lemon/graph_utils.h
author Peter Kovacs <kpeter@inf.elte.hu>
Sun, 15 Jun 2008 22:03:33 +0200
changeset 170 91fb4372688f
parent 157 2ccc1afc2c52
child 199 e3aba2c72be4
permissions -rw-r--r--
Port dijkstra_test.cc from SVN -r3499
alpar@100
     1
/* -*- C++ -*-
alpar@100
     2
 *
alpar@100
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@100
     4
 *
alpar@100
     5
 * Copyright (C) 2003-2008
alpar@100
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@100
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@100
     8
 *
alpar@100
     9
 * Permission to use, modify and distribute this software is granted
alpar@100
    10
 * provided that this copyright notice appears in all copies. For
alpar@100
    11
 * precise terms see the accompanying LICENSE file.
alpar@100
    12
 *
alpar@100
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@100
    14
 * express or implied, and with no claim as to its suitability for any
alpar@100
    15
 * purpose.
alpar@100
    16
 *
alpar@100
    17
 */
alpar@100
    18
alpar@100
    19
#ifndef LEMON_GRAPH_UTILS_H
alpar@100
    20
#define LEMON_GRAPH_UTILS_H
alpar@100
    21
alpar@100
    22
#include <iterator>
alpar@100
    23
#include <vector>
alpar@100
    24
#include <map>
alpar@100
    25
#include <cmath>
alpar@100
    26
#include <algorithm>
alpar@100
    27
alpar@100
    28
#include <lemon/bits/invalid.h>
alpar@100
    29
#include <lemon/bits/utility.h>
alpar@100
    30
#include <lemon/maps.h>
alpar@100
    31
#include <lemon/bits/traits.h>
alpar@100
    32
alpar@100
    33
#include <lemon/bits/alteration_notifier.h>
alpar@100
    34
#include <lemon/bits/default_map.h>
alpar@100
    35
alpar@100
    36
///\ingroup gutils
alpar@100
    37
///\file
deba@139
    38
///\brief Graph utilities.
alpar@100
    39
alpar@100
    40
namespace lemon {
alpar@100
    41
alpar@100
    42
  /// \addtogroup gutils
alpar@100
    43
  /// @{
alpar@100
    44
alpar@100
    45
  ///Creates convenience typedefs for the digraph types and iterators
alpar@100
    46
alpar@100
    47
  ///This \c \#define creates convenience typedefs for the following types
alpar@100
    48
  ///of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
deba@139
    49
  ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap, 
deba@148
    50
  ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
deba@148
    51
  ///
deba@148
    52
  ///\note If the graph type is a dependent type, ie. the graph type depend
deba@148
    53
  ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
deba@148
    54
  ///macro.
deba@139
    55
#define DIGRAPH_TYPEDEFS(Digraph)					\
deba@148
    56
  typedef Digraph::Node Node;						\
deba@148
    57
  typedef Digraph::NodeIt NodeIt;					\
deba@148
    58
  typedef Digraph::Arc Arc;						\
deba@148
    59
  typedef Digraph::ArcIt ArcIt;						\
deba@148
    60
  typedef Digraph::InArcIt InArcIt;					\
deba@148
    61
  typedef Digraph::OutArcIt OutArcIt;					\
deba@148
    62
  typedef Digraph::NodeMap<bool> BoolNodeMap;				\
deba@148
    63
  typedef Digraph::NodeMap<int> IntNodeMap;				\
deba@148
    64
  typedef Digraph::NodeMap<double> DoubleNodeMap;			\
deba@148
    65
  typedef Digraph::ArcMap<bool> BoolArcMap;				\
deba@148
    66
  typedef Digraph::ArcMap<int> IntArcMap;				\
deba@148
    67
  typedef Digraph::ArcMap<double> DoubleArcMap
deba@140
    68
deba@148
    69
  ///Creates convenience typedefs for the digraph types and iterators
alpar@100
    70
deba@148
    71
  ///\see DIGRAPH_TYPEDEFS
deba@148
    72
  ///
deba@148
    73
  ///\note Use this macro, if the graph type is a dependent type,
deba@148
    74
  ///ie. the graph type depend on a template parameter.
deba@148
    75
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)				\
deba@148
    76
  typedef typename Digraph::Node Node;					\
deba@148
    77
  typedef typename Digraph::NodeIt NodeIt;				\
deba@148
    78
  typedef typename Digraph::Arc Arc;					\
deba@148
    79
  typedef typename Digraph::ArcIt ArcIt;				\
deba@148
    80
  typedef typename Digraph::InArcIt InArcIt;				\
deba@148
    81
  typedef typename Digraph::OutArcIt OutArcIt;				\
deba@148
    82
  typedef typename Digraph::template NodeMap<bool> BoolNodeMap;		\
deba@148
    83
  typedef typename Digraph::template NodeMap<int> IntNodeMap;		\
deba@148
    84
  typedef typename Digraph::template NodeMap<double> DoubleNodeMap;	\
deba@148
    85
  typedef typename Digraph::template ArcMap<bool> BoolArcMap;		\
deba@148
    86
  typedef typename Digraph::template ArcMap<int> IntArcMap;		\
deba@148
    87
  typedef typename Digraph::template ArcMap<double> DoubleArcMap
deba@148
    88
  
alpar@100
    89
  ///Creates convenience typedefs for the graph types and iterators
alpar@100
    90
deba@139
    91
  ///This \c \#define creates the same convenience typedefs as defined
deba@139
    92
  ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
deba@139
    93
  ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
deba@139
    94
  ///\c DoubleEdgeMap.
deba@148
    95
  ///
deba@148
    96
  ///\note If the graph type is a dependent type, ie. the graph type depend
deba@148
    97
  ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
deba@148
    98
  ///macro.
deba@139
    99
#define GRAPH_TYPEDEFS(Graph)						\
deba@139
   100
  DIGRAPH_TYPEDEFS(Graph);						\
deba@148
   101
  typedef Graph::Edge Edge;						\
deba@148
   102
  typedef Graph::EdgeIt EdgeIt;						\
deba@148
   103
  typedef Graph::IncEdgeIt IncEdgeIt;					\
deba@148
   104
  typedef Graph::EdgeMap<bool> BoolEdgeMap;				\
deba@148
   105
  typedef Graph::EdgeMap<int> IntEdgeMap;				\
deba@148
   106
  typedef Graph::EdgeMap<double> DoubleEdgeMap
deba@140
   107
deba@148
   108
  ///Creates convenience typedefs for the graph types and iterators
deba@148
   109
deba@148
   110
  ///\see GRAPH_TYPEDEFS
deba@148
   111
  ///
deba@148
   112
  ///\note Use this macro, if the graph type is a dependent type,
deba@148
   113
  ///ie. the graph type depend on a template parameter.
deba@148
   114
#define TEMPLATE_GRAPH_TYPEDEFS(Graph)					\
deba@148
   115
  TEMPLATE_DIGRAPH_TYPEDEFS(Graph);					\
deba@148
   116
  typedef typename Graph::Edge Edge;					\
deba@148
   117
  typedef typename Graph::EdgeIt EdgeIt;				\
deba@148
   118
  typedef typename Graph::IncEdgeIt IncEdgeIt;				\
deba@148
   119
  typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;		\
deba@148
   120
  typedef typename Graph::template EdgeMap<int> IntEdgeMap;		\
deba@148
   121
  typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
deba@139
   122
deba@139
   123
  /// \brief Function to count the items in the graph.
alpar@100
   124
  ///
deba@139
   125
  /// This function counts the items (nodes, arcs etc) in the graph.
alpar@100
   126
  /// The complexity of the function is O(n) because
alpar@100
   127
  /// it iterates on all of the items.
deba@139
   128
  template <typename Graph, typename Item>
deba@139
   129
  inline int countItems(const Graph& g) {
deba@139
   130
    typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
alpar@100
   131
    int num = 0;
alpar@100
   132
    for (ItemIt it(g); it != INVALID; ++it) {
alpar@100
   133
      ++num;
alpar@100
   134
    }
alpar@100
   135
    return num;
alpar@100
   136
  }
alpar@100
   137
alpar@100
   138
  // Node counting:
alpar@100
   139
deba@139
   140
  namespace _graph_utils_bits {
alpar@100
   141
    
deba@139
   142
    template <typename Graph, typename Enable = void>
alpar@100
   143
    struct CountNodesSelector {
deba@139
   144
      static int count(const Graph &g) {
deba@139
   145
        return countItems<Graph, typename Graph::Node>(g);
alpar@100
   146
      }
alpar@100
   147
    };
alpar@100
   148
deba@139
   149
    template <typename Graph>
alpar@100
   150
    struct CountNodesSelector<
deba@139
   151
      Graph, typename 
deba@139
   152
      enable_if<typename Graph::NodeNumTag, void>::type> 
alpar@100
   153
    {
deba@139
   154
      static int count(const Graph &g) {
alpar@100
   155
        return g.nodeNum();
alpar@100
   156
      }
alpar@100
   157
    };    
alpar@100
   158
  }
alpar@100
   159
deba@139
   160
  /// \brief Function to count the nodes in the graph.
alpar@100
   161
  ///
deba@139
   162
  /// This function counts the nodes in the graph.
alpar@100
   163
  /// The complexity of the function is O(n) but for some
deba@139
   164
  /// graph structures it is specialized to run in O(1).
alpar@100
   165
  ///
deba@139
   166
  /// If the graph contains a \e nodeNum() member function and a 
alpar@100
   167
  /// \e NodeNumTag tag then this function calls directly the member
alpar@100
   168
  /// function to query the cardinality of the node set.
deba@139
   169
  template <typename Graph>
deba@139
   170
  inline int countNodes(const Graph& g) {
deba@139
   171
    return _graph_utils_bits::CountNodesSelector<Graph>::count(g);
alpar@100
   172
  }
alpar@100
   173
deba@139
   174
  // Arc counting:
deba@139
   175
deba@139
   176
  namespace _graph_utils_bits {
alpar@100
   177
    
deba@139
   178
    template <typename Graph, typename Enable = void>
deba@139
   179
    struct CountArcsSelector {
deba@139
   180
      static int count(const Graph &g) {
deba@139
   181
        return countItems<Graph, typename Graph::Arc>(g);
alpar@100
   182
      }
alpar@100
   183
    };
alpar@100
   184
deba@139
   185
    template <typename Graph>
deba@139
   186
    struct CountArcsSelector<
deba@139
   187
      Graph, 
deba@139
   188
      typename enable_if<typename Graph::ArcNumTag, void>::type> 
alpar@100
   189
    {
deba@139
   190
      static int count(const Graph &g) {
alpar@100
   191
        return g.arcNum();
alpar@100
   192
      }
alpar@100
   193
    };    
alpar@100
   194
  }
alpar@100
   195
deba@139
   196
  /// \brief Function to count the arcs in the graph.
alpar@100
   197
  ///
deba@139
   198
  /// This function counts the arcs in the graph.
alpar@100
   199
  /// The complexity of the function is O(e) but for some
deba@139
   200
  /// graph structures it is specialized to run in O(1).
alpar@100
   201
  ///
deba@139
   202
  /// If the graph contains a \e arcNum() member function and a 
deba@139
   203
  /// \e EdgeNumTag tag then this function calls directly the member
alpar@100
   204
  /// function to query the cardinality of the arc set.
deba@139
   205
  template <typename Graph>
deba@139
   206
  inline int countArcs(const Graph& g) {
deba@139
   207
    return _graph_utils_bits::CountArcsSelector<Graph>::count(g);
alpar@100
   208
  }
alpar@100
   209
deba@139
   210
  // Edge counting:
deba@139
   211
  namespace _graph_utils_bits {
alpar@100
   212
    
deba@139
   213
    template <typename Graph, typename Enable = void>
alpar@100
   214
    struct CountEdgesSelector {
deba@139
   215
      static int count(const Graph &g) {
deba@139
   216
        return countItems<Graph, typename Graph::Edge>(g);
alpar@100
   217
      }
alpar@100
   218
    };
alpar@100
   219
deba@139
   220
    template <typename Graph>
alpar@100
   221
    struct CountEdgesSelector<
deba@139
   222
      Graph, 
deba@139
   223
      typename enable_if<typename Graph::EdgeNumTag, void>::type> 
alpar@100
   224
    {
deba@139
   225
      static int count(const Graph &g) {
alpar@100
   226
        return g.edgeNum();
alpar@100
   227
      }
alpar@100
   228
    };    
alpar@100
   229
  }
alpar@100
   230
deba@139
   231
  /// \brief Function to count the edges in the graph.
alpar@100
   232
  ///
deba@139
   233
  /// This function counts the edges in the graph.
deba@139
   234
  /// The complexity of the function is O(m) but for some
deba@139
   235
  /// graph structures it is specialized to run in O(1).
alpar@100
   236
  ///
deba@139
   237
  /// If the graph contains a \e edgeNum() member function and a 
deba@139
   238
  /// \e EdgeNumTag tag then this function calls directly the member
alpar@100
   239
  /// function to query the cardinality of the edge set.
deba@139
   240
  template <typename Graph>
deba@139
   241
  inline int countEdges(const Graph& g) {
deba@139
   242
    return _graph_utils_bits::CountEdgesSelector<Graph>::count(g);
alpar@100
   243
alpar@100
   244
  }
alpar@100
   245
alpar@100
   246
deba@139
   247
  template <typename Graph, typename DegIt>
deba@139
   248
  inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
alpar@100
   249
    int num = 0;
alpar@100
   250
    for (DegIt it(_g, _n); it != INVALID; ++it) {
alpar@100
   251
      ++num;
alpar@100
   252
    }
alpar@100
   253
    return num;
alpar@100
   254
  }
alpar@100
   255
alpar@100
   256
  /// \brief Function to count the number of the out-arcs from node \c n.
alpar@100
   257
  ///
alpar@100
   258
  /// This function counts the number of the out-arcs from node \c n
deba@139
   259
  /// in the graph.  
deba@139
   260
  template <typename Graph>
deba@139
   261
  inline int countOutArcs(const Graph& _g,  const typename Graph::Node& _n) {
deba@139
   262
    return countNodeDegree<Graph, typename Graph::OutArcIt>(_g, _n);
alpar@100
   263
  }
alpar@100
   264
alpar@100
   265
  /// \brief Function to count the number of the in-arcs to node \c n.
alpar@100
   266
  ///
alpar@100
   267
  /// This function counts the number of the in-arcs to node \c n
deba@139
   268
  /// in the graph.  
deba@139
   269
  template <typename Graph>
deba@139
   270
  inline int countInArcs(const Graph& _g,  const typename Graph::Node& _n) {
deba@139
   271
    return countNodeDegree<Graph, typename Graph::InArcIt>(_g, _n);
alpar@100
   272
  }
alpar@100
   273
deba@139
   274
  /// \brief Function to count the number of the inc-edges to node \c n.
alpar@100
   275
  ///
deba@139
   276
  /// This function counts the number of the inc-edges to node \c n
deba@139
   277
  /// in the graph.  
deba@139
   278
  template <typename Graph>
deba@139
   279
  inline int countIncEdges(const Graph& _g,  const typename Graph::Node& _n) {
deba@139
   280
    return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n);
alpar@100
   281
  }
alpar@100
   282
deba@139
   283
  namespace _graph_utils_bits {
alpar@100
   284
    
