 |
const M1& m1;
|
alpar@25
|
716 |
const M2& m2;
|
alpar@25
|
717 |
public:
|
alpar@25
|
718 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
alpar@25
|
719 |
typedef typename Parent::Key Key;
|
alpar@25
|
720 |
typedef typename Parent::Value Value;
|
alpar@25
|
721 |
|
alpar@25
|
722 |
///Constructor
|
alpar@25
|
723 |
DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@25
|
724 |
/// \e
|
alpar@25
|
725 |
Value operator[](Key k) const {return m1[k]/m2[k];}
|
alpar@25
|
726 |
};
|
alpar@25
|
727 |
|
alpar@25
|
728 |
///Returns a \c DivMap class
|
alpar@25
|
729 |
|
alpar@25
|
730 |
///This function just returns a \c DivMap class.
|
alpar@25
|
731 |
///\relates DivMap
|
alpar@25
|
732 |
template<typename M1, typename M2>
|
alpar@25
|
733 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
|
alpar@25
|
734 |
return DivMap<M1, M2>(m1,m2);
|
alpar@25
|
735 |
}
|
alpar@25
|
736 |
|
alpar@25
|
737 |
///Composition of two maps
|
alpar@25
|
738 |
|
alpar@25
|
739 |
///This \c concepts::ReadMap "read only map" returns the composition of
|
kpeter@29
|
740 |
///two given maps.
|
kpeter@29
|
741 |
///That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2,
|
alpar@25
|
742 |
///then for
|
alpar@25
|
743 |
///\code
|
alpar@25
|
744 |
/// ComposeMap<M1, M2> cm(m1,m2);
|
alpar@25
|
745 |
///\endcode
|
kpeter@29
|
746 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
|
alpar@25
|
747 |
///
|
kpeter@29
|
748 |
///Its \c Key is inherited from \c M2 and its \c Value is from \c M1.
|
kpeter@29
|
749 |
///\c M2::Value must be convertible to \c M1::Key.
|
kpeter@29
|
750 |
///
|
kpeter@29
|
751 |
///\sa CombineMap
|
kpeter@29
|
752 |
///
|
alpar@25
|
753 |
///\todo Check the requirements.
|
alpar@25
|
754 |
template <typename M1, typename M2>
|
alpar@25
|
755 |
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
|
alpar@25
|
756 |
const M1& m1;
|
alpar@25
|
757 |
const M2& m2;
|
alpar@25
|
758 |
public:
|
alpar@25
|
759 |
typedef MapBase<typename M2::Key, typename M1::Value> Parent;
|
alpar@25
|
760 |
typedef typename Parent::Key Key;
|
alpar@25
|
761 |
typedef typename Parent::Value Value;
|
alpar@25
|
762 |
|
alpar@25
|
763 |
///Constructor
|
alpar@25
|
764 |
ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@25
|
765 |
|
alpar@25
|
766 |
/// \e
|
alpar@25
|
767 |
|
alpar@25
|
768 |
|
alpar@25
|
769 |
/// \todo Use the MapTraits once it is ported.
|
alpar@25
|
770 |
///
|
alpar@25
|
771 |
|
alpar@25
|
772 |
//typename MapTraits<M1>::ConstReturnValue
|
alpar@25
|
773 |
typename M1::Value
|
alpar@25
|
774 |
operator[](Key k) const {return m1[m2[k]];}
|
alpar@25
|
775 |
};
|
kpeter@29
|
776 |
|
alpar@25
|
777 |
///Returns a \c ComposeMap class
|
alpar@25
|
778 |
|
alpar@25
|
779 |
///This function just returns a \c ComposeMap class.
|
alpar@25
|
780 |
///\relates ComposeMap
|
alpar@25
|
781 |
template <typename M1, typename M2>
|
alpar@25
|
782 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) {
|
alpar@25
|
783 |
return ComposeMap<M1, M2>(m1,m2);
|
alpar@25
|
784 |
}
|
alpar@25
|
785 |
|
kpeter@29
|
786 |
///Combine of two maps using an STL (binary) functor.
|
alpar@25
|
787 |
|
kpeter@29
|
788 |
///Combine of two maps using an STL (binary) functor.
|
alpar@25
|
789 |
///
|
alpar@25
|
790 |
///This \c concepts::ReadMap "read only map" takes two maps and a
|
kpeter@29
|
791 |
///binary functor and returns the composition of the two
|
alpar@25
|
792 |
///given maps unsing the functor.
|
alpar@25
|
793 |
///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
|
kpeter@29
|
794 |
///and \c f is of \c F, then for
|
alpar@25
|
795 |
///\code
|
kpeter@29
|
796 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f);
|
alpar@25
|
797 |
///\endcode
|
alpar@25
|
798 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
|
alpar@25
|
799 |
///
|
alpar@25
|
800 |
///Its \c Key is inherited from \c M1 and its \c Value is \c V.
|
kpeter@29
|
801 |
///\c M2::Value and \c M1::Value must be convertible to the corresponding
|
alpar@25
|
802 |
///input parameter of \c F and the return type of \c F must be convertible
|
alpar@25
|
803 |
///to \c V.
|
kpeter@29
|
804 |
///
|
kpeter@29
|
805 |
///\sa ComposeMap
|
kpeter@29
|
806 |
///
|
alpar@25
|
807 |
///\todo Check the requirements.
|
alpar@25
|
808 |
template<typename M1, typename M2, typename F,
|
alpar@25
|
809 |
typename V = typename F::result_type>
|
alpar@25
|
810 |
class CombineMap : public MapBase<typename M1::Key, V> {
|
alpar@25
|
811 |
const M1& m1;
|
alpar@25
|
812 |
const M2& m2;
|
alpar@25
|
813 |
F f;
|
alpar@25
|
814 |
public:
|
alpar@25
|
815 |
typedef MapBase<typename M1::Key, V> Parent;
|
alpar@25
|
816 |
typedef typename Parent::Key Key;
|
alpar@25
|
817 |
typedef typename Parent::Value Value;
|
alpar@25
|
818 |
|
alpar@25
|
819 |
///Constructor
|
alpar@25
|
820 |
CombineMap(const M1 &_m1,const M2 &_m2,const F &_f = F())
|
alpar@25
|
821 |
: m1(_m1), m2(_m2), f(_f) {};
|
alpar@25
|
822 |
/// \e
|
alpar@25
|
823 |
Value operator[](Key k) const {return f(m1[k],m2[k]);}
|
alpar@25
|
824 |
};
|
alpar@25
|
825 |
|
alpar@25
|
826 |
///Returns a \c CombineMap class
|
alpar@25
|
827 |
|
alpar@25
|
828 |
///This function just returns a \c CombineMap class.