deba@139
   285
    template <typename Graph, typename Enable = void>
alpar@100
   286
    struct FindArcSelector {
deba@139
   287
      typedef typename Graph::Node Node;
deba@139
   288
      typedef typename Graph::Arc Arc;
deba@139
   289
      static Arc find(const Graph &g, Node u, Node v, Arc e) {
alpar@100
   290
        if (e == INVALID) {
alpar@100
   291
          g.firstOut(e, u);
alpar@100
   292
        } else {
alpar@100
   293
          g.nextOut(e);
alpar@100
   294
        }
alpar@100
   295
        while (e != INVALID && g.target(e) != v) {
alpar@100
   296
          g.nextOut(e);
alpar@100
   297
        }
alpar@100
   298
        return e;
alpar@100
   299
      }
alpar@100
   300
    };
alpar@100
   301
deba@139
   302
    template <typename Graph>
alpar@100
   303
    struct FindArcSelector<
deba@139
   304
      Graph, 
deba@139
   305
      typename enable_if<typename Graph::FindEdgeTag, void>::type> 
alpar@100
   306
    {
deba@139
   307
      typedef typename Graph::Node Node;
deba@139
   308
      typedef typename Graph::Arc Arc;
deba@139
   309
      static Arc find(const Graph &g, Node u, Node v, Arc prev) {
alpar@100
   310
        return g.findArc(u, v, prev);
alpar@100
   311
      }
alpar@100
   312
    };    
alpar@100
   313
  }
alpar@100
   314
deba@139
   315
  /// \brief Finds an arc between two nodes of a graph.
alpar@100
   316
  ///
deba@139
   317
  /// Finds an arc from node \c u to node \c v in graph \c g.
alpar@100
   318
  ///
alpar@100
   319
  /// If \c prev is \ref INVALID (this is the default value), then
alpar@100
   320
  /// it finds the first arc from \c u to \c v. Otherwise it looks for
alpar@100
   321
  /// the next arc from \c u to \c v after \c prev.
alpar@100
   322
  /// \return The found arc or \ref INVALID if there is no such an arc.
alpar@100
   323
  ///
alpar@100
   324
  /// Thus you can iterate through each arc from \c u to \c v as it follows.
alpar@100
   325
  ///\code
alpar@100
   326
  /// for(Arc e=findArc(g,u,v);e!=INVALID;e=findArc(g,u,v,e)) {
alpar@100
   327
  ///   ...
alpar@100
   328
  /// }
alpar@100
   329
  ///\endcode
alpar@100
   330
  ///
alpar@100
   331
  ///\sa ArcLookUp
alpar@100
   332
  ///\sa AllArcLookUp
alpar@100
   333
  ///\sa DynArcLookUp
alpar@100
   334
  ///\sa ConArcIt
deba@139
   335
  template <typename Graph>
deba@139
   336
  inline typename Graph::Arc 
deba@139
   337
  findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
deba@139
   338
           typename Graph::Arc prev = INVALID) {
deba@139
   339
    return _graph_utils_bits::FindArcSelector<Graph>::find(g, u, v, prev);
alpar@100
   340
  }
alpar@100
   341
alpar@100
   342
  /// \brief Iterator for iterating on arcs connected the same nodes.
alpar@100
   343
  ///
alpar@100
   344
  /// Iterator for iterating on arcs connected the same nodes. It is 
alpar@100
   345
  /// higher level interface for the findArc() function. You can
alpar@100
   346
  /// use it the following way:
alpar@100
   347
  ///\code
deba@139
   348
  /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
alpar@100
   349
  ///   ...
alpar@100
   350
  /// }
alpar@100
   351
  ///\endcode
alpar@100
   352
  /// 
alpar@100
   353
  ///\sa findArc()
alpar@100
   354
  ///\sa ArcLookUp
alpar@100
   355
  ///\sa AllArcLookUp
alpar@100
   356
  ///\sa DynArcLookUp
deba@139
   357
  template <typename _Graph>
deba@139
   358
  class ConArcIt : public _Graph::Arc {
alpar@100
   359
  public:
alpar@100
   360
deba@139
   361
    typedef _Graph Graph;
deba@139
   362
    typedef typename Graph::Arc Parent;
alpar@100
   363
deba@139
   364
    typedef typename Graph::Arc Arc;
deba@139
   365
    typedef typename Graph::Node Node;
alpar@100
   366
alpar@100
   367
    /// \brief Constructor.
alpar@100
   368
    ///
alpar@100
   369
    /// Construct a new ConArcIt iterating on the arcs which
alpar@100
   370
    /// connects the \c u and \c v node.
deba@139
   371
    ConArcIt(const Graph& g, Node u, Node v) : _graph(g) {
deba@139
   372
      Parent::operator=(findArc(_graph, u, v));
alpar@100
   373
    }
alpar@100
   374
alpar@100
   375
    /// \brief Constructor.
alpar@100
   376
    ///
alpar@100
   377
    /// Construct a new ConArcIt which continues the iterating from 
alpar@100
   378
    /// the \c e arc.
deba@139
   379
    ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {}
alpar@100
   380
    
alpar@100
   381
    /// \brief Increment operator.
alpar@100
   382
    ///
alpar@100
   383
    /// It increments the iterator and gives back the next arc.
alpar@100
   384
    ConArcIt& operator++() {
deba@139
   385
      Parent::operator=(findArc(_graph, _graph.source(*this), 
deba@139
   386
				_graph.target(*this), *this));
alpar@100
   387
      return *this;
alpar@100
   388
    }
alpar@100
   389
  private:
deba@139
   390
    const Graph& _graph;
alpar@100
   391
  };
alpar@100
   392
deba@139
   393
  namespace _graph_utils_bits {
alpar@100
   394
    
deba@139
   395
    template <typename Graph, typename Enable = void>
alpar@100
   396
    struct FindEdgeSelector {
deba@139
   397
      typedef typename Graph::Node Node;
deba@139
   398
      typedef typename Graph::Edge Edge;
deba@139
   399
      static Edge find(const Graph &g, Node u, Node v, Edge e) {
alpar@100
   400
        bool b;
alpar@100
   401
        if (u != v) {
alpar@100
   402
          if (e == INVALID) {
alpar@100
   403
            g.firstInc(e, b, u);
alpar@100
   404
          } else {
kpeter@169
   405
            b = g.u(e) == u;
alpar@100
   406
            g.nextInc(e, b);
alpar@100
   407
          }
kpeter@169
   408
          while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
alpar@100
   409
            g.nextInc(e, b);
alpar@100
   410
          }
alpar@100
   411
        } else {
alpar@100
   412
          if (e == INVALID) {
alpar@100
   413
            g.firstInc(e, b, u);
alpar@100
   414
          } else {
alpar@100
   415
            b = true;
alpar@100
   416
            g.nextInc(e, b);
alpar@100
   417
          }
kpeter@169
   418
          while (e != INVALID && (!b || g.v(e) != v)) {
alpar@100
   419
            g.nextInc(e, b);
alpar@100
   420
          }
alpar@100
   421
        }
alpar@100
   422
        return e;
alpar@100
   423
      }
alpar@100
   424
    };
alpar@100
   425
deba@139
   426
    template <typename Graph>
alpar@100
   427
    struct FindEdgeSelector<
deba@139
   428
      Graph, 
deba@139
   429
      typename enable_if<typename Graph::FindEdgeTag, void>::type> 
alpar@100
   430
    {
deba@139
   431
      typedef typename Graph::Node Node;
deba@139
   432
      typedef typename Graph::Edge Edge;
deba@139
   433
      static Edge find(const Graph &g, Node u, Node v, Edge prev) {
alpar@100
   434
        return g.findEdge(u, v, prev);
alpar@100
   435
      }
alpar@100
   436
    };    
alpar@100
   437
  }
alpar@100
   438
deba@139
   439
  /// \brief Finds an edge between two nodes of a graph.
alpar@100
   440
  ///
deba@139
   441
  /// Finds an edge from node \c u to node \c v in graph \c g.
deba@139
   442
  /// If the node \c u and node \c v is equal then each loop edge
deba@139
   443
  /// will be enumerated once.
alpar@100
   444
  ///
alpar@100
   445
  /// If \c prev is \ref INVALID (this is the default value), then
alpar@100
   446
  /// it finds the first arc from \c u to \c v. Otherwise it looks for
alpar@100
   447
  /// the next arc from \c u to \c v after \c prev.
alpar@100
   448
  /// \return The found arc or \ref INVALID if there is no such an arc.
alpar@100
   449
  ///
alpar@100
   450
  /// Thus you can iterate through each arc from \c u to \c v as it follows.
alpar@100
   451
  ///\code
alpar@100
   452
  /// for(Edge e = findEdge(g,u,v); e != INVALID; 
alpar@100
   453
  ///     e = findEdge(g,u,v,e)) {
alpar@100
   454
  ///   ...
alpar@100
   455
  /// }
alpar@100
   456
  ///\endcode
alpar@100
   457
  ///
kpeter@169
   458
  ///\sa ConEdgeIt
alpar@100
   459
deba@139
   460
  template <typename Graph>
deba@139
   461
  inline typename Graph::Edge 
deba@139
   462
  findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
deba@139
   463
            typename Graph::Edge p = INVALID) {
deba@139
   464
    return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
alpar@100
   465
  }
alpar@100
   466
alpar@100
   467
  /// \brief Iterator for iterating on edges connected the same nodes.
alpar@100
   468
  ///
alpar@100
   469
  /// Iterator for iterating on edges connected the same nodes. It is 
alpar@100
   470
  /// higher level interface for the findEdge() function. You can
alpar@100
   471
  /// use it the following way:
alpar@100
   472
  ///\code
deba@139
   473
  /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
alpar@100
   474
  ///   ...
alpar@100
   475
  /// }
alpar@100
   476
  ///\endcode
alpar@100
   477
  ///
alpar@100
   478
  ///\sa findEdge()
deba@139
   479
  template <typename _Graph>
deba@139
   480
  class ConEdgeIt : public _Graph::Edge {
alpar@100
   481
  public:
alpar@100
   482
deba@139
   483
    typedef _Graph Graph;
deba@139
   484
    typedef typename Graph::Edge Parent;
alpar@100
   485
deba@139
   486
    typedef typename Graph::Edge Edge;
deba@139
   487
    typedef typename Graph::Node Node;
alpar@100
   488
alpar@100
   489
    /// \brief Constructor.
alpar@100
   490
    ///
deba@139
   491
    /// Construct a new ConEdgeIt iterating on the edges which
alpar@100
   492
    /// connects the \c u and \c v node.
deba@139
   493
    ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) {
deba@139
   494
      Parent::operator=(findEdge(_graph, u, v));
alpar@100
   495
    }
alpar@100
   496
alpar@100
   497
    /// \brief Constructor.
alpar@100
   498
    ///
alpar@100
   499
    /// Construct a new ConEdgeIt which continues the iterating from 
deba@139
   500
    /// the \c e edge.
deba@139
   501
    ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {}
alpar@100
   502
    
alpar@100
   503
    /// \brief Increment operator.
alpar@100
   504
    ///
deba@139
   505
    /// It increments the iterator and gives back the next edge.
alpar@100
   506
    ConEdgeIt& operator++() {
kpeter@169
   507
      Parent::operator=(findEdge(_graph, _graph.u(*this), 
kpeter@169
   508
				 _graph.v(*this), *this));
alpar@100
   509
      return *this;
alpar@100
   510
    }
alpar@100
   511
  private:
deba@139
   512
    const Graph& _graph;
alpar@100
   513
  };
alpar@100
   514
deba@139
   515
  namespace _graph_utils_bits {
alpar@100
   516
alpar@100
   517
    template <typename Digraph, typename Item, typename RefMap>
alpar@100
   518
    class MapCopyBase {
alpar@100
   519
    public:
alpar@100
   520
      virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
alpar@100
   521
      
alpar@100
   522
      virtual ~MapCopyBase() {}
alpar@100
   523
    };
alpar@100
   524
alpar@100
   525
    template <typename Digraph, typename Item, typename RefMap, 
alpar@100
   526
              typename ToMap, typename FromMap>
alpar@100
   527
    class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
alpar@100
   528
    public:
alpar@100
   529
alpar@100
   530
      MapCopy(ToMap& tmap, const FromMap& map) 
alpar@100
   531
        : _tmap(tmap), _map(map) {}
alpar@100
   532
      
alpar@100
   533
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
alpar@100
   534
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
alpar@100
   535
        for (ItemIt it(digraph); it != INVALID; ++it) {
alpar@100
   536
          _tmap.set(refMap[it], _map[it]);
alpar@100
   537
        }
alpar@100
   538
      }
alpar@100
   539
alpar@100
   540
    private:
alpar@100
   541
      ToMap& _tmap;
alpar@100
   542
      const FromMap& _map;
alpar@100
   543
    };
alpar@100
   544
alpar@100
   545
    template <typename Digraph, typename Item, typename RefMap, typename It>
alpar@100
   546
    class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
alpar@100
   547
    public:
alpar@100
   548
alpar@100
   549
      ItemCopy(It& it, const Item& item) : _it(it), _item(item) {}
alpar@100
   550
      
alpar@100
   551
      virtual void copy(const Digraph&, const RefMap& refMap) {
alpar@100
   552
        _it = refMap[_item];
alpar@100
   553
      }
alpar@100
   554
alpar@100
   555
    private:
alpar@100
   556
      It& _it;
alpar@100
   557
      Item _item;
alpar@100
   558
    };
alpar@100
   559
alpar@100
   560
    template <typename Digraph, typename Item, typename RefMap, typename Ref>
alpar@100
   561
    class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
alpar@100
   562
    public:
alpar@100
   563
alpar@100
   564
      RefCopy(Ref& map) : _map(map) {}
alpar@100
   565
      
alpar@100
   566
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
alpar@100
   567
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
alpar@100
   568
        for (ItemIt it(digraph); it != INVALID; ++it) {
alpar@100
   569
          _map.set(it, refMap[it]);
alpar@100
   570
        }
alpar@100
   571
      }
alpar@100
   572
alpar@100
   573
    private:
alpar@100
   574
      Ref& _map;
alpar@100
   575
    };
alpar@100
   576
alpar@100
   577
    template <typename Digraph, typename Item, typename RefMap, 
alpar@100
   578
              typename CrossRef>
alpar@100
   579
    class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
alpar@100
   580
    public:
alpar@100
   581
alpar@100
   582
      CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
alpar@100
   583
      