|
alpar@25
|
829 |
///
|
alpar@25
|
830 |
///For example if \c m1 and \c m2 are both \c double valued maps, then
|
alpar@25
|
831 |
///\code
|
kpeter@33
|
832 |
///combineMap(m1,m2,std::plus<double>())
|
alpar@25
|
833 |
///\endcode
|
kpeter@29
|
834 |
///is equivalent to
|
alpar@25
|
835 |
///\code
|
alpar@25
|
836 |
///addMap(m1,m2)
|
alpar@25
|
837 |
///\endcode
|
alpar@25
|
838 |
///
|
alpar@25
|
839 |
///This function is specialized for adaptable binary function
|
kpeter@29
|
840 |
///classes and C++ functions.
|
alpar@25
|
841 |
///
|
alpar@25
|
842 |
///\relates CombineMap
|
alpar@25
|
843 |
template<typename M1, typename M2, typename F, typename V>
|
alpar@25
|
844 |
inline CombineMap<M1, M2, F, V>
|
alpar@25
|
845 |
combineMap(const M1& m1,const M2& m2, const F& f) {
|
alpar@25
|
846 |
return CombineMap<M1, M2, F, V>(m1,m2,f);
|
alpar@25
|
847 |
}
|
alpar@25
|
848 |
|
alpar@25
|
849 |
template<typename M1, typename M2, typename F>
|
alpar@25
|
850 |
inline CombineMap<M1, M2, F, typename F::result_type>
|
alpar@25
|
851 |
combineMap(const M1& m1, const M2& m2, const F& f) {
|
alpar@25
|
852 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
|
alpar@25
|
853 |
}
|
alpar@25
|
854 |
|
alpar@25
|
855 |
template<typename M1, typename M2, typename K1, typename K2, typename V>
|
alpar@25
|
856 |
inline CombineMap<M1, M2, V (*)(K1, K2), V>
|
alpar@25
|
857 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
|
alpar@25
|
858 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
|
alpar@25
|
859 |
}
|
alpar@25
|
860 |
|
alpar@25
|
861 |
///Negative value of a map
|
alpar@25
|
862 |
|
alpar@25
|
863 |
///This \c concepts::ReadMap "read only map" returns the negative
|
kpeter@29
|
864 |
///value of the value returned by the given map.
|
kpeter@29
|
865 |
///Its \c Key and \c Value are inherited from \c M.
|
alpar@25
|
866 |
///The unary \c - operator must be defined for \c Value, of course.
|
kpeter@29
|
867 |
///
|
kpeter@29
|
868 |
///\sa NegWriteMap
|
alpar@25
|
869 |
template<typename M>
|
alpar@25
|
870 |
class NegMap : public MapBase<typename M::Key, typename M::Value> {
|
alpar@25
|
871 |
const M& m;
|
alpar@25
|
872 |
public:
|
alpar@25
|
873 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
874 |
typedef typename Parent::Key Key;
|
alpar@25
|
875 |
typedef typename Parent::Value Value;
|
alpar@25
|
876 |
|
alpar@25
|
877 |
///Constructor
|
alpar@25
|
878 |
NegMap(const M &_m) : m(_m) {};
|
alpar@25
|
879 |
/// \e
|
alpar@25
|
880 |
Value operator[](Key k) const {return -m[k];}
|
alpar@25
|
881 |
};
|
alpar@25
|
882 |
|
alpar@26
|
883 |
///Negative value of a map (ReadWrite version)
|
alpar@25
|
884 |
|
alpar@25
|
885 |
///This \c concepts::ReadWriteMap "read-write map" returns the negative
|
kpeter@29
|
886 |
///value of the value returned by the given map.
|
kpeter@29
|
887 |
///Its \c Key and \c Value are inherited from \c M.
|
alpar@25
|
888 |
///The unary \c - operator must be defined for \c Value, of course.
|
kpeter@29
|
889 |
///
|
kpeter@29
|
890 |
/// \sa NegMap
|
alpar@25
|
891 |
template<typename M>
|
alpar@25
|
892 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
alpar@25
|
893 |
M& m;
|
alpar@25
|
894 |
public:
|
alpar@25
|
895 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
896 |
typedef typename Parent::Key Key;
|
alpar@25
|
897 |
typedef typename Parent::Value Value;
|
alpar@25
|
898 |
|
alpar@25
|
899 |
///Constructor
|
alpar@25
|
900 |
NegWriteMap(M &_m) : m(_m) {};
|
alpar@25
|
901 |
/// \e
|
alpar@25
|
902 |
Value operator[](Key k) const {return -m[k];}
|
alpar@25
|
903 |
/// \e
|
alpar@25
|
904 |
void set(Key k, const Value& v) { m.set(k, -v); }
|
alpar@25
|
905 |
};
|
alpar@25
|
906 |
|
alpar@25
|
907 |
///Returns a \c NegMap class
|
alpar@25
|
908 |
|
alpar@25
|
909 |
///This function just returns a \c NegMap class.
|
alpar@25
|
910 |
///\relates NegMap
|
alpar@25
|
911 |
template <typename M>
|
alpar@25
|
912 |
inline NegMap<M> negMap(const M &m) {
|
alpar@25
|
913 |
return NegMap<M>(m);
|
alpar@25
|
914 |
}
|
alpar@25
|
915 |
|
kpeter@29
|
916 |
///Returns a \c NegWriteMap class
|
kpeter@29
|
917 |
|
kpeter@29
|
918 |
///This function just returns a \c NegWriteMap class.
|
kpeter@29
|
919 |
///\relates NegWriteMap
|
alpar@25
|
920 |
template <typename M>
|
alpar@25
|
921 |
inline NegWriteMap<M> negMap(M &m) {
|
alpar@25
|
922 |
return NegWriteMap<M>(m);
|
alpar@25
|
923 |
}
|
alpar@25
|
924 |
|
alpar@25
|
925 |
///Absolute value of a map
|
alpar@25
|
926 |
|
alpar@25
|
927 |
///This \c concepts::ReadMap "read only map" returns the absolute value
|
kpeter@29
|
928 |
///of the value returned by the given map.
|
kpeter@29
|
929 |
///Its \c Key and \c Value are inherited from \c M.
|
kpeter@29
|
930 |
///\c Value must be comparable to \c 0 and the unary \c -
|
alpar@25
|
931 |
///operator must be defined for it, of course.
|
alpar@25
|
932 |
template<typename M>
|
alpar@25
|
933 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> {
|
alpar@25
|
934 |
const M& m;
|
alpar@25
|
935 |
public:
|
alpar@25
|
936 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
937 |
typedef typename Parent::Key Key;
|
alpar@25
|
938 |
typedef typename Parent::Value Value;
|
alpar@25
|
939 |
|
alpar@25
|
940 |
///Constructor
|
alpar@25
|
941 |
AbsMap(const M &_m) : m(_m) {};
|
alpar@25
|
942 |
/// \e
|
alpar@25
|
943 |
Value operator[](Key k) const {
|
alpar@25
|
944 |
Value tmp = m[k];
|
alpar@25
|
945 |
return tmp >= 0 ? tmp : -tmp;
|
alpar@25
|
946 |
}
|
alpar@25
|
947 |
|
alpar@25
|
948 |
};
|
alpar@25
|
949 |
|
kpeter@29
|
950 |
///Returns an \c AbsMap class
|
alpar@25
|
951 |
|
kpeter@29
|
952 |
///This function just returns an \c AbsMap class.
|
alpar@25
|
953 |
///\relates AbsMap
|
alpar@25
|
954 |
template<typename M>
|
alpar@25
|
955 |
inline AbsMap<M> absMap(const M &m) {
|
alpar@25
|
956 |
return AbsMap<M>(m);
|
alpar@25
|
957 |
}
|
alpar@25
|
958 |
|
alpar@25
|
959 |
///Converts an STL style functor to a map
|
alpar@25
|
960 |
|
alpar@25
|
961 |
///This \c concepts::ReadMap "read only map" returns the value
|
kpeter@29
|
962 |
///of a given functor.
|
alpar@25
|
963 |
///
|
alpar@25
|
964 |
///Template parameters \c K and \c V will become its
|
kpeter@33
|
965 |
///\c Key and \c Value.
|
kpeter@33
|
966 |
///In most cases they have to be given explicitly because a
|
kpeter@33
|
967 |
///functor typically does not provide such typedefs.
|
alpar@25
|
968 |
///
|
alpar@25
|
969 |
///Parameter \c F is the type of the used functor.
|
kpeter@29
|
970 |
///
|
kpeter@29
|
971 |
///\sa MapFunctor
|
alpar@25
|
972 |
template<typename F,
|
alpar@25
|
973 |
typename K = typename F::argument_type,
|
alpar@25
|
974 |
typename V = typename F::result_type>
|
alpar@25
|
975 |
class FunctorMap : public MapBase<K, V> {
|
alpar@25
|
976 |
F f;
|
alpar@25
|
977 |
public:
|
alpar@25
|
978 |
typedef MapBase<K, V> Parent;
|
alpar@25
|
979 |
typedef typename Parent::Key Key;
|
alpar@25
|
980 |
typedef typename Parent::Value Value;
|
alpar@25
|
981 |
|
alpar@25
|
982 |
///Constructor
|
alpar@25
|
983 |
FunctorMap(const F &_f = F()) : f(_f) {}
|
alpar@25
|
984 |
/// \e
|
alpar@25
|
985 |
Value operator[](Key k) const { return f(k);}
|
alpar@25
|
986 |
};
|
alpar@25
|
987 |
|
alpar@25
|
988 |
///Returns a \c FunctorMap class
|
alpar@25
|
989 |
|
alpar@25
|
990 |
///This function just returns a \c FunctorMap class.
|
alpar@25
|
991 |
///
|
alpar@25
|
992 |
///It is specialized for adaptable function classes and
|
kpeter@29
|
993 |
///C++ functions.
|
alpar@25
|
994 |
///\relates FunctorMap
|
alpar@25
|
995 |
template<typename K, typename V, typename F> inline
|
alpar@25
|
996 |
FunctorMap<F, K, V> functorMap(const F &f) {
|
alpar@25
|
997 |
return FunctorMap<F, K, V>(f);
|
alpar@25
|
998 |
}
|
alpar@25
|
999 |
|
alpar@25
|
1000 |
template <typename F> inline
|
alpar@25
|
1001 |
FunctorMap<F, typename F::argument_type, typename F::result_type>
|
alpar@25
|
1002 |
functorMap(const F &f) {
|
alpar@25
|
1003 |
return FunctorMap<F, typename F::argument_type,
|
alpar@25
|
1004 |
typename F::result_type>(f);
|
alpar@25
|
1005 |
}
|
alpar@25
|
1006 |
|
alpar@25
|
1007 |
template <typename K, typename V> inline
|
alpar@25
|
1008 |
FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) {
|
alpar@25
|
1009 |
return FunctorMap<V (*)(K), K, V>(f);
|
alpar@25
|
1010 |
}
|
alpar@25
|
1011 |
|
alpar@25
|
1012 |
|
alpar@25
|
1013 |
///Converts a map to an STL style (unary) functor
|
alpar@25
|
1014 |
|
alpar@25
|
1015 |
///This class Converts a map to an STL style (unary) functor.
|
alpar@25
|
1016 |
///that is it provides an <tt>operator()</tt> to read its values.
|
alpar@25
|
1017 |
///
|
alpar@25
|
1018 |
///For the sake of convenience it also works as
|
alpar@25
|
1019 |
///a ususal \c concepts::ReadMap "readable map",
|
alpar@25
|
1020 |
///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
|
kpeter@29
|
1021 |
///
|
kpeter@29
|
1022 |
///\sa FunctorMap
|
alpar@25
|
1023 |
template <typename M>
|
alpar@25
|
1024 |
class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
|
alpar@25
|
1025 |
const M& m;
|
alpar@25
|
1026 |
public:
|
alpar@25
|
1027 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
1028 |
typedef typename Parent::Key Key;
|
alpar@25
|
1029 |
typedef typename Parent::Value Value;
|
alpar@25
|
1030 |
|
alpar@25
|
1031 |
typedef typename M::Key argument_type;
|
alpar@25
|
1032 |
typedef typename M::Value result_type;
|
alpar@25
|
1033 |
|
alpar@25
|
1034 |
///Constructor
|
alpar@25
|
1035 |
MapFunctor(const M &_m) : m(_m) {};
|
alpar@25
|
1036 |
///\e
|
alpar@25
|
1037 |
Value operator()(Key k) const {return m[k];}
|
alpar@25
|
1038 |
///\e
|
alpar@25
|
1039 |
Value operator[](Key k) const {return m[k];}
|
alpar@25
|
1040 |
};
|
alpar@25
|
1041 |
|
alpar@25
|
1042 |
///Returns a \c MapFunctor class
|
alpar@25
|
1043 |
|
alpar@25
|
1044 |
///This function just returns a \c MapFunctor class.
|
alpar@25
|
1045 |
///\relates MapFunctor
|
alpar@25
|
1046 |
template<typename M>
|
alpar@25
|
1047 |
inline MapFunctor<M> mapFunctor(const M &m) {
|
alpar@25
|
1048 |
return MapFunctor<M>(m);
|
alpar@25
|
1049 |
}
|
alpar@25
|
1050 |
|
alpar@25
|
1051 |
///Applies all map setting operations to two maps
|
alpar@25
|
1052 |
|
alpar@25
|
1053 |
///This map has two \c concepts::ReadMap "readable map"
|
alpar@25
|
1054 |
///parameters and each read request will be passed just to the
|
alpar@25
|
1055 |
///first map. This class is the just readable map type of the ForkWriteMap.