alpar@100
   584
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
alpar@100
   585
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
alpar@100
   586
        for (ItemIt it(digraph); it != INVALID; ++it) {
alpar@100
   587
          _cmap.set(refMap[it], it);
alpar@100
   588
        }
alpar@100
   589
      }
alpar@100
   590
alpar@100
   591
    private:
alpar@100
   592
      CrossRef& _cmap;
alpar@100
   593
    };
alpar@100
   594
alpar@100
   595
    template <typename Digraph, typename Enable = void>
alpar@100
   596
    struct DigraphCopySelector {
alpar@100
   597
      template <typename From, typename NodeRefMap, typename ArcRefMap>
alpar@100
   598
      static void copy(Digraph &to, const From& from,
alpar@100
   599
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
alpar@100
   600
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
alpar@100
   601
          nodeRefMap[it] = to.addNode();
alpar@100
   602
        }
alpar@100
   603
        for (typename From::ArcIt it(from); it != INVALID; ++it) {
alpar@100
   604
          arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)], 
alpar@100
   605
                                          nodeRefMap[from.target(it)]);
alpar@100
   606
        }
alpar@100
   607
      }
alpar@100
   608
    };
alpar@100
   609
alpar@100
   610
    template <typename Digraph>
alpar@100
   611
    struct DigraphCopySelector<
alpar@100
   612
      Digraph, 
alpar@100
   613
      typename enable_if<typename Digraph::BuildTag, void>::type> 
alpar@100
   614
    {
alpar@100
   615
      template <typename From, typename NodeRefMap, typename ArcRefMap>
alpar@100
   616
      static void copy(Digraph &to, const From& from,
alpar@100
   617
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
alpar@100
   618
        to.build(from, nodeRefMap, arcRefMap);
alpar@100
   619
      }
alpar@100
   620
    };
alpar@100
   621
alpar@100
   622
    template <typename Graph, typename Enable = void>
alpar@100
   623
    struct GraphCopySelector {
alpar@100
   624
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
alpar@100
   625
      static void copy(Graph &to, const From& from,
alpar@100
   626
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
alpar@100
   627
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
alpar@100
   628
          nodeRefMap[it] = to.addNode();
alpar@100
   629
        }
alpar@100
   630
        for (typename From::EdgeIt it(from); it != INVALID; ++it) {
alpar@100
   631
          edgeRefMap[it] = to.addArc(nodeRefMap[from.source(it)], 
alpar@100
   632
				       nodeRefMap[from.target(it)]);
alpar@100
   633
        }
alpar@100
   634
      }
alpar@100
   635
    };
alpar@100
   636
alpar@100
   637
    template <typename Graph>
alpar@100
   638
    struct GraphCopySelector<
alpar@100
   639
      Graph, 
alpar@100
   640
      typename enable_if<typename Graph::BuildTag, void>::type> 
alpar@100
   641
    {
alpar@100
   642
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
alpar@100
   643
      static void copy(Graph &to, const From& from,
alpar@100
   644
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
alpar@100
   645
        to.build(from, nodeRefMap, edgeRefMap);
alpar@100
   646
      }
alpar@100
   647
    };
alpar@100
   648
alpar@100
   649
  }
alpar@100
   650
alpar@100
   651
  /// \brief Class to copy a digraph.
alpar@100
   652
  ///
alpar@100
   653
  /// Class to copy a digraph to another digraph (duplicate a digraph). The
alpar@100
   654
  /// simplest way of using it is through the \c copyDigraph() function.
deba@139
   655
  ///
deba@139
   656
  /// This class not just make a copy of a graph, but it can create
deba@139
   657
  /// references and cross references between the nodes and arcs of
deba@139
   658
  /// the two graphs, it can copy maps for use with the newly created
deba@139
   659
  /// graph and copy nodes and arcs.
deba@139
   660
  ///
deba@139
   661
  /// To make a copy from a graph, first an instance of DigraphCopy
deba@139
   662
  /// should be created, then the data belongs to the graph should
deba@139
   663
  /// assigned to copy. In the end, the \c run() member should be
deba@139
   664
  /// called.
deba@139
   665
  ///
deba@139
   666
  /// The next code copies a graph with several data:
deba@139
   667
  ///\code
deba@139
   668
  ///  DigraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph);
deba@139
   669
  ///  // create a reference for the nodes
deba@139
   670
  ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
deba@139
   671
  ///  dc.nodeRef(nr);
deba@139
   672
  ///  // create a cross reference (inverse) for the arcs
deba@139
   673
  ///  NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
deba@139
   674
  ///  dc.arcCrossRef(acr);
deba@139
   675
  ///  // copy an arc map
deba@139
   676
  ///  OrigGraph::ArcMap<double> oamap(orig_graph);
deba@139
   677
  ///  NewGraph::ArcMap<double> namap(new_graph);
deba@139
   678
  ///  dc.arcMap(namap, oamap);
deba@139
   679
  ///  // copy a node
deba@139
   680
  ///  OrigGraph::Node on;
deba@139
   681
  ///  NewGraph::Node nn;
deba@139
   682
  ///  dc.node(nn, on);
deba@139
   683
  ///  // Executions of copy
deba@139
   684
  ///  dc.run();
deba@139
   685
  ///\endcode
alpar@100
   686
  template <typename To, typename From>
alpar@100
   687
  class DigraphCopy {
alpar@100
   688
  private:
alpar@100
   689
alpar@100
   690
    typedef typename From::Node Node;
alpar@100
   691
    typedef typename From::NodeIt NodeIt;
alpar@100
   692
    typedef typename From::Arc Arc;
alpar@100
   693
    typedef typename From::ArcIt ArcIt;
alpar@100
   694
alpar@100
   695
    typedef typename To::Node TNode;
alpar@100
   696
    typedef typename To::Arc TArc;
alpar@100
   697
alpar@100
   698
    typedef typename From::template NodeMap<TNode> NodeRefMap;
alpar@100
   699
    typedef typename From::template ArcMap<TArc> ArcRefMap;
alpar@100
   700
    
alpar@100
   701
    
alpar@100
   702
  public: 
alpar@100
   703
alpar@100
   704
alpar@100
   705
    /// \brief Constructor for the DigraphCopy.
alpar@100
   706
    ///
alpar@100
   707
    /// It copies the content of the \c _from digraph into the
alpar@100
   708
    /// \c _to digraph.
deba@139
   709
    DigraphCopy(To& to, const From& from) 
deba@139
   710
      : _from(from), _to(to) {}
alpar@100
   711
alpar@100
   712
    /// \brief Destructor of the DigraphCopy
alpar@100
   713
    ///
alpar@100
   714
    /// Destructor of the DigraphCopy
alpar@100
   715
    ~DigraphCopy() {
deba@139
   716
      for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@139
   717
        delete _node_maps[i];
alpar@100
   718
      }
deba@139
   719
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@139
   720
        delete _arc_maps[i];
alpar@100
   721
      }
alpar@100
   722
alpar@100
   723
    }
alpar@100
   724
alpar@100
   725
    /// \brief Copies the node references into the given map.
alpar@100
   726
    ///
deba@139
   727
    /// Copies the node references into the given map. The parameter
deba@139
   728
    /// should be a map, which key type is the Node type of the source
deba@139
   729
    /// graph, while the value type is the Node type of the
deba@139
   730
    /// destination graph.
alpar@100
   731
    template <typename NodeRef>
alpar@100
   732
    DigraphCopy& nodeRef(NodeRef& map) {
deba@139
   733
      _node_maps.push_back(new _graph_utils_bits::RefCopy<From, Node, 
deba@139
   734
			   NodeRefMap, NodeRef>(map));
alpar@100
   735
      return *this;
alpar@100
   736
    }
alpar@100
   737
alpar@100
   738
    /// \brief Copies the node cross references into the given map.
alpar@100
   739
    ///
alpar@100
   740
    ///  Copies the node cross references (reverse references) into
deba@139
   741
    ///  the given map. The parameter should be a map, which key type
deba@139
   742
    ///  is the Node type of the destination graph, while the value type is
deba@139
   743
    ///  the Node type of the source graph.
alpar@100
   744
    template <typename NodeCrossRef>
alpar@100
   745
    DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
deba@139
   746
      _node_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Node,
deba@139
   747
			   NodeRefMap, NodeCrossRef>(map));
alpar@100
   748
      return *this;
alpar@100
   749
    }
alpar@100
   750
alpar@100
   751
    /// \brief Make copy of the given map.
alpar@100
   752
    ///
deba@139
   753
    /// Makes copy of the given map for the newly created digraph.
deba@139
   754
    /// The new map's key type is the destination graph's node type,
deba@139
   755
    /// and the copied map's key type is the source graph's node type.
alpar@100
   756
    template <typename ToMap, typename FromMap>
alpar@100
   757
    DigraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
deba@139
   758
      _node_maps.push_back(new _graph_utils_bits::MapCopy<From, Node, 
deba@139
   759
			   NodeRefMap, ToMap, FromMap>(tmap, map));
alpar@100
   760
      return *this;
alpar@100
   761
    }
alpar@100
   762
alpar@100
   763
    /// \brief Make a copy of the given node.
alpar@100
   764
    ///
alpar@100
   765
    /// Make a copy of the given node.
alpar@100
   766
    DigraphCopy& node(TNode& tnode, const Node& snode) {
deba@139
   767
      _node_maps.push_back(new _graph_utils_bits::ItemCopy<From, Node, 
deba@139
   768
			   NodeRefMap, TNode>(tnode, snode));
alpar@100
   769
      return *this;
alpar@100
   770
    }
alpar@100
   771
alpar@100
   772
    /// \brief Copies the arc references into the given map.
alpar@100
   773
    ///
alpar@100
   774
    /// Copies the arc references into the given map.
alpar@100
   775
    template <typename ArcRef>
alpar@100
   776
    DigraphCopy& arcRef(ArcRef& map) {
deba@139
   777
      _arc_maps.push_back(new _graph_utils_bits::RefCopy<From, Arc, 
deba@139
   778
			  ArcRefMap, ArcRef>(map));
alpar@100
   779
      return *this;
alpar@100
   780
    }
alpar@100
   781
alpar@100
   782
    /// \brief Copies the arc cross references into the given map.
alpar@100
   783
    ///
alpar@100
   784
    ///  Copies the arc cross references (reverse references) into
alpar@100
   785
    ///  the given map.
alpar@100
   786
    template <typename ArcCrossRef>
alpar@100
   787
    DigraphCopy& arcCrossRef(ArcCrossRef& map) {
deba@139
   788
      _arc_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Arc,
deba@139
   789
			  ArcRefMap, ArcCrossRef>(map));
alpar@100
   790
      return *this;
alpar@100
   791
    }
alpar@100
   792
alpar@100
   793
    /// \brief Make copy of the given map.
alpar@100
   794
    ///
alpar@100
   795
    /// Makes copy of the given map for the newly created digraph. 
alpar@100
   796
    /// The new map's key type is the to digraph's arc type,
alpar@100
   797
    /// and the copied map's key type is the from digraph's arc
alpar@100
   798
    /// type.  
alpar@100
   799
    template <typename ToMap, typename FromMap>
alpar@100
   800
    DigraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
deba@139
   801
      _arc_maps.push_back(new _graph_utils_bits::MapCopy<From, Arc, 
deba@139
   802
			  ArcRefMap, ToMap, FromMap>(tmap, map));
alpar@100
   803
      return *this;
alpar@100
   804
    }
alpar@100
   805
alpar@100
   806
    /// \brief Make a copy of the given arc.
alpar@100
   807
    ///
alpar@100
   808
    /// Make a copy of the given arc.
alpar@100
   809
    DigraphCopy& arc(TArc& tarc, const Arc& sarc) {
deba@139
   810
      _arc_maps.push_back(new _graph_utils_bits::ItemCopy<From, Arc, 
deba@139
   811
			  ArcRefMap, TArc>(tarc, sarc));
alpar@100
   812
      return *this;
alpar@100
   813
    }
alpar@100
   814
alpar@100
   815
    /// \brief Executes the copies.
alpar@100
   816
    ///
alpar@100
   817
    /// Executes the copies.
alpar@100
   818
    void run() {
deba@139
   819
      NodeRefMap nodeRefMap(_from);
deba@139
   820
      ArcRefMap arcRefMap(_from);
deba@139
   821
      _graph_utils_bits::DigraphCopySelector<To>::
deba@139
   822
        copy(_to, _from, nodeRefMap, arcRefMap);
deba@139
   823
      for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@139
   824
        _node_maps[i]->copy(_from, nodeRefMap);
alpar@100
   825
      }
deba@139
   826
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@139
   827
        _arc_maps[i]->copy(_from, arcRefMap);
alpar@100
   828
      }      
alpar@100
   829
    }
alpar@100
   830
alpar@100
   831
  protected:
alpar@100
   832
alpar@100
   833
deba@139
   834
    const From& _from;
deba@139
   835
    To& _to;
alpar@100
   836
deba@139
   837
    std::vector<_graph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* > 
deba@139
   838
    _node_maps;
alpar@100
   839
deba@139
   840
    std::vector<_graph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* > 
deba@139
   841
    _arc_maps;
alpar@100
   842
alpar@100
   843
  };
alpar@100
   844
alpar@100
   845
  /// \brief Copy a digraph to another digraph.
alpar@100
   846
  ///
deba@139
   847
  /// Copy a digraph to another digraph. The complete usage of the
deba@139
   848
  /// function is detailed in the DigraphCopy class, but a short
deba@139
   849
  /// example shows a basic work:
alpar@100
   850
  ///\code
alpar@100
   851
  /// copyDigraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run();
alpar@100
   852
  ///\endcode
alpar@100
   853
  /// 
alpar@100
   854
  /// After the copy the \c nr map will contain the mapping from the
alpar@100
   855
  /// nodes of the \c from digraph to the nodes of the \c to digraph and
alpar@100
   856
  /// \c ecr will contain the mapping from the arcs of the \c to digraph
alpar@100
   857
  /// to the arcs of the \c from digraph.
alpar@100
   858
  ///
alpar@100
   859
  /// \see DigraphCopy 
alpar@100
   860
  template <typename To, typename From>
alpar@100
   861
  DigraphCopy<To, From> copyDigraph(To& to, const From& from) {
alpar@100
   862
    return DigraphCopy<To, From>(to, from);
alpar@100
   863
  }
alpar@100
   864
deba@139
   865
  /// \brief Class to copy a graph.
alpar@100
   866
  ///
deba@139
   867
  /// Class to copy a graph to another graph (duplicate a graph). The
deba@139
   868
  /// simplest way of using it is through the \c copyGraph() function.
deba@139
   869
  ///
deba@139
   870
  /// This class not just make a copy of a graph, but it can create
deba@139
   871
  /// references and cross references between the nodes, edges and arcs of
deba@139
   872
  /// the two graphs, it can copy maps for use with the newly created
deba@139
   873
  /// graph and copy nodes, edges and arcs.
deba@139
   874
  ///
deba@139
   875
  /// To make a copy from a graph, first an instance of GraphCopy
deba@139
   876
  /// should be created, then the data belongs to the graph should
deba@139
   877
  /// assigned to copy. In the end, the \c run() member should be
deba@139
   878
  /// called.
deba@139
   879
  ///
deba@139
   880
  /// The next code copies a graph with several data:
deba@139
   881
  ///\code
deba@139
   882
  ///  GraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph);
deba@139
   883
  ///  // create a reference for the nodes
deba@139
   884
  ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
deba@139
   885
  ///  dc.nodeRef(nr);
deba@139
   886
  ///  // create a cross reference (inverse) for the edges
deba@139
   887
  ///  NewGraph::EdgeMap<OrigGraph::Arc> ecr(new_graph);
deba@139
   888
  ///  dc.edgeCrossRef(ecr);
deba@139
   889
  ///  // copy an arc map
deba@139
   890
  ///  OrigGraph::ArcMap<double> oamap(orig_graph);
deba@139
   891
  ///  NewGraph::ArcMap<double> namap(new_graph);
deba@139
   892
  ///  dc.arcMap(namap, oamap);
deba@139
   893
  ///  // copy a node
deba@139
   894
  ///  OrigGraph::Node on;
deba@139
   895
  ///  NewGraph::Node nn;
deba@139
   896
  ///  dc.node(nn, on);
deba@139
   897
  ///  // Executions of copy
deba@139
   898
  ///  dc.run();
deba@139
   899
  ///\endcode
alpar@100
   900
  template <typename To, typename From>
alpar@100
   901
  class GraphCopy {
alpar@100
   902
  private:
alpar@100
   903
alpar@100
   904
    typedef typename From::Node Node;
alpar@100
   905
    typedef typename From::NodeIt NodeIt;
alpar@100
   906
    typedef typename From::Arc Arc;
alpar@100
   907
    typedef typename From::ArcIt ArcIt;
alpar@100
   908
    typedef typename From::Edge Edge;
alpar@100
   909
    typedef typename From::EdgeIt EdgeIt;
alpar@100
   910
alpar@100
   911
    typedef typename To::Node TNode;
alpar@100
   912
    typedef typename To::Arc TArc;
alpar@100
   913
    typedef typename To::Edge TEdge;
alpar@100
   914
alpar@100
   915
    typedef typename From::template NodeMap<TNode> NodeRefMap;
alpar@100
   916
    typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
alpar@100
   917
alpar@100
   918
    struct ArcRefMap {
deba@139
   919
      ArcRefMap(const To& to, const From& from,
deba@139
   920
		const EdgeRefMap& edge_ref, const NodeRefMap& node_ref) 
deba@139
   921
        : _to(to), _from(from), 
deba@139
   922
          _edge_ref(edge_ref), _node_ref(node_ref) {}
alpar@100
   923
alpar@100
   924
      typedef typename From::Arc Key;
alpar@100
   925
      typedef typename To::Arc Value;
alpar@100
   926
alpar@100
   927
      Value operator[](const Key& key) const {
alpar@100
   928
        bool forward = 
deba@139
   929
          (_from.direction(key) == 
deba@139
   930
	   (_node_ref[_from.source(key)] == _to.source(_edge_ref[key])));
deba@139
   931
	return _to.direct(_edge_ref[key], forward); 
alpar@100
   932
      }
alpar@100
   933
      
deba@139
   934
      const To& _to;
deba@139
   935
      const From& _from;
deba@139
   936
      const EdgeRefMap& _edge_ref;
deba@139
   937
      const NodeRefMap& _node_ref;
alpar@100
   938
    };
alpar@100
   939
alpar@100
   940
    
alpar@100
   941
  public: 
alpar@100
   942
alpar@100
   943
deba@139
   944
    /// \brief Constructor for the GraphCopy.
alpar@100
   945
    ///
deba@139
   946
    /// It copies the content of the \c _from graph into the
deba@139
   947
    /// \c _to graph.
deba@139
   948
    GraphCopy(To& to, const From& from) 
deba@139
   949
      : _from(from), _to(to) {}
alpar@100
   950
deba@139
   951
    /// \brief Destructor of the GraphCopy
alpar@100
   952
    ///
deba@139
   953
    /// Destructor of the GraphCopy
alpar@100
   954
    ~GraphCopy() {
deba@139
   955
      for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@139
   956
        delete _node_maps[i];
alpar@100
   957
      }
deba@139
   958
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@139
   959
        delete _arc_maps[i];
alpar@100
   960
      }
deba@139
   961
      for (int i = 0; i < int(_edge_maps.size()); ++i) {
deba@139
   962
        delete _edge_maps[i];
alpar@100
   963
      }
alpar@100
   964
alpar@100
   965
    }
alpar@100
   966
alpar@100
   967
    /// \brief Copies the node references into the given map.
alpar@100
   968
    ///
alpar@100
   969
    /// Copies the node references into the given map.
alpar@100
   970
    template <typename NodeRef>
alpar@100
   971
    GraphCopy& nodeRef(NodeRef& map) {
deba@139
   972
      _node_maps.push_back(new _graph_utils_bits::RefCopy<From, Node, 
deba@139
   973
			   NodeRefMap, NodeRef>(map));
alpar@100
   974
      return *this;
alpar@100
   975
    }
alpar@100
   976
alpar@100
   977
    /// \brief Copies the node cross references into the given map.
alpar@100
   978
    ///
alpar@100
   979
    ///  Copies the node cross references (reverse references) into
alpar@100
   980
    ///  the given map.
alpar@100
   981
    template <typename NodeCrossRef>
alpar@100
   982
    GraphCopy& nodeCrossRef(NodeCrossRef& map) {
deba@139
   983
      _node_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Node,
deba@139
   984
			   NodeRefMap, NodeCrossRef>(map));
alpar@100
   985
      return *this;
alpar@100
   986
    }
alpar@100
   987
alpar@100
   988
    /// \brief Make copy of the given map.
alpar@100
   989
    ///
deba@139
   990
    /// Makes copy of the given map for the newly created graph. 
deba@139
   991
    /// The new map's key type is the to graph's node type,
deba@139
   992
    /// and the copied map's key type is the from graph's node
alpar@100
   993
    /// type.  
alpar@100
   994
    template <typename ToMap, typename FromMap>
alpar@100
   995
    GraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
deba@139
   996
      _node_maps.push_back(new _graph_utils_bits::MapCopy<From, Node, 
deba@139
   997
			   NodeRefMap, ToMap, FromMap>(tmap, map));
alpar@100
   998
      return *this;
alpar@100
   999
    }
alpar@100
  1000
alpar@100
  1001
    /// \brief Make a copy of the given node.
alpar@100
  1002
    ///
alpar@100
  1003
    /// Make a copy of the given node.
alpar@100
  1004
    GraphCopy& node(TNode& tnode, const Node& snode) {
deba@139
  1005
      _node_maps.push_back(new _graph_utils_bits::ItemCopy<From, Node, 
deba@139
  1006
			   NodeRefMap, TNode>(tnode, snode));
alpar@100
  1007
      return *this;
alpar@100
  1008
    }
alpar@100
  1009
alpar@100
  1010
    /// \brief Copies the arc references into the given map.
alpar@100
  1011
    ///
alpar@100
  1012
    /// Copies the arc references into the given map.
alpar@100
  1013
    template <typename ArcRef>
alpar@100
  1014
    GraphCopy& arcRef(ArcRef& map) {
deba@139
  1015
      _arc_maps.push_back(new _graph_utils_bits::RefCopy<From, Arc, 
deba@139
  1016
			  ArcRefMap, ArcRef>(map));
alpar@100
  1017
      return *this;
alpar@100
  1018
    }
alpar@100
  1019
alpar@100
  1020
    /// \brief Copies the arc cross references into the given map.
alpar@100
  1021
    ///
alpar@100
  1022
    ///  Copies the arc cross references (reverse references) into
alpar@100
  1023
    ///  the given map.
alpar@100
  1024
    template <typename ArcCrossRef>
alpar@100
  1025
    GraphCopy& arcCrossRef(ArcCrossRef& map) {
deba@139
  1026
      _arc_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Arc,
deba@139
  1027
			  ArcRefMap, ArcCrossRef>(map));
alpar@100
  1028
      return *this;
alpar@100
  1029
    }
alpar@100
  1030
alpar@100
  1031
    /// \brief Make copy of the given map.
alpar@100
  1032
    ///
deba@139
  1033
    /// Makes copy of the given map for the newly created graph. 
deba@139
  1034
    /// The new map's key type is the to graph's arc type,
deba@139
  1035
    /// and the copied map's key type is the from graph's arc
alpar@100
  1036
    /// type.  
alpar@100
  1037
    template <typename ToMap, typename FromMap>
alpar@100
  1038
    GraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
deba@139
  1039
      _arc_maps.push_back(new _graph_utils_bits::MapCopy<From, Arc, 
deba@139
  1040
			  ArcRefMap, ToMap, FromMap>(tmap, map));
alpar@100
  1041
      return *this;
alpar@100
  1042
    }
alpar@100
  1043
alpar@100
  1044
    /// \brief Make a copy of the given arc.
alpar@100
  1045
    ///
alpar@100
  1046
    /// Make a copy of the given arc.
alpar@100
  1047
    GraphCopy& arc(TArc& tarc, const Arc& sarc) {
deba@139
  1048
      _arc_maps.push_back(new _graph_utils_bits::ItemCopy<From, Arc, 
deba@139
  1049
			  ArcRefMap, TArc>(tarc, sarc));
alpar@100
  1050
      return *this;
alpar@100
  1051
    }
alpar@100
  1052
alpar@100
  1053
    /// \brief Copies the edge references into the given map.
alpar@100
  1054
    ///
alpar@100
  1055
    /// Copies the edge references into the given map.
alpar@100
  1056
    template <typename EdgeRef>
alpar@100
  1057
    GraphCopy& edgeRef(EdgeRef& map) {
deba@139
  1058
      _edge_maps.push_back(new _graph_utils_bits::RefCopy<From, Edge, 
deba@139
  1059
			   EdgeRefMap, EdgeRef>(map));
alpar@100
  1060
      return *this;
alpar@100
  1061
    }
alpar@100
  1062
alpar@100
  1063
    /// \brief Copies the edge cross references into the given map.
alpar@100
  1064
    ///
alpar@100
  1065
    /// Copies the edge cross references (reverse
alpar@100
  1066
    /// references) into the given map.
alpar@100
  1067
    template <typename EdgeCrossRef>
alpar@100
  1068
    GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
deba@139
  1069
      _edge_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, 
deba@139
  1070
			   Edge, EdgeRefMap, EdgeCrossRef>(map));
alpar@100
  1071
      return *this;
alpar@100
  1072
    }
alpar@100
  1073
alpar@100
  1074
    /// \brief Make copy of the given map.
alpar@100
  1075
    ///
deba@139
  1076
    /// Makes copy of the given map for the newly created graph. 
deba@139
  1077
    /// The new map's key type is the to graph's edge type,
deba@139
  1078
    /// and the copied map's key type is the from graph's edge
alpar@100
  1079
    /// type.  
alpar@100
  1080
    template <typename ToMap, typename FromMap>
alpar@100
  1081
    GraphCopy& edgeMap(ToMap& tmap, const FromMap& map) {
deba@139
  1082
      _edge_maps.push_back(new _graph_utils_bits::MapCopy<From, Edge, 
deba@139
  1083
			   EdgeRefMap, ToMap, FromMap>(tmap, map));
alpar@100
  1084
      return *this;
alpar@100
  1085
    }
alpar@100
  1086
alpar@100
  1087
    /// \brief Make a copy of the given edge.
alpar@100
  1088
    ///
alpar@100
  1089
    /// Make a copy of the given edge.
alpar@100
  1090
    GraphCopy& edge(TEdge& tedge, const Edge& sedge) {
deba@139
  1091
      _edge_maps.push_back(new _graph_utils_bits::ItemCopy<From, Edge, 
deba@139
  1092
			   EdgeRefMap, TEdge>(tedge, sedge));
alpar@100
  1093
      return *this;
alpar@100
  1094
    }
alpar@100
  1095
alpar@100
  1096
    /// \brief Executes the copies.
alpar@100
  1097
    ///
alpar@100
  1098
    /// Executes the copies.
alpar@100
  1099
    void run() {
deba@139
  1100
      NodeRefMap nodeRefMap(_from);
deba@139
  1101
      EdgeRefMap edgeRefMap(_from);
deba@139
  1102
      ArcRefMap arcRefMap(_to, _from, edgeRefMap, nodeRefMap);
deba@139
  1103
      _graph_utils_bits::GraphCopySelector<To>::
deba@139
  1104
        copy(_to, _from, nodeRefMap, edgeRefMap);
deba@139
  1105
      for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@139
  1106
        _node_maps[i]->copy(_from, nodeRefMap);
alpar@100
  1107
      }
deba@139
  1108
      for (int i = 0; i < int(_edge_maps.size()); ++i) {
deba@139
  1109
        _edge_maps[i]->copy(_from, edgeRefMap);
alpar@100
  1110
      }
deba@139
  1111
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@139
  1112
        _arc_maps[i]->copy(_from, arcRefMap);
alpar@100
  1113
      }
alpar@100
  1114
    }
alpar@100
  1115
alpar@100
  1116
  private:
alpar@100
  1117
    