|
alpar@25
|
1056 |
///
|
kpeter@29
|
1057 |
///The \c Key and \c Value are inherited from \c M1.
|
alpar@25
|
1058 |
///The \c Key and \c Value of M2 must be convertible from those of \c M1.
|
alpar@26
|
1059 |
///
|
kpeter@29
|
1060 |
///\sa ForkWriteMap
|
kpeter@29
|
1061 |
///
|
alpar@26
|
1062 |
/// \todo Why is it needed?
|
alpar@25
|
1063 |
template<typename M1, typename M2>
|
alpar@25
|
1064 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
|
alpar@25
|
1065 |
const M1& m1;
|
alpar@25
|
1066 |
const M2& m2;
|
alpar@25
|
1067 |
public:
|
alpar@25
|
1068 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
alpar@25
|
1069 |
typedef typename Parent::Key Key;
|
alpar@25
|
1070 |
typedef typename Parent::Value Value;
|
alpar@25
|
1071 |
|
alpar@25
|
1072 |
///Constructor
|
alpar@25
|
1073 |
ForkMap(const M1 &_m1, const M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@25
|
1074 |
/// \e
|
alpar@25
|
1075 |
Value operator[](Key k) const {return m1[k];}
|
alpar@25
|
1076 |
};
|
alpar@25
|
1077 |
|
alpar@25
|
1078 |
|
alpar@25
|
1079 |
///Applies all map setting operations to two maps
|
alpar@25
|
1080 |
|
alpar@25
|
1081 |
///This map has two \c concepts::WriteMap "writable map"
|
alpar@25
|
1082 |
///parameters and each write request will be passed to both of them.
|
alpar@25
|
1083 |
///If \c M1 is also \c concepts::ReadMap "readable",
|
alpar@25
|
1084 |
///then the read operations will return the
|
alpar@25
|
1085 |
///corresponding values of \c M1.
|
alpar@25
|
1086 |
///
|
kpeter@29
|
1087 |
///The \c Key and \c Value are inherited from \c M1.
|
alpar@25
|
1088 |
///The \c Key and \c Value of M2 must be convertible from those of \c M1.
|
kpeter@29
|
1089 |
///
|
kpeter@29
|
1090 |
///\sa ForkMap
|
alpar@25
|
1091 |
template<typename M1, typename M2>
|
alpar@25
|
1092 |
class ForkWriteMap : public MapBase<typename M1::Key, typename M1::Value> {
|
alpar@25
|
1093 |
M1& m1;
|
alpar@25
|
1094 |
M2& m2;
|
alpar@25
|
1095 |
public:
|
alpar@25
|
1096 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
alpar@25
|
1097 |
typedef typename Parent::Key Key;
|
alpar@25
|
1098 |
typedef typename Parent::Value Value;
|
alpar@25
|
1099 |
|
alpar@25
|
1100 |
///Constructor
|
alpar@25
|
1101 |
ForkWriteMap(M1 &_m1, M2 &_m2) : m1(_m1), m2(_m2) {};
|
alpar@25
|
1102 |
///\e
|
alpar@25
|
1103 |
Value operator[](Key k) const {return m1[k];}
|
alpar@25
|
1104 |
///\e
|
alpar@25
|
1105 |
void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);}
|
alpar@25
|
1106 |
};
|
alpar@25
|
1107 |
|
kpeter@29
|
1108 |
///Returns a \c ForkMap class
|
alpar@25
|
1109 |
|
kpeter@29
|
1110 |
///This function just returns a \c ForkMap class.
|
alpar@25
|
1111 |
///\relates ForkMap
|
alpar@25
|
1112 |
template <typename M1, typename M2>
|
alpar@25
|
1113 |
inline ForkMap<M1, M2> forkMap(const M1 &m1, const M2 &m2) {
|
alpar@25
|
1114 |
return ForkMap<M1, M2>(m1,m2);
|
alpar@25
|
1115 |
}
|
alpar@25
|
1116 |
|
kpeter@29
|
1117 |
///Returns a \c ForkWriteMap class
|
kpeter@29
|
1118 |
|
kpeter@29
|
1119 |
///This function just returns a \c ForkWriteMap class.
|
kpeter@29
|
1120 |
///\relates ForkWriteMap
|
alpar@25
|
1121 |
template <typename M1, typename M2>
|
alpar@25
|
1122 |
inline ForkWriteMap<M1, M2> forkMap(M1 &m1, M2 &m2) {
|
alpar@25
|
1123 |
return ForkWriteMap<M1, M2>(m1,m2);
|
alpar@25
|
1124 |
}
|
alpar@25
|
1125 |
|
alpar@25
|
1126 |
|
alpar@25
|
1127 |
|
alpar@25
|
1128 |
/* ************* BOOL MAPS ******************* */
|
alpar@25
|
1129 |
|
alpar@25
|
1130 |
///Logical 'not' of a map
|
alpar@25
|
1131 |
|
alpar@25
|
1132 |
///This bool \c concepts::ReadMap "read only map" returns the
|
kpeter@29
|
1133 |
///logical negation of the value returned by the given map.
|
kpeter@29
|
1134 |
///Its \c Key is inherited from \c M, its Value is \c bool.
|
kpeter@29
|
1135 |
///
|
kpeter@29
|
1136 |
///\sa NotWriteMap
|
alpar@25
|
1137 |
template <typename M>
|
alpar@25
|
1138 |
class NotMap : public MapBase<typename M::Key, bool> {
|
alpar@25
|
1139 |
const M& m;
|
alpar@25
|
1140 |
public:
|
alpar@25
|
1141 |
typedef MapBase<typename M::Key, bool> Parent;
|
alpar@25
|
1142 |
typedef typename Parent::Key Key;
|
alpar@25
|
1143 |
typedef typename Parent::Value Value;
|
alpar@25
|
1144 |
|
alpar@25
|
1145 |
/// Constructor
|
alpar@25
|
1146 |
NotMap(const M &_m) : m(_m) {};
|
alpar@25
|
1147 |
///\e
|
alpar@25
|
1148 |
Value operator[](Key k) const {return !m[k];}
|
alpar@25
|
1149 |
};
|
alpar@25
|
1150 |
|
alpar@26
|
1151 |
///Logical 'not' of a map (ReadWrie version)
|
alpar@25
|
1152 |
|
alpar@25
|
1153 |
///This bool \c concepts::ReadWriteMap "read-write map" returns the
|
kpeter@29
|
1154 |
///logical negation of the value returned by the given map. When it is set,
|
alpar@25
|
1155 |
///the opposite value is set to the original map.