deba@139
  1118
    const From& _from;
deba@139
  1119
    To& _to;
alpar@100
  1120
deba@139
  1121
    std::vector<_graph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* > 
deba@139
  1122
    _node_maps;
alpar@100
  1123
deba@139
  1124
    std::vector<_graph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* > 
deba@139
  1125
    _arc_maps;
alpar@100
  1126
deba@139
  1127
    std::vector<_graph_utils_bits::MapCopyBase<From, Edge, EdgeRefMap>* > 
deba@139
  1128
    _edge_maps;
alpar@100
  1129
alpar@100
  1130
  };
alpar@100
  1131
deba@139
  1132
  /// \brief Copy a graph to another graph.
alpar@100
  1133
  ///
deba@139
  1134
  /// Copy a graph to another graph. The complete usage of the
deba@139
  1135
  /// function is detailed in the GraphCopy class, but a short
deba@139
  1136
  /// example shows a basic work:
alpar@100
  1137
  ///\code
alpar@100
  1138
  /// copyGraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run();
alpar@100
  1139
  ///\endcode
alpar@100
  1140
  /// 
alpar@100
  1141
  /// After the copy the \c nr map will contain the mapping from the
deba@139
  1142
  /// nodes of the \c from graph to the nodes of the \c to graph and
deba@139
  1143
  /// \c ecr will contain the mapping from the arcs of the \c to graph
deba@139
  1144
  /// to the arcs of the \c from graph.
alpar@100
  1145
  ///
alpar@100
  1146
  /// \see GraphCopy 
alpar@100
  1147
  template <typename To, typename From>
alpar@100
  1148
  GraphCopy<To, From> 
alpar@100
  1149
  copyGraph(To& to, const From& from) {
alpar@100
  1150
    return GraphCopy<To, From>(to, from);
alpar@100
  1151
  }
alpar@100
  1152
alpar@100
  1153
  /// @}
alpar@100
  1154
deba@139
  1155
  /// \addtogroup graph_maps
alpar@100
  1156
  /// @{
alpar@100
  1157
deba@139
  1158
  /// Provides an immutable and unique id for each item in the graph.
alpar@100
  1159
alpar@100
  1160
  /// The IdMap class provides a unique and immutable id for each item of the
deba@139
  1161
  /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
alpar@100
  1162
  /// different items (nodes) get different ids <li>\b immutable: the id of an
alpar@100
  1163
  /// item (node) does not change (even if you delete other nodes).  </ul>
alpar@100
  1164
  /// Through this map you get access (i.e. can read) the inner id values of
deba@139
  1165
  /// the items stored in the graph. This map can be inverted with its member
deba@139
  1166
  /// class \c InverseMap or with the \c operator() member.
alpar@100
  1167
  ///
deba@139
  1168
  template <typename _Graph, typename _Item>
alpar@100
  1169
  class IdMap {
alpar@100
  1170
  public:
deba@139
  1171
    typedef _Graph Graph;
alpar@100
  1172
    typedef int Value;
alpar@100
  1173
    typedef _Item Item;
alpar@100
  1174
    typedef _Item Key;
alpar@100
  1175
alpar@100
  1176
    /// \brief Constructor.
alpar@100
  1177
    ///
alpar@100
  1178
    /// Constructor of the map.
deba@139
  1179
    explicit IdMap(const Graph& graph) : _graph(&graph) {}
alpar@100
  1180
alpar@100
  1181
    /// \brief Gives back the \e id of the item.
alpar@100
  1182
    ///
alpar@100
  1183
    /// Gives back the immutable and unique \e id of the item.
deba@139
  1184
    int operator[](const Item& item) const { return _graph->id(item);}
alpar@100
  1185
alpar@100
  1186
    /// \brief Gives back the item by its id.
alpar@100
  1187
    ///
alpar@100
  1188
    /// Gives back the item by its id.
deba@139
  1189
    Item operator()(int id) { return _graph->fromId(id, Item()); }
alpar@100
  1190
alpar@100
  1191
  private:
deba@139
  1192
    const Graph* _graph;
alpar@100
  1193
alpar@100
  1194
  public:
alpar@100
  1195
alpar@100
  1196
    /// \brief The class represents the inverse of its owner (IdMap).
alpar@100
  1197
    ///
alpar@100
  1198
    /// The class represents the inverse of its owner (IdMap).
alpar@100
  1199
    /// \see inverse()
alpar@100
  1200
    class InverseMap {
alpar@100
  1201
    public:
alpar@100
  1202
alpar@100
  1203
      /// \brief Constructor.
alpar@100
  1204
      ///
alpar@100
  1205
      /// Constructor for creating an id-to-item map.
deba@139
  1206
      explicit InverseMap(const Graph& graph) : _graph(&graph) {}
alpar@100
  1207
alpar@100
  1208
      /// \brief Constructor.
alpar@100
  1209
      ///
alpar@100
  1210
      /// Constructor for creating an id-to-item map.
deba@139
  1211
      explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
alpar@100
  1212
alpar@100
  1213
      /// \brief Gives back the given item from its id.
alpar@100
  1214
      ///
alpar@100
  1215
      /// Gives back the given item from its id.
alpar@100
  1216
      /// 
deba@139
  1217
      Item operator[](int id) const { return _graph->fromId(id, Item());}
alpar@100
  1218
alpar@100
  1219
    private:
deba@139
  1220
      const Graph* _graph;
alpar@100
  1221
    };
alpar@100
  1222
alpar@100
  1223
    /// \brief Gives back the inverse of the map.
alpar@100
  1224
    ///
alpar@100
  1225
    /// Gives back the inverse of the IdMap.
deba@139
  1226
    InverseMap inverse() const { return InverseMap(*_graph);} 
alpar@100
  1227
alpar@100
  1228
  };
alpar@100
  1229
alpar@100
  1230
  
deba@139
  1231
  /// \brief General invertable graph-map type.
alpar@100
  1232
deba@139
  1233
  /// This type provides simple invertable graph-maps. 
alpar@100
  1234
  /// The InvertableMap wraps an arbitrary ReadWriteMap 
alpar@100
  1235
  /// and if a key is set to a new value then store it
alpar@100
  1236
  /// in the inverse map.
alpar@100
  1237
  ///
alpar@100
  1238
  /// The values of the map can be accessed
alpar@100
  1239
  /// with stl compatible forward iterator.
alpar@100
  1240
  ///
kpeter@157
  1241
  /// \tparam _Graph The graph type.
kpeter@157
  1242
  /// \tparam _Item The item type of the graph.
kpeter@157
  1243
  /// \tparam _Value The value type of the map.
alpar@100
  1244
  ///
alpar@100
  1245
  /// \see IterableValueMap
deba@139
  1246
  template <typename _Graph, typename _Item, typename _Value>
deba@139
  1247
  class InvertableMap : protected DefaultMap<_Graph, _Item, _Value> {
alpar@100
  1248
  private:
alpar@100
  1249
    
deba@139
  1250
    typedef DefaultMap<_Graph, _Item, _Value> Map;
deba@139
  1251
    typedef _Graph Graph;
alpar@100
  1252
alpar@100
  1253
    typedef std::map<_Value, _Item> Container;
deba@139
  1254
    Container _inv_map;    
alpar@100
  1255
alpar@100
  1256
  public:
alpar@100
  1257
 
alpar@100
  1258
    /// The key type of InvertableMap (Node, Arc, Edge).
alpar@100
  1259
    typedef typename Map::Key Key;
alpar@100
  1260
    /// The value type of the InvertableMap.
alpar@100
  1261
    typedef typename Map::Value Value;
alpar@100
  1262
alpar@100
  1263
alpar@100
  1264
alpar@100
  1265
    /// \brief Constructor.
alpar@100
  1266
    ///
deba@139
  1267
    /// Construct a new InvertableMap for the graph.
alpar@100
  1268
    ///
deba@139
  1269
    explicit InvertableMap(const Graph& graph) : Map(graph) {} 
alpar@100
  1270
alpar@100
  1271
    /// \brief Forward iterator for values.
alpar@100
  1272
    ///
alpar@100
  1273
    /// This iterator is an stl compatible forward
alpar@100
  1274
    /// iterator on the values of the map. The values can
alpar@100
  1275
    /// be accessed in the [beginValue, endValue) range.
alpar@100
  1276
    ///
alpar@100
  1277
    class ValueIterator 
alpar@100
  1278
      : public std::iterator<std::forward_iterator_tag, Value> {
alpar@100
  1279
      friend class InvertableMap;
alpar@100
  1280
    private:
alpar@100
  1281
      ValueIterator(typename Container::const_iterator _it) 
alpar@100
  1282
        : it(_it) {}
alpar@100
  1283
    public:
alpar@100
  1284
      
alpar@100
  1285
      ValueIterator() {}
alpar@100
  1286
alpar@100
  1287
      ValueIterator& operator++() { ++it; return *this; }
alpar@100
  1288
      ValueIterator operator++(int) { 
alpar@100
  1289
        ValueIterator tmp(*this); 
alpar@100
  1290
        operator++();
alpar@100
  1291
        return tmp; 
alpar@100
  1292
      }
alpar@100
  1293
alpar@100
  1294
      const Value& operator*() const { return it->first; }
alpar@100
  1295
      const Value* operator->() const { return &(it->first); }
alpar@100
  1296
alpar@100
  1297
      bool operator==(ValueIterator jt) const { return it == jt.it; }
alpar@100
  1298
      bool operator!=(ValueIterator jt) const { return it != jt.it; }
alpar@100
  1299
      
alpar@100
  1300
    private:
alpar@100
  1301
      typename Container::const_iterator it;
alpar@100
  1302
    };
alpar@100
  1303
alpar@100
  1304
    /// \brief Returns an iterator to the first value.
alpar@100
  1305
    ///
alpar@100
  1306
    /// Returns an stl compatible iterator to the 
alpar@100
  1307
    /// first value of the map. The values of the
alpar@100
  1308
    /// map can be accessed in the [beginValue, endValue)
alpar@100
  1309
    /// range.
alpar@100
  1310
    ValueIterator beginValue() const {
deba@139
  1311
      return ValueIterator(_inv_map.begin());
alpar@100
  1312
    }
alpar@100
  1313
alpar@100
  1314
    /// \brief Returns an iterator after the last value.
alpar@100
  1315
    ///
alpar@100
  1316
    /// Returns an stl compatible iterator after the 
alpar@100
  1317
    /// last value of the map. The values of the
alpar@100
  1318
    /// map can be accessed in the [beginValue, endValue)
alpar@100
  1319
    /// range.
alpar@100
  1320
    ValueIterator endValue() const {
deba@139
  1321
      return ValueIterator(_inv_map.end());
alpar@100
  1322
    }
alpar@100
  1323
    
alpar@100
  1324
    /// \brief The setter function of the map.
alpar@100
  1325
    ///
alpar@100
  1326
    /// Sets the mapped value.
alpar@100
  1327
    void set(const Key& key, const Value& val) {
alpar@100
  1328
      Value oldval = Map::operator[](key);
deba@139
  1329
      typename Container::iterator it = _inv_map.find(oldval);
deba@139
  1330
      if (it != _inv_map.end() && it->second == key) {
deba@139
  1331
	_inv_map.erase(it);
alpar@100
  1332
      }      
deba@139
  1333
      _inv_map.insert(make_pair(val, key));
alpar@100
  1334
      Map::set(key, val);
alpar@100
  1335
    }
alpar@100
  1336
alpar@100
  1337
    /// \brief The getter function of the map.
alpar@100
  1338
    ///
alpar@100
  1339
    /// It gives back the value associated with the key.
alpar@100
  1340
    typename MapTraits<Map>::ConstReturnValue 
alpar@100
  1341
    operator[](const Key& key) const {
alpar@100
  1342
      return Map::operator[](key);
alpar@100
  1343
    }
alpar@100
  1344
alpar@100
  1345
    /// \brief Gives back the item by its value.
alpar@100
  1346
    ///
alpar@100
  1347
    /// Gives back the item by its value.
alpar@100
  1348
    Key operator()(const Value& key) const {
deba@139
  1349
      typename Container::const_iterator it = _inv_map.find(key);
deba@139
  1350
      return it != _inv_map.end() ? it->second : INVALID;
alpar@100
  1351
    }
alpar@100
  1352
alpar@100
  1353
  protected:
alpar@100
  1354
alpar@100
  1355
    /// \brief Erase the key from the map.
alpar@100
  1356
    ///
alpar@100
  1357
    /// Erase the key to the map. It is called by the
alpar@100
  1358
    /// \c AlterationNotifier.
alpar@100
  1359
    virtual void erase(const Key& key) {
alpar@100
  1360
      Value val = Map::operator[](key);
deba@139
  1361
      typename Container::iterator it = _inv_map.find(val);
deba@139
  1362
      if (it != _inv_map.end() && it->second == key) {
deba@139
  1363
	_inv_map.erase(it);
alpar@100
  1364
      }
alpar@100
  1365
      Map::erase(key);
alpar@100
  1366
    }
alpar@100
  1367
alpar@100
  1368
    /// \brief Erase more keys from the map.
alpar@100
  1369
    ///
alpar@100
  1370
    /// Erase more keys from the map. It is called by the
alpar@100
  1371
    /// \c AlterationNotifier.
alpar@100
  1372
    virtual void erase(const std::vector<Key>& keys) {
alpar@100
  1373
      for (int i = 0; i < int(keys.size()); ++i) {
alpar@100
  1374
	Value val = Map::operator[](keys[i]);
deba@139
  1375
	typename Container::iterator it = _inv_map.find(val);
deba@139
  1376
	if (it != _inv_map.end() && it->second == keys[i]) {
deba@139
  1377
	  _inv_map.erase(it);
alpar@100
  1378
	}
alpar@100
  1379
      }
alpar@100
  1380
      Map::erase(keys);
alpar@100
  1381
    }
alpar@100
  1382
alpar@100
  1383
    /// \brief Clear the keys from the map and inverse map.
alpar@100
  1384
    ///
alpar@100
  1385
    /// Clear the keys from the map and inverse map. It is called by the
alpar@100
  1386
    /// \c AlterationNotifier.
alpar@100
  1387
    virtual void clear() {
deba@139
  1388
      _inv_map.clear();
alpar@100
  1389
      Map::clear();
alpar@100
  1390
    }
alpar@100
  1391
alpar@100
  1392
  public:
alpar@100
  1393
alpar@100
  1394
    /// \brief The inverse map type.
alpar@100
  1395
    ///
alpar@100
  1396
    /// The inverse of this map. The subscript operator of the map
alpar@100
  1397
    /// gives back always the item what was last assigned to the value. 
alpar@100
  1398
    class InverseMap {
alpar@100
  1399
    public:
alpar@100
  1400
      /// \brief Constructor of the InverseMap.
alpar@100
  1401
      ///
alpar@100
  1402
      /// Constructor of the InverseMap.
deba@139
  1403
      explicit InverseMap(const InvertableMap& inverted) 
deba@139
  1404
        : _inverted(inverted) {}
alpar@100
  1405
alpar@100
  1406
      /// The value type of the InverseMap.
alpar@100
  1407
      typedef typename InvertableMap::Key Value;
alpar@100
  1408
      /// The key type of the InverseMap.
alpar@100
  1409
      typedef typename InvertableMap::Value Key; 
alpar@100
  1410
alpar@100
  1411
      /// \brief Subscript operator. 
alpar@100
  1412
      ///
alpar@100
  1413
      /// Subscript operator. It gives back always the item 
alpar@100
  1414
      /// what was last assigned to the value.
alpar@100
  1415
      Value operator[](const Key& key) const {
deba@139
  1416
	return _inverted(key);
alpar@100
  1417
      }
alpar@100
  1418
      
alpar@100
  1419
    private:
deba@139
  1420
      const InvertableMap& _inverted;
alpar@100
  1421
    };
alpar@100
  1422
alpar@100
  1423
    /// \brief It gives back the just readable inverse map.
alpar@100
  1424
    ///
alpar@100
  1425
    /// It gives back the just readable inverse map.
alpar@100
  1426
    InverseMap inverse() const {
alpar@100
  1427
      return InverseMap(*this);
alpar@100
  1428
    } 
alpar@100
  1429
alpar@100
  1430
alpar@100
  1431
    
alpar@100
  1432
  };
alpar@100
  1433
alpar@100
  1434
  /// \brief Provides a mutable, continuous and unique descriptor for each 
deba@139
  1435
  /// item in the graph.
alpar@100
  1436
  ///
alpar@100
  1437
  /// The DescriptorMap class provides a unique and continuous (but mutable)
alpar@100
  1438
  /// descriptor (id) for each item of the same type (e.g. node) in the
deba@139
  1439
  /// graph. This id is <ul><li>\b unique: different items (nodes) get
alpar@100
  1440
  /// different ids <li>\b continuous: the range of the ids is the set of
alpar@100
  1441
  /// integers between 0 and \c n-1, where \c n is the number of the items of
alpar@100
  1442
  /// this type (e.g. nodes) (so the id of a node can change if you delete an
alpar@100
  1443
  /// other node, i.e. this id is mutable).  </ul> This map can be inverted
deba@139
  1444
  /// with its member class \c InverseMap, or with the \c operator() member.
alpar@100
  1445
  ///
kpeter@157
  1446
  /// \tparam _Graph The graph class the \c DescriptorMap belongs to.
kpeter@157
  1447
  /// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or 
alpar@100
  1448
  /// Edge.
deba@139
  1449
  template <typename _Graph, typename _Item>
deba@139
  1450
  class DescriptorMap : protected DefaultMap<_Graph, _Item, int> {
alpar@100
  1451
alpar@100
  1452
    typedef _Item Item;
deba@139
  1453
    typedef DefaultMap<_Graph, _Item, int> Map;
alpar@100
  1454
alpar@100
  1455
  public:
deba@139
  1456
    /// The graph class of DescriptorMap.
deba@139
  1457
    typedef _Graph Graph;
alpar@100
  1458
alpar@100
  1459
    /// The key type of DescriptorMap (Node, Arc, Edge).
alpar@100
  1460
    typedef typename Map::Key Key;
alpar@100
  1461
    /// The value type of DescriptorMap.
alpar@100
  1462
    typedef typename Map::Value Value;
alpar@100
  1463
alpar@100
  1464
    /// \brief Constructor.
alpar@100
  1465
    ///
alpar@100
  1466
    /// Constructor for descriptor map.
deba@139
  1467
    explicit DescriptorMap(const Graph& _graph) : Map(_graph) {
alpar@100
  1468
      Item it;
alpar@100
  1469
      const typename Map::Notifier* nf = Map::notifier(); 
alpar@100
  1470
      for (nf->first(it); it != INVALID; nf->next(it)) {
deba@139
  1471
	Map::set(it, _inv_map.size());
deba@139
  1472
	_inv_map.push_back(it);	
alpar@100
  1473
      }      
alpar@100
  1474
    }
alpar@100
  1475
alpar@100
  1476
  protected:
alpar@100
  1477
alpar@100
  1478
    /// \brief Add a new key to the map.
alpar@100
  1479
    ///
alpar@100
  1480
    /// Add a new key to the map. It is called by the
alpar@100
  1481
    /// \c AlterationNotifier.
alpar@100
  1482
    virtual void add(const Item& item) {
alpar@100
  1483
      Map::add(item);
deba@139
  1484
      Map::set(item, _inv_map.size());
deba@139
  1485
      _inv_map.push_back(item);
alpar@100
  1486
    }
alpar@100
  1487
alpar@100
  1488
    /// \brief Add more new keys to the map.
alpar@100
  1489
    ///
alpar@100
  1490
    /// Add more new keys to the map. It is called by the
alpar@100
  1491
    /// \c AlterationNotifier.
alpar@100
  1492
    virtual void add(const std::vector<Item>& items) {
alpar@100
  1493
      Map::add(items);
alpar@100
  1494
      for (int i = 0; i < int(items.size()); ++i) {
deba@139
  1495
	Map::set(items[i], _inv_map.size());
deba@139
  1496
	_inv_map.push_back(items[i]);
alpar@100
  1497
      }
alpar@100
  1498
    }
alpar@100
  1499
alpar@100
  1500
    /// \brief Erase the key from the map.
alpar@100
  1501
    ///
alpar@100
  1502
    /// Erase the key from the map. It is called by the
alpar@100
  1503
    /// \c AlterationNotifier.
alpar@100
  1504
    virtual void erase(const Item& item) {
deba@139
  1505
      Map::set(_inv_map.back(), Map::operator[](item));
deba@139
  1506
      _inv_map[Map::operator[](item)] = _inv_map.back();
deba@139
  1507
      _inv_map.pop_back();
alpar@100
  1508
      Map::erase(item);
alpar@100
  1509
    }
alpar@100
  1510
alpar@100
  1511
    /// \brief Erase more keys from the map.
alpar@100
  1512
    ///
alpar@100
  1513
    /// Erase more keys from the map. It is called by the
alpar@100
  1514
    /// \c AlterationNotifier.
alpar@100
  1515
    virtual void erase(const std::vector<Item>& items) {
alpar@100
  1516
      for (int i = 0; i < int(items.size()); ++i) {
deba@139
  1517
	Map::set(_inv_map.back(), Map::operator[](items[i]));
deba@139
  1518
	_inv_map[Map::operator[](items[i])] = _inv_map.back();
deba@139
  1519
	_inv_map.pop_back();
alpar@100
  1520
      }
alpar@100
  1521
      Map::erase(items);
alpar@100
  1522
    }
alpar@100
  1523
alpar@100
  1524
    /// \brief Build the unique map.
alpar@100
  1525
    ///
alpar@100
  1526
    /// Build the unique map. It is called by the
alpar@100
  1527
    /// \c AlterationNotifier.
alpar@100
  1528
    virtual void build() {
alpar@100
  1529
      Map::build();
alpar@100
  1530
      Item it;
alpar@100
  1531
      const typename Map::Notifier* nf = Map::notifier(); 
alpar@100
  1532
      for (nf->first(it); it != INVALID; nf->next(it)) {
deba@139
  1533
	Map::set(it, _inv_map.size());
deba@139
  1534
	_inv_map.push_back(it);	
alpar@100
  1535
      }      
alpar@100
  1536
    }
alpar@100
  1537
    
alpar@100
  1538
    /// \brief Clear the keys from the map.
alpar@100
  1539
    ///
alpar@100
  1540
    /// Clear the keys from the map. It is called by the
alpar@100
  1541
    /// \c AlterationNotifier.
alpar@100
  1542
    virtual void clear() {
deba@139
  1543
      _inv_map.clear();
alpar@100
  1544
      Map::clear();
alpar@100
  1545
    }
alpar@100
  1546
alpar@100
  1547
  public:
alpar@100
  1548
alpar@100
  1549
    /// \brief Returns the maximal value plus one.
alpar@100
  1550
    ///
alpar@100
  1551
    /// Returns the maximal value plus one in the map.
alpar@100
  1552
    unsigned int size() const {
deba@139
  1553
      return _inv_map.size();
alpar@100
  1554
    }
alpar@100
  1555
alpar@100
  1556
    /// \brief Swaps the position of the two items in the map.
alpar@100
  1557
    ///
alpar@100
  1558
    /// Swaps the position of the two items in the map.
alpar@100
  1559
    void swap(const Item& p, const Item& q) {
alpar@100
  1560
      int pi = Map::operator[](p);
alpar@100
  1561
      int qi = Map::operator[](q);
alpar@100
  1562
      Map::set(p, qi);
deba@139
  1563
      _inv_map[qi] = p;
alpar@100
  1564
      Map::set(q, pi);
deba@139
  1565
      _inv_map[pi] = q;
alpar@100
  1566
    }
alpar@100
  1567
alpar@100
  1568
    /// \brief Gives back the \e descriptor of the item.
alpar@100
  1569
    ///
alpar@100
  1570
    /// Gives back the mutable and unique \e descriptor of the map.
alpar@100
  1571
    int operator[](const Item& item) const {
alpar@100
  1572
      return Map::operator[](item);
alpar@100
  1573
    }
alpar@100
  1574
alpar@100
  1575
    /// \brief Gives back the item by its descriptor.
alpar@100
  1576
    ///
alpar@100
  1577
    /// Gives back th item by its descriptor.
alpar@100
  1578
    Item operator()(int id) const {
deba@139
  1579
      return _inv_map[id];
alpar@100
  1580
    }
alpar@100
  1581
    
alpar@100
  1582
  private:
alpar@100
  1583
alpar@100
  1584
    typedef std::vector<Item> Container;
deba@139
  1585
    Container _inv_map;
alpar@100
  1586
alpar@100
  1587
  public:
alpar@100
  1588
    /// \brief The inverse map type of DescriptorMap.
alpar@100
  1589
    ///
alpar@100
  1590
    /// The inverse map type of DescriptorMap.
alpar@100
  1591
    class InverseMap {
alpar@100
  1592
    public:
alpar@100
  1593
      /// \brief Constructor of the InverseMap.
alpar@100
  1594
      ///
alpar@100
  1595
      /// Constructor of the InverseMap.
deba@139
  1596
      explicit InverseMap(const DescriptorMap& inverted) 
deba@139
  1597
	: _inverted(inverted) {}
alpar@100
  1598
alpar@100
  1599
alpar@100
  1600
      /// The value type of the InverseMap.
alpar@100
  1601
      typedef typename DescriptorMap::Key Value;
alpar@100
  1602
      /// The key type of the InverseMap.
alpar@100
  1603
      typedef typename DescriptorMap::Value Key; 
alpar@100
  1604
alpar@100
  1605
      /// \brief Subscript operator. 
alpar@100
  1606
      ///
alpar@100
  1607
      /// Subscript operator. It gives back the item 
alpar@100
  1608
      /// that the descriptor belongs to currently.
alpar@100
  1609
      Value operator[](const Key& key) const {
deba@139
  1610
	return _inverted(key);
alpar@100
  1611
      }
alpar@100
  1612
alpar@100
  1613
      /// \brief Size of the map.
alpar@100
  1614
      ///
alpar@100
  1615
      /// Returns the size of the map.
alpar@100
  1616
      unsigned int size() const {
deba@139
  1617
	return _inverted.size();
alpar@100
  1618
      }
alpar@100
  1619
      
alpar@100
  1620
    private:
deba@139
  1621
      const DescriptorMap& _inverted;
alpar@100
  1622
    };
alpar@100
  1623
alpar@100
  1624
    /// \brief Gives back the inverse of the map.
alpar@100
  1625
    ///
alpar@100
  1626
    /// Gives back the inverse of the map.
alpar@100
  1627
    const InverseMap inverse() const {
alpar@100
  1628
      return InverseMap(*this);
alpar@100
  1629
    }
alpar@100
  1630
  };
alpar@100
  1631
alpar@100
  1632
  /// \brief Returns the source of the given arc.
alpar@100
  1633
  ///
alpar@100
  1634
  /// The SourceMap gives back the source Node of the given arc. 
alpar@100
  1635
  /// \see TargetMap
alpar@100
  1636
  template <typename Digraph>
alpar@100
  1637
  class SourceMap {
alpar@100
  1638
  public:
alpar@100
  1639
alpar@100
  1640
    typedef typename Digraph::Node Value;
alpar@100
  1641
    typedef typename Digraph::Arc Key;
alpar@100
  1642
alpar@100
  1643
    /// \brief Constructor
alpar@100
  1644
    ///
alpar@100
  1645
    /// Constructor
alpar@100
  1646
    /// \param _digraph The digraph that the map belongs to.
deba@139
  1647
    explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {}
alpar@100
  1648
alpar@100
  1649
    /// \brief The subscript operator.
alpar@100
  1650
    ///
alpar@100
  1651
    /// The subscript operator.
alpar@100
  1652
    /// \param arc The arc 
alpar@100
  1653
    /// \return The source of the arc 
alpar@100
  1654
    Value operator[](const Key& arc) const {
deba@139
  1655
      return _digraph.source(arc);
alpar@100
  1656
    }
alpar@100
  1657
alpar@100
  1658
  private:
deba@139
  1659
    const Digraph& _digraph;
alpar@100
  1660
  };
alpar@100
  1661
alpar@100
  1662
  /// \brief Returns a \ref SourceMap class.
alpar@100
  1663
  ///
alpar@100
  1664
  /// This function just returns an \ref SourceMap class.
alpar@100
  1665
  /// \relates SourceMap
alpar@100
  1666
  template <typename Digraph>
alpar@100
  1667
  inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
alpar@100
  1668
    return SourceMap<Digraph>(digraph);
alpar@100
  1669
  } 
alpar@100
  1670
alpar@100
  1671
  /// \brief Returns the target of the given arc.
alpar@100
  1672
  ///
alpar@100
  1673
  /// The TargetMap gives back the target Node of the given arc. 
alpar@100
  1674
  /// \see SourceMap
alpar@100
  1675
  template <typename Digraph>
alpar@100
  1676
  class TargetMap {
alpar@100
  1677
  public:
alpar@100
  1678
alpar@100
  1679
    typedef typename Digraph::Node Value;
alpar@100
  1680
    typedef typename Digraph::Arc Key;
alpar@100
  1681
alpar@100
  1682
    /// \brief Constructor
alpar@100
  1683
    ///
alpar@100
  1684
    /// Constructor
alpar@100
  1685
    /// \param _digraph The digraph that the map belongs to.
deba@139
  1686
    explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {}
alpar@100
  1687
alpar@100
  1688
    /// \brief The subscript operator.
alpar@100
  1689
    ///
alpar@100
  1690
    /// The subscript operator.
alpar@100
  1691
    /// \param e The arc 
alpar@100
  1692
    /// \return The target of the arc 
alpar@100
  1693
    Value operator[](const Key& e) const {
deba@139
  1694
      return _digraph.target(e);
alpar@100
  1695
    }
alpar@100
  1696
alpar@100
  1697
  private:
deba@139
  1698
    const Digraph& _digraph;
alpar@100
  1699
  };
alpar@100
  1700
alpar@100
  1701
  /// \brief Returns a \ref TargetMap class.
alpar@100
  1702
  ///
alpar@100
  1703
  /// This function just returns a \ref TargetMap class.
alpar@100
  1704
  /// \relates TargetMap
alpar@100
  1705
  template <typename Digraph>
alpar@100
  1706
  inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
alpar@100
  1707
    return TargetMap<Digraph>(digraph);
alpar@100
  1708
  }
alpar@100
  1709
alpar@100
  1710
  /// \brief Returns the "forward" directed arc view of an edge.
alpar@100
  1711
  ///
alpar@100
  1712
  /// Returns the "forward" directed arc view of an edge.
alpar@100
  1713
  /// \see BackwardMap
deba@139
  1714
  template <typename Graph>
alpar@100
  1715
  class ForwardMap {
alpar@100
  1716
  public:
alpar@100
  1717
deba@139
  1718
    typedef typename Graph::Arc Value;
deba@139
  1719
    typedef typename Graph::Edge Key;
alpar@100
  1720
alpar@100
  1721
    /// \brief Constructor
alpar@100
  1722
    ///
alpar@100
  1723
    /// Constructor
deba@139
  1724
    /// \param _graph The graph that the map belongs to.
deba@139
  1725
    explicit ForwardMap(const Graph& graph) : _graph(graph) {}
alpar@100
  1726
alpar@100
  1727
    /// \brief The subscript operator.
alpar@100
  1728
    ///
alpar@100
  1729
    /// The subscript operator.
alpar@100
  1730
    /// \param key An edge 
alpar@100
  1731
    /// \return The "forward" directed arc view of edge 
alpar@100
  1732
    Value operator[](const Key& key) const {
deba@139
  1733
      return _graph.direct(key, true);
alpar@100
  1734
    }
alpar@100
  1735
alpar@100
  1736
  private:
deba@139
  1737
    const Graph& _graph;
alpar@100
  1738
  };
alpar@100
  1739
alpar@100
  1740
  /// \brief Returns a \ref ForwardMap class.
alpar@100
  1741
  ///
alpar@100
  1742
  /// This function just returns an \ref ForwardMap class.
alpar@100
  1743
  /// \relates ForwardMap
deba@139
  1744
  template <typename Graph>
deba@139
  1745
  inline ForwardMap<Graph> forwardMap(const Graph& graph) {
deba@139
  1746
    return ForwardMap<Graph>(graph);
alpar@100
  1747
  }
alpar@100
  1748
alpar@100
  1749
  /// \brief Returns the "backward" directed arc view of an edge.
alpar@100
  1750
  ///
alpar@100
  1751
  /// Returns the "backward" directed arc view of an edge.
alpar@100
  1752
  /// \see ForwardMap
deba@139
  1753
  template <typename Graph>
alpar@100
  1754
  class BackwardMap {
alpar@100
  1755
  public:
alpar@100
  1756
deba@139
  1757
    typedef typename Graph::Arc Value;
deba@139
  1758
    typedef typename Graph::Edge Key;
alpar@100
  1759
alpar@100
  1760
    /// \brief Constructor
alpar@100
  1761
    ///
alpar@100
  1762
    /// Constructor
deba@139
  1763
    /// \param _graph The graph that the map belongs to.
deba@139
  1764
    explicit BackwardMap(const Graph& graph) : _graph(graph) {}
alpar@100
  1765
alpar@100
  1766
    /// \brief The subscript operator.
alpar@100
  1767
    ///
alpar@100
  1768
    /// The subscript operator.
alpar@100
  1769
    /// \param key An edge 
alpar@100
  1770
    /// \return The "backward" directed arc view of edge 
alpar@100
  1771
    Value operator[](const Key& key) const {
deba@139
  1772
      return _graph.direct(key, false);
alpar@100
  1773
    }
alpar@100
  1774
alpar@100
  1775
  private:
deba@139
  1776
    const Graph& _graph;
alpar@100
  1777
  };
alpar@100
  1778
alpar@100
  1779
  /// \brief Returns a \ref BackwardMap class
alpar@100
  1780
alpar@100
  1781
  /// This function just returns a \ref BackwardMap class.
alpar@100
  1782
  /// \relates BackwardMap
deba@139
  1783
  template <typename Graph>
deba@139
  1784
  inline BackwardMap<Graph> backwardMap(const Graph& graph) {
deba@139
  1785
    return BackwardMap<Graph>(graph);
alpar@100
  1786
  }
alpar@100
  1787
alpar@100
  1788
  /// \brief Potential difference map
alpar@100
  1789
  ///
alpar@100
  1790
  /// If there is an potential map on the nodes then we
alpar@100
  1791
  /// can get an arc map as we get the substraction of the
alpar@100
  1792
  /// values of the target and source.
alpar@100
  1793
  template <typename Digraph, typename NodeMap>
alpar@100
  1794
  class PotentialDifferenceMap {
alpar@100
  1795
  public:
alpar@100
  1796
    typedef typename Digraph::Arc Key;
alpar@100
  1797
    typedef typename NodeMap::Value Value;
alpar@100
  1798
alpar@100
  1799
    /// \brief Constructor
alpar@100
  1800
    ///
alpar@100
  1801
    /// Contructor of the map
deba@139
  1802
    explicit PotentialDifferenceMap(const Digraph& digraph, 
deba@139
  1803
                                    const NodeMap& potential) 
deba@139
  1804
      : _digraph(digraph), _potential(potential) {}
alpar@100
  1805
alpar@100
  1806
    /// \brief Const subscription operator
alpar@100
  1807
    ///
alpar@100
  1808
    /// Const subscription operator
alpar@100
  1809
    Value operator[](const Key& arc) const {
deba@139
  1810
      return _potential[_digraph.target(arc)] - 
deba@139
  1811
	_potential[_digraph.source(arc)];
alpar@100
  1812
    }
alpar@100
  1813
alpar@100
  1814
  private:
deba@139
  1815
    const Digraph& _digraph;
deba@139
  1816
    const NodeMap& _potential;
alpar@100
  1817
  };
alpar@100
  1818
alpar@100
  1819
  /// \brief Returns a PotentialDifferenceMap.
alpar@100
  1820
  ///
alpar@100
  1821
  /// This function just returns a PotentialDifferenceMap.
alpar@100
  1822
  /// \relates PotentialDifferenceMap
alpar@100
  1823
  template <typename Digraph, typename NodeMap>
alpar@100
  1824
  PotentialDifferenceMap<Digraph, NodeMap> 
alpar@100
  1825
  potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) {
alpar@100
  1826
    return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential);
alpar@100
  1827
  }
alpar@100
  1828
alpar@100
  1829
  /// \brief Map of the node in-degrees.
alpar@100
  1830
  ///
alpar@100
  1831
  /// This map returns the in-degree of a node. Once it is constructed,
alpar@100
  1832
  /// the degrees are stored in a standard NodeMap, so each query is done
alpar@100
  1833
  /// in constant time. On the other hand, the values are updated automatically
alpar@100
  1834
  /// whenever the digraph changes.
alpar@100
  1835
  ///
alpar@100
  1836
  /// \warning Besides addNode() and addArc(), a digraph structure may provide
alpar@100
  1837
  /// alternative ways to modify the digraph. The correct behavior of InDegMap
alpar@100
  1838
  /// is not guarantied if these additional features are used. For example
alpar@100
  1839
  /// the functions \ref ListDigraph::changeSource() "changeSource()",
alpar@100
  1840
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
alpar@100
  1841
  /// \ref ListDigraph::reverseArc() "reverseArc()"
alpar@100
  1842
  /// of \ref ListDigraph will \e not update the degree values correctly.
alpar@100
  1843
  ///
alpar@100
  1844
  /// \sa OutDegMap
alpar@100
  1845
alpar@100
  1846
  template <typename _Digraph>
alpar@100
  1847
  class InDegMap  
alpar@100
  1848
    : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
alpar@100
  1849
      ::ItemNotifier::ObserverBase {
alpar@100
  1850
alpar@100
  1851
  public:
alpar@100
  1852
    