|
kpeter@29
|
1156 |
///Its \c Key is inherited from \c M, its Value is \c bool.
|
kpeter@29
|
1157 |
///
|
kpeter@29
|
1158 |
///\sa NotMap
|
alpar@25
|
1159 |
template <typename M>
|
alpar@25
|
1160 |
class NotWriteMap : public MapBase<typename M::Key, bool> {
|
alpar@25
|
1161 |
M& m;
|
alpar@25
|
1162 |
public:
|
alpar@25
|
1163 |
typedef MapBase<typename M::Key, bool> Parent;
|
alpar@25
|
1164 |
typedef typename Parent::Key Key;
|
alpar@25
|
1165 |
typedef typename Parent::Value Value;
|
alpar@25
|
1166 |
|
alpar@25
|
1167 |
/// Constructor
|
alpar@25
|
1168 |
NotWriteMap(M &_m) : m(_m) {};
|
alpar@25
|
1169 |
///\e
|
alpar@25
|
1170 |
Value operator[](Key k) const {return !m[k];}
|
alpar@25
|
1171 |
///\e
|
alpar@25
|
1172 |
void set(Key k, bool v) { m.set(k, !v); }
|
alpar@25
|
1173 |
};
|
alpar@25
|
1174 |
|
alpar@25
|
1175 |
///Returns a \c NotMap class
|
alpar@25
|
1176 |
|
alpar@25
|
1177 |
///This function just returns a \c NotMap class.
|
alpar@25
|
1178 |
///\relates NotMap
|
alpar@25
|
1179 |
template <typename M>
|
alpar@25
|
1180 |
inline NotMap<M> notMap(const M &m) {
|
alpar@25
|
1181 |
return NotMap<M>(m);
|
alpar@25
|
1182 |
}
|
alpar@25
|
1183 |
|
kpeter@29
|
1184 |
///Returns a \c NotWriteMap class
|
kpeter@29
|
1185 |
|
kpeter@29
|
1186 |
///This function just returns a \c NotWriteMap class.
|
kpeter@29
|
1187 |
///\relates NotWriteMap
|
alpar@25
|
1188 |
template <typename M>
|
alpar@25
|
1189 |
inline NotWriteMap<M> notMap(M &m) {
|
alpar@25
|
1190 |
return NotWriteMap<M>(m);
|
alpar@25
|
1191 |
}
|
alpar@25
|
1192 |
|
alpar@25
|
1193 |
namespace _maps_bits {
|
alpar@25
|
1194 |
|
alpar@25
|
1195 |
template <typename Value>
|
alpar@25
|
1196 |
struct Identity {
|
alpar@25
|
1197 |
typedef Value argument_type;
|
alpar@25
|
1198 |
typedef Value result_type;
|
alpar@25
|
1199 |
Value operator()(const Value& val) const {
|
alpar@25
|
1200 |
return val;
|
alpar@25
|
1201 |
}
|
alpar@25
|
1202 |
};
|
alpar@25
|
1203 |
|
alpar@25
|
1204 |
template <typename _Iterator, typename Enable = void>
|
alpar@25
|
1205 |
struct IteratorTraits {
|
alpar@25
|
1206 |
typedef typename std::iterator_traits<_Iterator>::value_type Value;
|
alpar@25
|
1207 |
};
|
alpar@25
|
1208 |
|
alpar@25
|
1209 |
template <typename _Iterator>
|
alpar@25
|
1210 |
struct IteratorTraits<_Iterator,
|
alpar@25
|
1211 |
typename exists<typename _Iterator::container_type>::type>
|
alpar@25
|
1212 |
{
|
alpar@25
|
1213 |
typedef typename _Iterator::container_type::value_type Value;
|
alpar@25
|
1214 |
};
|
alpar@25
|
1215 |
|
alpar@25
|
1216 |
}
|
alpar@25
|
1217 |
|
alpar@25
|
1218 |
|
kpeter@29
|
1219 |
/// \brief Writable bool map for logging each \c true assigned element
|
alpar@25
|
1220 |
///
|
kpeter@29
|
1221 |
/// Writable bool map for logging each \c true assigned element, i.e it
|
kpeter@29
|
1222 |
/// copies all the keys set to \c true to the given iterator.
|
alpar@25
|
1223 |
///
|
alpar@25
|
1224 |
/// \note The container of the iterator should contain space
|
alpar@25
|
1225 |
/// for each element.
|
alpar@25
|
1226 |
///
|
alpar@26
|
1227 |
/// The following example shows how you can write the edges found by the Prim
|
alpar@26
|
1228 |
/// algorithm directly
|
alpar@25
|
1229 |
/// to the standard output.
|
alpar@25
|
1230 |
///\code
|
alpar@25
|
1231 |
/// typedef IdMap<Graph, Edge> EdgeIdMap;
|
alpar@25
|
1232 |
/// EdgeIdMap edgeId(graph);
|
alpar@25
|
1233 |
///
|
alpar@25
|
1234 |
/// typedef MapFunctor<EdgeIdMap> EdgeIdFunctor;
|
alpar@25
|
1235 |
/// EdgeIdFunctor edgeIdFunctor(edgeId);
|
alpar@25
|
1236 |
///
|
alpar@25
|
1237 |
/// StoreBoolMap<ostream_iterator<int>, EdgeIdFunctor>
|
alpar@25
|
1238 |
/// writerMap(ostream_iterator<int>(cout, " "), edgeIdFunctor);
|
alpar@25
|
1239 |
///
|
alpar@25
|
1240 |
/// prim(graph, cost, writerMap);
|
alpar@25
|
1241 |
///\endcode
|
alpar@26
|
1242 |
///
|
kpeter@29
|
1243 |
///\sa BackInserterBoolMap
|
kpeter@33
|
1244 |
///\sa FrontInserterBoolMap
|
kpeter@33
|
1245 |
///\sa InserterBoolMap
|
kpeter@29
|
1246 |
///
|
kpeter@29
|
1247 |
///\todo Revise the name of this class and the related ones.