alpar@100
  1853
    typedef _Digraph Digraph;
alpar@100
  1854
    typedef int Value;
alpar@100
  1855
    typedef typename Digraph::Node Key;
alpar@100
  1856
deba@139
  1857
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
alpar@100
  1858
    ::ItemNotifier::ObserverBase Parent;
alpar@100
  1859
alpar@100
  1860
  private:
alpar@100
  1861
deba@139
  1862
    class AutoNodeMap : public DefaultMap<Digraph, Key, int> {
alpar@100
  1863
    public:
alpar@100
  1864
deba@139
  1865
      typedef DefaultMap<Digraph, Key, int> Parent;
alpar@100
  1866
alpar@100
  1867
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
alpar@100
  1868
      
alpar@100
  1869
      virtual void add(const Key& key) {
alpar@100
  1870
	Parent::add(key);
alpar@100
  1871
	Parent::set(key, 0);
alpar@100
  1872
      }
alpar@100
  1873
alpar@100
  1874
      virtual void add(const std::vector<Key>& keys) {
alpar@100
  1875
	Parent::add(keys);
alpar@100
  1876
	for (int i = 0; i < int(keys.size()); ++i) {
alpar@100
  1877
	  Parent::set(keys[i], 0);
alpar@100
  1878
	}
alpar@100
  1879
      }
alpar@100
  1880
alpar@100
  1881
      virtual void build() {
alpar@100
  1882
	Parent::build();
alpar@100
  1883
	Key it;
alpar@100
  1884
	typename Parent::Notifier* nf = Parent::notifier();
alpar@100
  1885
	for (nf->first(it); it != INVALID; nf->next(it)) {
alpar@100
  1886
	  Parent::set(it, 0);
alpar@100
  1887
	}
alpar@100
  1888
      }
alpar@100
  1889
    };
alpar@100
  1890
alpar@100
  1891
  public:
alpar@100
  1892
alpar@100
  1893
    /// \brief Constructor.
alpar@100
  1894
    ///
alpar@100
  1895
    /// Constructor for creating in-degree map.
deba@139
  1896
    explicit InDegMap(const Digraph& digraph) 
deba@139
  1897
      : _digraph(digraph), _deg(digraph) {
deba@139
  1898
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
alpar@100
  1899
      
deba@139
  1900
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@139
  1901
	_deg[it] = countInArcs(_digraph, it);
alpar@100
  1902
      }
alpar@100
  1903
    }
alpar@100
  1904
    
alpar@100
  1905
    /// Gives back the in-degree of a Node.
alpar@100
  1906
    int operator[](const Key& key) const {
deba@139
  1907
      return _deg[key];
alpar@100
  1908
    }
alpar@100
  1909
alpar@100
  1910
  protected:
alpar@100
  1911
    
alpar@100
  1912
    typedef typename Digraph::Arc Arc;
alpar@100
  1913
alpar@100
  1914
    virtual void add(const Arc& arc) {
deba@139
  1915
      ++_deg[_digraph.target(arc)];
alpar@100
  1916
    }
alpar@100
  1917
alpar@100
  1918
    virtual void add(const std::vector<Arc>& arcs) {
alpar@100
  1919
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@139
  1920
        ++_deg[_digraph.target(arcs[i])];
alpar@100
  1921
      }
alpar@100
  1922
    }
alpar@100
  1923
alpar@100
  1924
    virtual void erase(const Arc& arc) {
deba@139
  1925
      --_deg[_digraph.target(arc)];
alpar@100
  1926
    }
alpar@100
  1927
alpar@100
  1928
    virtual void erase(const std::vector<Arc>& arcs) {
alpar@100
  1929
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@139
  1930
        --_deg[_digraph.target(arcs[i])];
alpar@100
  1931
      }
alpar@100
  1932
    }
alpar@100
  1933
alpar@100
  1934
    virtual void build() {
deba@139
  1935
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@139
  1936
	_deg[it] = countInArcs(_digraph, it);
alpar@100
  1937
      }      
alpar@100
  1938
    }
alpar@100
  1939
alpar@100
  1940
    virtual void clear() {
deba@139
  1941
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@139
  1942
	_deg[it] = 0;
alpar@100
  1943
      }
alpar@100
  1944
    }
alpar@100
  1945
  private:
alpar@100
  1946
    
deba@139
  1947
    const Digraph& _digraph;
deba@139
  1948
    AutoNodeMap _deg;
alpar@100
  1949
  };
alpar@100
  1950
alpar@100
  1951
  /// \brief Map of the node out-degrees.
alpar@100
  1952
  ///
alpar@100
  1953
  /// This map returns the out-degree of a node. Once it is constructed,
alpar@100
  1954
  /// the degrees are stored in a standard NodeMap, so each query is done
alpar@100
  1955
  /// in constant time. On the other hand, the values are updated automatically
alpar@100
  1956
  /// whenever the digraph changes.
alpar@100
  1957
  ///
alpar@100
  1958
  /// \warning Besides addNode() and addArc(), a digraph structure may provide
alpar@100
  1959
  /// alternative ways to modify the digraph. The correct behavior of OutDegMap
alpar@100
  1960
  /// is not guarantied if these additional features are used. For example
alpar@100
  1961
  /// the functions \ref ListDigraph::changeSource() "changeSource()",
alpar@100
  1962
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
alpar@100
  1963
  /// \ref ListDigraph::reverseArc() "reverseArc()"
alpar@100
  1964
  /// of \ref ListDigraph will \e not update the degree values correctly.
alpar@100
  1965
  ///
alpar@100
  1966
  /// \sa InDegMap
alpar@100
  1967
alpar@100
  1968
  template <typename _Digraph>
alpar@100
  1969
  class OutDegMap  
alpar@100
  1970
    : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
alpar@100
  1971
      ::ItemNotifier::ObserverBase {
alpar@100
  1972
alpar@100
  1973
  public:
alpar@100
  1974
    
alpar@100
  1975
    typedef _Digraph Digraph;
alpar@100
  1976
    typedef int Value;
alpar@100
  1977
    typedef typename Digraph::Node Key;
alpar@100
  1978
deba@139
  1979
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
deba@139
  1980
    ::ItemNotifier::ObserverBase Parent;
deba@139
  1981
alpar@100
  1982
  private:
alpar@100
  1983
deba@139
  1984
    class AutoNodeMap : public DefaultMap<Digraph, Key, int> {
alpar@100
  1985
    public:
alpar@100
  1986
deba@139
  1987
      typedef DefaultMap<Digraph, Key, int> Parent;
alpar@100
  1988
alpar@100
  1989
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
alpar@100
  1990
      
alpar@100
  1991
      virtual void add(const Key& key) {
alpar@100
  1992
	Parent::add(key);
alpar@100
  1993
	Parent::set(key, 0);
alpar@100
  1994
      }
alpar@100
  1995
      virtual void add(const std::vector<Key>& keys) {
alpar@100
  1996
	Parent::add(keys);
alpar@100
  1997
	for (int i = 0; i < int(keys.size()); ++i) {
alpar@100
  1998
	  Parent::set(keys[i], 0);
alpar@100
  1999
	}
alpar@100
  2000
      }
alpar@100
  2001
      virtual void build() {
alpar@100
  2002
	Parent::build();
alpar@100
  2003
	Key it;
alpar@100
  2004
	typename Parent::Notifier* nf = Parent::notifier();
alpar@100
  2005
	for (nf->first(it); it != INVALID; nf->next(it)) {
alpar@100
  2006
	  Parent::set(it, 0);
alpar@100
  2007
	}
alpar@100
  2008
      }
alpar@100
  2009
    };
alpar@100
  2010
alpar@100
  2011
  public:
alpar@100
  2012
alpar@100
  2013
    /// \brief Constructor.
alpar@100
  2014
    ///
alpar@100
  2015
    /// Constructor for creating out-degree map.
deba@139
  2016
    explicit OutDegMap(const Digraph& digraph) 
deba@139
  2017
      : _digraph(digraph), _deg(digraph) {
deba@139
  2018
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
alpar@100
  2019
      
deba@139
  2020
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@139
  2021
	_deg[it] = countOutArcs(_digraph, it);
alpar@100
  2022
      }
alpar@100
  2023
    }
alpar@100
  2024
alpar@100
  2025
    /// Gives back the out-degree of a Node.
alpar@100
  2026
    int operator[](const Key& key) const {
deba@139
  2027
      return _deg[key];
alpar@100
  2028
    }
alpar@100
  2029
alpar@100
  2030
  protected:
alpar@100
  2031
    
alpar@100
  2032
    typedef typename Digraph::Arc Arc;
alpar@100
  2033
alpar@100
  2034
    virtual void add(const Arc& arc) {
deba@139
  2035
      ++_deg[_digraph.source(arc)];
alpar@100
  2036
    }
alpar@100
  2037
alpar@100
  2038
    virtual void add(const std::vector<Arc>& arcs) {
alpar@100
  2039
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@139
  2040
        ++_deg[_digraph.source(arcs[i])];
alpar@100
  2041
      }
alpar@100
  2042
    }
alpar@100
  2043
alpar@100
  2044
    virtual void erase(const Arc& arc) {
deba@139
  2045
      --_deg[_digraph.source(arc)];
alpar@100
  2046
    }
alpar@100
  2047
alpar@100
  2048
    virtual void erase(const std::vector<Arc>& arcs) {
alpar@100
  2049
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@139
  2050
        --_deg[_digraph.source(arcs[i])];
alpar@100
  2051
      }
alpar@100
  2052
    }
alpar@100
  2053
alpar@100
  2054
    virtual void build() {
deba@139
  2055
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@139
  2056
	_deg[it] = countOutArcs(_digraph, it);
alpar@100
  2057
      }      
alpar@100
  2058
    }
alpar@100
  2059
alpar@100
  2060
    virtual void clear() {
deba@139
  2061
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@139
  2062
	_deg[it] = 0;
alpar@100
  2063
      }
alpar@100
  2064
    }
alpar@100
  2065
  private:
alpar@100
  2066
    
deba@139
  2067
    const Digraph& _digraph;
deba@139
  2068
    AutoNodeMap _deg;
alpar@100
  2069
  };
alpar@100
  2070
alpar@100
  2071
alpar@100
  2072
  ///Dynamic arc look up between given endpoints.
alpar@100
  2073
  