|
alpar@25
|
1248 |
template <typename _Iterator,
|
alpar@25
|
1249 |
typename _Functor =
|
alpar@25
|
1250 |
_maps_bits::Identity<typename _maps_bits::
|
alpar@25
|
1251 |
IteratorTraits<_Iterator>::Value> >
|
alpar@25
|
1252 |
class StoreBoolMap {
|
alpar@25
|
1253 |
public:
|
alpar@25
|
1254 |
typedef _Iterator Iterator;
|
alpar@25
|
1255 |
|
alpar@25
|
1256 |
typedef typename _Functor::argument_type Key;
|
alpar@25
|
1257 |
typedef bool Value;
|
alpar@25
|
1258 |
|
alpar@25
|
1259 |
typedef _Functor Functor;
|
alpar@25
|
1260 |
|
alpar@25
|
1261 |
/// Constructor
|
alpar@25
|
1262 |
StoreBoolMap(Iterator it, const Functor& functor = Functor())
|
alpar@25
|
1263 |
: _begin(it), _end(it), _functor(functor) {}
|
alpar@25
|
1264 |
|
alpar@26
|
1265 |
/// Gives back the given iterator set for the first key
|
alpar@25
|
1266 |
Iterator begin() const {
|
alpar@25
|
1267 |
return _begin;
|
alpar@25
|
1268 |
}
|
alpar@25
|
1269 |
|
alpar@26
|
1270 |
/// Gives back the the 'after the last' iterator
|
alpar@25
|
1271 |
Iterator end() const {
|
alpar@25
|
1272 |
return _end;
|
alpar@25
|
1273 |
}
|
alpar@25
|
1274 |
|
kpeter@29
|
1275 |
/// The \c set function of the map
|
alpar@25
|
1276 |
void set(const Key& key, Value value) const {
|
alpar@25
|
1277 |
if (value) {
|
alpar@25
|
1278 |
*_end++ = _functor(key);
|
alpar@25
|
1279 |
}
|
alpar@25
|
1280 |
}
|
alpar@25
|
1281 |
|
alpar@25
|
1282 |
private:
|
alpar@25
|
1283 |
Iterator _begin;
|
alpar@25
|
1284 |
mutable Iterator _end;
|
alpar@25
|
1285 |
Functor _functor;
|
alpar@25
|
1286 |
};
|
alpar@25
|
1287 |
|
kpeter@29
|
1288 |
/// \brief Writable bool map for logging each \c true assigned element in
|
kpeter@29
|
1289 |
/// a back insertable container.
|
alpar@25
|
1290 |
///
|
kpeter@29
|
1291 |
/// Writable bool map for logging each \c true assigned element by pushing
|
kpeter@29
|
1292 |
/// them into a back insertable container.
|
alpar@26
|
1293 |
/// It can be used to retrieve the items into a standard
|
alpar@26
|
1294 |
/// container. The next example shows how you can store the
|
alpar@26
|
1295 |
/// edges found by the Prim algorithm in a vector.
|
alpar@25
|
1296 |
///
|
alpar@25
|
1297 |
///\code
|
alpar@25
|
1298 |
/// vector<Edge> span_tree_edges;
|
alpar@25
|
1299 |
/// BackInserterBoolMap<vector<Edge> > inserter_map(span_tree_edges);
|
alpar@25
|
1300 |
/// prim(graph, cost, inserter_map);
|
alpar@25
|
1301 |
///\endcode
|
kpeter@29
|
1302 |
///
|
kpeter@29
|
1303 |
///\sa StoreBoolMap
|
kpeter@29
|
1304 |
///\sa FrontInserterBoolMap
|
kpeter@29
|
1305 |
///\sa InserterBoolMap
|
alpar@25
|
1306 |
template <typename Container,
|
alpar@25
|
1307 |
typename Functor =
|
alpar@25
|
1308 |
_maps_bits::Identity<typename Container::value_type> >
|
alpar@25
|
1309 |
class BackInserterBoolMap {
|
alpar@25
|
1310 |
public:
|
kpeter@34
|
1311 |
typedef typename Functor::argument_type Key;
|
alpar@25
|
1312 |
typedef bool Value;
|
alpar@25
|
1313 |
|
alpar@25
|
1314 |
/// Constructor
|
alpar@25
|
1315 |
BackInserterBoolMap(Container& _container,
|
alpar@25
|
1316 |
const Functor& _functor = Functor())
|
alpar@25
|
1317 |
: container(_container), functor(_functor) {}
|
alpar@25
|
1318 |
|
kpeter@29
|
1319 |
/// The \c set function of the map
|
alpar@25
|
1320 |
void set(const Key& key, Value value) {
|
alpar@25
|
1321 |
if (value) {
|
alpar@25
|
1322 |
container.push_back(functor(key));
|
alpar@25
|
1323 |
}
|
alpar@25
|
1324 |
}
|
alpar@25
|
1325 |
|
alpar@25
|
1326 |
private:
|
alpar@25
|
1327 |
Container& container;
|
alpar@25
|
1328 |
Functor functor;
|
alpar@25
|
1329 |
};
|
alpar@25
|
1330 |
|
kpeter@29
|
1331 |
/// \brief Writable bool map for logging each \c true assigned element in
|
alpar@25
|
1332 |
/// a front insertable container.
|
alpar@25
|
1333 |
///
|
kpeter@29
|
1334 |
/// Writable bool map for logging each \c true assigned element by pushing
|
kpeter@29
|
1335 |
/// them into a front insertable container.
|
kpeter@29
|
1336 |
/// It can be used to retrieve the items into a standard
|
kpeter@29
|
1337 |
/// container. For example see \ref BackInserterBoolMap.
|
kpeter@29
|
1338 |
///
|
kpeter@29
|
1339 |
///\sa BackInserterBoolMap
|
kpeter@29
|
1340 |
///\sa InserterBoolMap
|
alpar@25
|
1341 |
template <typename Container,
|
alpar@25
|
1342 |
typename Functor =
|
alpar@25
|
1343 |
_maps_bits::Identity<typename Container::value_type> >
|
alpar@25
|
1344 |
class FrontInserterBoolMap {
|
alpar@25
|
1345 |
public:
|
kpeter@34
|
1346 |
typedef typename Functor::argument_type Key;
|
alpar@25
|
1347 |
typedef bool Value;
|
alpar@25
|
1348 |
|
alpar@25
|
1349 |
/// Constructor
|
alpar@25
|
1350 |
FrontInserterBoolMap(Container& _container,
|
alpar@25
|
1351 |
const Functor& _functor = Functor())
|
alpar@25
|
1352 |
: container(_container), functor(_functor) {}
|
alpar@25
|
1353 |
|
kpeter@29
|
1354 |
/// The \c set function of the map
|
alpar@25
|
1355 |
void set(const Key& key, Value value) {
|
alpar@25
|
1356 |
if (value) {
|
kpeter@30
|
1357 |
container.push_front(functor(key));
|
alpar@25
|
1358 |
}
|
alpar@25
|
1359 |
}
|
alpar@25
|
1360 |
|
alpar@25
|
1361 |
private:
|
alpar@25
|
1362 |
Container& container;
|
alpar@25
|
1363 |
Functor functor;
|
alpar@25
|
1364 |
};
|
alpar@25
|
1365 |
|
kpeter@29
|
1366 |
/// \brief Writable bool map for storing each \c true assigned element in
|
alpar@25
|
1367 |
/// an insertable container.
|
alpar@25
|
1368 |
///
|
kpeter@29
|
1369 |
/// Writable bool map for storing each \c true assigned element in an
|
alpar@25
|
1370 |
/// insertable container. It will insert all the keys set to \c true into
|
alpar@26
|
1371 |
/// the container.
|
alpar@26
|
1372 |
///
|
alpar@26
|
1373 |
/// For example, if you want to store the cut arcs of the strongly
|
alpar@25
|
1374 |
/// connected components in a set you can use the next code:
|
alpar@25
|
1375 |
///
|
alpar@25
|
1376 |
///\code
|
alpar@25
|
1377 |
/// set<Arc> cut_arcs;
|
alpar@25
|
1378 |
/// InserterBoolMap<set<Arc> > inserter_map(cut_arcs);
|
alpar@25
|
1379 |
/// stronglyConnectedCutArcs(digraph, cost, inserter_map);
|
alpar@25
|
1380 |
///\endcode
|
kpeter@29
|
1381 |
///
|
kpeter@29
|
1382 |
///\sa BackInserterBoolMap
|
kpeter@29
|
1383 |
///\sa FrontInserterBoolMap
|
alpar@25
|
1384 |
template <typename Container,
|
alpar@25
|
1385 |
typename Functor =
|
alpar@25
|
1386 |
_maps_bits::Identity<typename Container::value_type> >
|
alpar@25
|
1387 |
class InserterBoolMap {
|
alpar@25
|
1388 |
public:
|
alpar@25
|
1389 |
typedef typename Container::value_type Key;
|
alpar@25
|
1390 |
typedef bool Value;
|
alpar@25
|
1391 |
|
kpeter@29
|
1392 |
/// Constructor with specified iterator
|
kpeter@29
|
1393 |
|
kpeter@29
|
1394 |
/// Constructor with specified iterator.
|
kpeter@29
|
1395 |
/// \param _container The container for storing the elements.
|
kpeter@29
|
1396 |
/// \param _it The elements will be inserted before this iterator.
|
kpeter@29
|
1397 |
/// \param _functor The functor that is used when an element is stored.
|
alpar@25
|
1398 |
InserterBoolMap(Container& _container, typename Container::iterator _it,
|
alpar@25
|
1399 |
const Functor& _functor = Functor())
|
alpar@25
|
1400 |
: container(_container), it(_it), functor(_functor) {}
|
alpar@25
|
1401 |
|
alpar@25
|
1402 |
/// Constructor
|
kpeter@29
|
1403 |
|
kpeter@29
|
1404 |
/// Constructor without specified iterator.
|
kpeter@29
|
1405 |
/// The elements will be inserted before <tt>_container.end()</tt>.
|
kpeter@29
|
1406 |
/// \param _container The container for storing the elements.
|
kpeter@29
|
1407 |
/// \param _functor The functor that is used when an element is stored.
|
alpar@25
|
1408 |
InserterBoolMap(Container& _container, const Functor& _functor = Functor())
|
alpar@25
|
1409 |
: container(_container), it(_container.end()), functor(_functor) {}
|
alpar@25
|
1410 |
|
kpeter@29
|
1411 |
/// The \c set function of the map
|
alpar@25
|
1412 |
void set(const Key& key, Value value) {
|
alpar@25
|
1413 |
if (value) {
|
kpeter@30
|
1414 |
it = container.insert(it, functor(key));
|
alpar@25
|
1415 |
++it;
|
alpar@25
|
1416 |
}
|
alpar@25
|
1417 |
}
|
alpar@25
|
1418 |
|
alpar@25
|
1419 |
private:
|
alpar@25
|
1420 |
Container& container;
|
alpar@25
|
1421 |
typename Container::iterator it;
|
alpar@25
|
1422 |
Functor functor;
|
alpar@25
|
1423 |
};
|
alpar@25
|
1424 |
|
kpeter@29
|
1425 |
/// \brief Writable bool map for filling each \c true assigned element with a
|
kpeter@29
|
1426 |
/// given value.
|
alpar@25
|
1427 |
///
|
kpeter@29
|
1428 |
/// Writable bool map for filling each \c true assigned element with a
|
kpeter@29
|
1429 |
/// given value. The value can set the container.
|
alpar@25
|
1430 |
///
|
alpar@26
|
1431 |
/// The following code finds the connected components of a graph
|
alpar@25
|
1432 |
/// and stores it in the \c comp map:
|
alpar@25
|
1433 |
///\code
|
alpar@25
|
1434 |
/// typedef Graph::NodeMap<int> ComponentMap;
|
alpar@25
|
1435 |
/// ComponentMap comp(graph);
|
alpar@25
|
1436 |
/// typedef FillBoolMap<Graph::NodeMap<int> > ComponentFillerMap;
|
alpar@25
|
1437 |
/// ComponentFillerMap filler(comp, 0);
|
alpar@25
|
1438 |
///
|
alpar@25
|
1439 |
/// Dfs<Graph>::DefProcessedMap<ComponentFillerMap>::Create dfs(graph);
|
alpar@25
|
1440 |
/// dfs.processedMap(filler);
|
alpar@25
|
1441 |
/// dfs.init();
|
alpar@25
|
1442 |
/// for (NodeIt it(graph); it != INVALID; ++it) {
|
alpar@25
|
1443 |
/// if (!dfs.reached(it)) {
|
alpar@25
|
1444 |
/// dfs.addSource(it);
|
alpar@25
|
1445 |
/// dfs.start();
|
alpar@25
|
1446 |
/// ++filler.fillValue();
|
alpar@25
|
1447 |
/// }
|
alpar@25
|
1448 |
/// }
|
alpar@25
|
1449 |
///\endcode
|
alpar@25
|
1450 |
template <typename Map>
|
alpar@25
|
1451 |
class FillBoolMap {
|
alpar@25
|
1452 |
public:
|
alpar@25
|
1453 |
typedef typename Map::Key Key;
|
alpar@25
|
1454 |
typedef bool Value;
|
alpar@25
|
1455 |
|
alpar@25
|
1456 |
/// Constructor
|
alpar@25
|
1457 |
FillBoolMap(Map& _map, const typename Map::Value& _fill)
|
alpar@25
|
1458 |
: map(_map), fill(_fill) {}
|
alpar@25
|
1459 |
|
alpar@25
|
1460 |
/// Constructor
|
alpar@25
|
1461 |
FillBoolMap(Map& _map)
|
alpar@25
|
1462 |
: map(_map), fill() {}
|
alpar@25
|
1463 |
|
alpar@25
|
1464 |
/// Gives back the current fill value
|
alpar@25
|
1465 |
const typename Map::Value& fillValue() const {
|
alpar@25
|
1466 |
return fill;
|
alpar@25
|
1467 |
}
|
alpar@25
|
1468 |
|
alpar@25
|
1469 |
/// Gives back the current fill value
|
alpar@25
|
1470 |
typename Map::Value& fillValue() {
|
alpar@25
|
1471 |
return fill;
|
alpar@25
|
1472 |
}
|
alpar@25
|
1473 |
|
alpar@25
|
1474 |
/// Sets the current fill value
|
alpar@25
|
1475 |
void fillValue(const typename Map::Value& _fill) {
|
alpar@25
|
1476 |
fill = _fill;
|
alpar@25
|
1477 |
}
|
alpar@25
|
1478 |
|
kpeter@29
|
1479 |
/// The \c set function of the map
|
alpar@25
|
1480 |
void set(const Key& key, Value value) {
|
alpar@25
|
1481 |
if (value) {
|
alpar@25
|
1482 |
map.set(key, fill);
|
alpar@25
|
1483 |
}
|
alpar@25
|
1484 |
}
|
alpar@25
|
1485 |
|
alpar@25
|
1486 |
private:
|
alpar@25
|
1487 |
Map& map;
|
alpar@25
|
1488 |
typename Map::Value fill;
|
alpar@25
|
1489 |
};
|
alpar@25
|
1490 |
|
alpar@25
|
1491 |
|
kpeter@29
|
1492 |
/// \brief Writable bool map for storing the sequence number of
|
kpeter@29
|
1493 |
/// \c true assignments.
|
alpar@26
|
1494 |
///
|
kpeter@29
|
1495 |
/// Writable bool map that stores for each \c true assigned elements
|
alpar@26
|
1496 |
/// the sequence number of this setting.
|
alpar@26
|
1497 |
/// It makes it easy to calculate the leaving
|
alpar@25
|
1498 |
/// order of the nodes in the \c Dfs algorithm.
|
alpar@25
|
1499 |
///
|
alpar@25
|
1500 |
///\code
|
alpar@25
|
1501 |
/// typedef Digraph::NodeMap<int> OrderMap;
|
alpar@25
|
1502 |
/// OrderMap order(digraph);
|
alpar@25
|
1503 |
/// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
|
alpar@25
|
1504 |
/// OrderSetterMap setter(order);
|
alpar@25
|
1505 |
/// Dfs<Digraph>::DefProcessedMap<OrderSetterMap>::Create dfs(digraph);
|
alpar@25
|
1506 |
/// dfs.processedMap(setter);
|
alpar@25
|
1507 |
/// dfs.init();
|
alpar@25
|
1508 |
/// for (NodeIt it(digraph); it != INVALID; ++it) {
|
alpar@25
|
1509 |
/// if (!dfs.reached(it)) {
|
alpar@25
|
1510 |
/// dfs.addSource(it);
|
alpar@25
|
1511 |
/// dfs.start();
|
alpar@25
|
1512 |
/// }
|
alpar@25
|
1513 |
/// }
|
alpar@25
|
1514 |
///\endcode
|
alpar@25
|
1515 |
///
|
alpar@26
|
1516 |
/// The storing of the discovering order is more difficult because the
|
alpar@25
|
1517 |
/// ReachedMap should be readable in the dfs algorithm but the setting
|
alpar@26
|
1518 |
/// order map is not readable. Thus we must use the fork map:
|
alpar@25
|
1519 |
///
|
alpar@25
|
1520 |
///\code
|
alpar@25
|
1521 |
/// typedef Digraph::NodeMap<int> OrderMap;
|
alpar@25
|
1522 |
/// OrderMap order(digraph);
|
alpar@25
|
1523 |
/// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
|
alpar@25
|
1524 |
/// OrderSetterMap setter(order);
|
alpar@25
|
1525 |
/// typedef Digraph::NodeMap<bool> StoreMap;
|
alpar@25
|
1526 |
/// StoreMap store(digraph);
|
alpar@25
|
1527 |
///
|
alpar@25
|
1528 |
/// typedef ForkWriteMap<StoreMap, OrderSetterMap> ReachedMap;
|
alpar@25
|
1529 |
/// ReachedMap reached(store, setter);
|
alpar@25
|
1530 |
///
|
alpar@25
|
1531 |
/// Dfs<Digraph>::DefReachedMap<ReachedMap>::Create dfs(digraph);
|
alpar@25
|
1532 |
/// dfs.reachedMap(reached);
|
alpar@25
|
1533 |
/// dfs.init();
|
alpar@25
|
1534 |
/// for (NodeIt it(digraph); it != INVALID; ++it) {
|
alpar@25
|
1535 |
/// if (!dfs.reached(it)) {
|
alpar@25
|
1536 |
/// dfs.addSource(it);
|
alpar@25
|
1537 |
/// dfs.start();
|
alpar@25
|
1538 |
/// }
|
alpar@25
|
1539 |
/// }
|
alpar@25
|
1540 |
///\endcode
|
alpar@25
|
1541 |
template <typename Map>
|
alpar@25
|
1542 |
class SettingOrderBoolMap {
|
alpar@25
|
1543 |
public:
|
alpar@25
|
1544 |
typedef typename Map::Key Key;
|
alpar@25
|
1545 |
typedef bool Value;
|
alpar@25
|
1546 |
|
alpar@25
|
1547 |
/// Constructor
|
alpar@25
|
1548 |
SettingOrderBoolMap(Map& _map)
|
alpar@25
|
1549 |
: map(_map), counter(0) {}
|
alpar@25
|
1550 |
|
alpar@25
|
1551 |
/// Number of set operations.
|
alpar@25
|
1552 |
int num() const {
|
alpar@25
|
1553 |
return counter;
|
alpar@25
|
1554 |
}
|
alpar@25
|
1555 |
|
alpar@25
|
1556 |
/// Setter function of the map
|
alpar@25
|
1557 |
void set(const Key& key, Value value) {
|
alpar@25
|
1558 |
if (value) {
|
alpar@25
|
1559 |
map.set(key, counter++);
|
alpar@25
|
1560 |
}
|
alpar@25
|
1561 |
}
|
alpar@25
|
1562 |
|
alpar@25
|
1563 |
private:
|
alpar@25
|
1564 |
Map& map;
|
alpar@25
|
1565 |
int counter;
|
alpar@25
|
1566 |
};
|
alpar@25
|
1567 |
|
alpar@25
|
1568 |
/// @}
|
alpar@25
|
1569 |
}
|
alpar@25
|
1570 |
|
alpar@25
|
1571 |
#endif // LEMON_MAPS_H
|