alpar@100
  2074
  ///\ingroup gutils
alpar@100
  2075
  ///Using this class, you can find an arc in a digraph from a given
alpar@100
  2076
  ///source to a given target in amortized time <em>O(log d)</em>,
alpar@100
  2077
  ///where <em>d</em> is the out-degree of the source node.
alpar@100
  2078
  ///
alpar@100
  2079
  ///It is possible to find \e all parallel arcs between two nodes with
alpar@100
  2080
  ///the \c findFirst() and \c findNext() members.
alpar@100
  2081
  ///
alpar@100
  2082
  ///See the \ref ArcLookUp and \ref AllArcLookUp classes if your
deba@139
  2083
  ///digraph is not changed so frequently.
alpar@100
  2084
  ///
alpar@100
  2085
  ///This class uses a self-adjusting binary search tree, Sleator's
alpar@100
  2086
  ///and Tarjan's Splay tree for guarantee the logarithmic amortized
alpar@100
  2087
  ///time bound for arc lookups. This class also guarantees the
alpar@100
  2088
  ///optimal time bound in a constant factor for any distribution of
alpar@100
  2089
  ///queries.
alpar@100
  2090
  ///
kpeter@157
  2091
  ///\tparam G The type of the underlying digraph.  
alpar@100
  2092
  ///
alpar@100
  2093
  ///\sa ArcLookUp  
alpar@100
  2094
  ///\sa AllArcLookUp  
alpar@100
  2095
  template<class G>
alpar@100
  2096
  class DynArcLookUp 
alpar@100
  2097
    : protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase
alpar@100
  2098
  {
alpar@100
  2099
  public:
alpar@100
  2100
    typedef typename ItemSetTraits<G, typename G::Arc>
alpar@100
  2101
    ::ItemNotifier::ObserverBase Parent;
alpar@100
  2102
deba@148
  2103
    TEMPLATE_DIGRAPH_TYPEDEFS(G);
alpar@100
  2104
    typedef G Digraph;
alpar@100
  2105
alpar@100
  2106
  protected:
alpar@100
  2107
alpar@100
  2108
    class AutoNodeMap : public DefaultMap<G, Node, Arc> {
alpar@100
  2109
    public:
alpar@100
  2110
alpar@100
  2111
      typedef DefaultMap<G, Node, Arc> Parent;
alpar@100
  2112
alpar@100
  2113
      AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
alpar@100
  2114
      
alpar@100
  2115
      virtual void add(const Node& node) {
alpar@100
  2116
	Parent::add(node);
alpar@100
  2117
	Parent::set(node, INVALID);
alpar@100
  2118
      }
alpar@100
  2119
alpar@100
  2120
      virtual void add(const std::vector<Node>& nodes) {
alpar@100
  2121
	Parent::add(nodes);
alpar@100
  2122
	for (int i = 0; i < int(nodes.size()); ++i) {
alpar@100
  2123
	  Parent::set(nodes[i], INVALID);
alpar@100
  2124
	}
alpar@100
  2125
      }
alpar@100
  2126
alpar@100
  2127
      virtual void build() {
alpar@100
  2128
	Parent::build();
alpar@100
  2129
	Node it;
alpar@100
  2130
	typename Parent::Notifier* nf = Parent::notifier();
alpar@100
  2131
	for (nf->first(it); it != INVALID; nf->next(it)) {
alpar@100
  2132
	  Parent::set(it, INVALID);
alpar@100
  2133
	}
alpar@100
  2134
      }
alpar@100
  2135
    };
alpar@100
  2136
alpar@100
  2137
    const Digraph &_g;
alpar@100
  2138
    AutoNodeMap _head;
alpar@100
  2139
    typename Digraph::template ArcMap<Arc> _parent;
alpar@100
  2140
    typename Digraph::template ArcMap<Arc> _left;
alpar@100
  2141
    typename Digraph::template ArcMap<Arc> _right;
alpar@100
  2142
    
alpar@100
  2143
    class ArcLess {
alpar@100
  2144
      const Digraph &g;
alpar@100
  2145
    public:
alpar@100
  2146
      ArcLess(const Digraph &_g) : g(_g) {}
alpar@100
  2147
      bool operator()(Arc a,Arc b) const 
alpar@100
  2148
      {
alpar@100
  2149
	return g.target(a)<g.target(b);
alpar@100
  2150
      }
alpar@100
  2151
    };
alpar@100
  2152
    
alpar@100
  2153
  public:
alpar@100
  2154
    
alpar@100
  2155
    ///Constructor
alpar@100
  2156
alpar@100
  2157
    ///Constructor.
alpar@100
  2158
    ///
alpar@100
  2159
    ///It builds up the search database.
alpar@100
  2160
    DynArcLookUp(const Digraph &g) 
alpar@100
  2161
      : _g(g),_head(g),_parent(g),_left(g),_right(g) 
alpar@100
  2162
    { 
alpar@100
  2163
      Parent::attach(_g.notifier(typename Digraph::Arc()));
alpar@100
  2164
      refresh(); 
alpar@100
  2165
    }
alpar@100
  2166
    
alpar@100
  2167
  protected:
alpar@100
  2168
alpar@100
  2169
    virtual void add(const Arc& arc) {
alpar@100
  2170
      insert(arc);
alpar@100
  2171
    }
alpar@100
  2172
alpar@100
  2173
    virtual void add(const std::vector<Arc>& arcs) {
alpar@100
  2174
      for (int i = 0; i < int(arcs.size()); ++i) {
alpar@100
  2175
	insert(arcs[i]);
alpar@100
  2176
      }
alpar@100
  2177
    }
alpar@100
  2178
alpar@100
  2179
    virtual void erase(const Arc& arc) {
alpar@100
  2180
      remove(arc);
alpar@100
  2181
    }
alpar@100
  2182
alpar@100
  2183
    virtual void erase(const std::vector<Arc>& arcs) {
alpar@100
  2184
      for (int i = 0; i < int(arcs.size()); ++i) {
alpar@100
  2185
	remove(arcs[i]);
alpar@100
  2186
      }     
alpar@100
  2187
    }
alpar@100
  2188
alpar@100
  2189
    virtual void build() {
alpar@100
  2190
      refresh();
alpar@100
  2191
    }
alpar@100
  2192
alpar@100
  2193
    virtual void clear() {
alpar@100
  2194
      for(NodeIt n(_g);n!=INVALID;++n) {
alpar@100
  2195
	_head.set(n, INVALID);
alpar@100
  2196
      }
alpar@100
  2197
    }
alpar@100
  2198
alpar@100
  2199
    void insert(Arc arc) {
alpar@100
  2200
      Node s = _g.source(arc);
alpar@100
  2201
      Node t = _g.target(arc);
alpar@100
  2202
      _left.set(arc, INVALID);
alpar@100
  2203
      _right.set(arc, INVALID);
alpar@100
  2204
      
alpar@100
  2205
      Arc e = _head[s];
alpar@100
  2206
      if (e == INVALID) {
alpar@100
  2207
	_head.set(s, arc);
alpar@100
  2208
	_parent.set(arc, INVALID);
alpar@100
  2209
	return;
alpar@100
  2210
      }
alpar@100
  2211
      while (true) {
alpar@100
  2212
	if (t < _g.target(e)) {
alpar@100
  2213
	  if (_left[e] == INVALID) {
alpar@100
  2214
	    _left.set(e, arc);
alpar@100
  2215
	    _parent.set(arc, e);
alpar@100
  2216
	    splay(arc);
alpar@100
  2217
	    return;
alpar@100
  2218
	  } else {
alpar@100
  2219
	    e = _left[e];
alpar@100
  2220
	  }
alpar@100
  2221
	} else {
alpar@100
  2222
	  if (_right[e] == INVALID) {
alpar@100
  2223
	    _right.set(e, arc);
alpar@100
  2224
	    _parent.set(arc, e);
alpar@100
  2225
	    splay(arc);
alpar@100
  2226
	    return;
alpar@100
  2227
	  } else {
alpar@100
  2228
	    e = _right[e];
alpar@100
  2229
	  }
alpar@100
  2230
	}
alpar@100
  2231
      }
alpar@100
  2232
    }
alpar@100
  2233
alpar@100
  2234
    void remove(Arc arc) {
alpar@100
  2235
      if (_left[arc] == INVALID) {
alpar@100
  2236
	if (_right[arc] != INVALID) {
alpar@100
  2237
	  _parent.set(_right[arc], _parent[arc]);
alpar@100
  2238
	}
alpar@100
  2239
	if (_parent[arc] != INVALID) {
alpar@100
  2240
	  if (_left[_parent[arc]] == arc) {
alpar@100
  2241
	    _left.set(_parent[arc], _right[arc]);
alpar@100
  2242
	  } else {
alpar@100
  2243
	    _right.set(_parent[arc], _right[arc]);
alpar@100
  2244
	  }
alpar@100
  2245
	} else {
alpar@100
  2246
	  _head.set(_g.source(arc), _right[arc]);
alpar@100
  2247
	}
alpar@100
  2248
      } else if (_right[arc] == INVALID) {
alpar@100
  2249
	_parent.set(_left[arc], _parent[arc]);
alpar@100
  2250
	if (_parent[arc] != INVALID) {
alpar@100
  2251
	  if (_left[_parent[arc]] == arc) {
alpar@100
  2252
	    _left.set(_parent[arc], _left[arc]);
alpar@100
  2253
	  } else {
alpar@100
  2254
	    _right.set(_parent[arc], _left[arc]);
alpar@100
  2255
	  }
alpar@100
  2256
	} else {
alpar@100
  2257
	  _head.set(_g.source(arc), _left[arc]);
alpar@100
  2258
	}
alpar@100
  2259
      } else {
alpar@100
  2260
	Arc e = _left[arc];
alpar@100
  2261
	if (_right[e] != INVALID) {
alpar@100
  2262
	  e = _right[e];	  
alpar@100
  2263
	  while (_right[e] != INVALID) {
alpar@100
  2264
	    e = _right[e];
alpar@100
  2265
	  }
alpar@100
  2266
	  Arc s = _parent[e];
alpar@100
  2267
	  _right.set(_parent[e], _left[e]);
alpar@100
  2268
	  if (_left[e] != INVALID) {
alpar@100
  2269
	    _parent.set(_left[e], _parent[e]);
alpar@100
  2270
	  }
alpar@100
  2271
	  
alpar@100
  2272
	  _left.set(e, _left[arc]);
alpar@100
  2273
	  _parent.set(_left[arc], e);
alpar@100
  2274
	  _right.set(e, _right[arc]);
alpar@100
  2275
	  _parent.set(_right[arc], e);
alpar@100
  2276
alpar@100
  2277
	  _parent.set(e, _parent[arc]);
alpar@100
  2278
	  if (_parent[arc] != INVALID) {
alpar@100
  2279
	    if (_left[_parent[arc]] == arc) {
alpar@100
  2280
	      _left.set(_parent[arc], e);
alpar@100
  2281
	    } else {
alpar@100
  2282
	      _right.set(_parent[arc], e);
alpar@100
  2283
	    }
alpar@100
  2284
	  }
alpar@100
  2285
	  splay(s);
alpar@100
  2286
	} else {
alpar@100
  2287
	  _right.set(e, _right[arc]);
alpar@100
  2288
	  _parent.set(_right[arc], e);
alpar@100
  2289
alpar@100
  2290
	  if (_parent[arc] != INVALID) {
alpar@100
  2291
	    if (_left[_parent[arc]] == arc) {
alpar@100
  2292
	      _left.set(_parent[arc], e);
alpar@100
  2293
	    } else {
alpar@100
  2294
	      _right.set(_parent[arc], e);
alpar@100
  2295
	    }
alpar@100
  2296
	  } else {
alpar@100
  2297
	    _head.set(_g.source(arc), e);
alpar@100
  2298
	  }
alpar@100
  2299
	}
alpar@100
  2300
      }
alpar@100
  2301
    }
alpar@100
  2302
alpar@100
  2303
    Arc refreshRec(std::vector<Arc> &v,int a,int b) 
alpar@100
  2304
    {
alpar@100
  2305
      int m=(a+b)/2;
alpar@100
  2306
      Arc me=v[m];
alpar@100
  2307
      if (a < m) {
alpar@100
  2308
	Arc left = refreshRec(v,a,m-1);
alpar@100
  2309
	_left.set(me, left);
alpar@100
  2310
	_parent.set(left, me);
alpar@100
  2311
      } else {
alpar@100
  2312
	_left.set(me, INVALID);
alpar@100
  2313
      }
alpar@100
  2314
      if (m < b) {
alpar@100
  2315
	Arc right = refreshRec(v,m+1,b);
alpar@100
  2316
	_right.set(me, right);
alpar@100
  2317
	_parent.set(right, me);
alpar@100
  2318
      } else {
alpar@100
  2319
	_right.set(me, INVALID);
alpar@100
  2320
      }
alpar@100
  2321
      return me;
alpar@100
  2322
    }
alpar@100
  2323
alpar@100
  2324
    void refresh() {
alpar@100
  2325
      for(NodeIt n(_g);n!=INVALID;++n) {
alpar@100
  2326
	std::vector<Arc> v;
alpar@100
  2327
	for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
alpar@100
  2328
	if(v.size()) {
alpar@100
  2329
	  std::sort(v.begin(),v.end(),ArcLess(_g));
alpar@100
  2330
	  Arc head = refreshRec(v,0,v.size()-1);
alpar@100
  2331
	  _head.set(n, head);
alpar@100
  2332
	  _parent.set(head, INVALID);
alpar@100
  2333
	}
alpar@100
  2334
	else _head.set(n, INVALID);
alpar@100
  2335
      }
alpar@100
  2336
    }
alpar@100
  2337
alpar@100
  2338
    void zig(Arc v) {        
alpar@100
  2339
      Arc w = _parent[v];
alpar@100
  2340
      _parent.set(v, _parent[w]);
alpar@100
  2341
      _parent.set(w, v);
alpar@100
  2342
      _left.set(w, _right[v]);
alpar@100
  2343
      _right.set(v, w);
alpar@100
  2344
      if (_parent[v] != INVALID) {
alpar@100
  2345
	if (_right[_parent[v]] == w) {
alpar@100
  2346
	  _right.set(_parent[v], v);
alpar@100
  2347
	} else {
alpar@100
  2348
	  _left.set(_parent[v], v);
alpar@100
  2349
	}
alpar@100
  2350
      }
alpar@100
  2351
      if (_left[w] != INVALID){
alpar@100
  2352
	_parent.set(_left[w], w);
alpar@100
  2353
      }
alpar@100
  2354
    }
alpar@100
  2355
alpar@100
  2356
    void zag(Arc v) {        
alpar@100
  2357
      Arc w = _parent[v];
alpar@100
  2358
      _parent.set(v, _parent[w]);
alpar@100
  2359
      _parent.set(w, v);
alpar@100
  2360
      _right.set(w, _left[v]);
alpar@100
  2361
      _left.set(v, w);
alpar@100
  2362
      if (_parent[v] != INVALID){
alpar@100
  2363
	if (_left[_parent[v]] == w) {
alpar@100
  2364
	  _left.set(_parent[v], v);
alpar@100
  2365
	} else {
alpar@100
  2366
	  _right.set(_parent[v], v);
alpar@100
  2367
	}
alpar@100
  2368
      }
alpar@100
  2369
      if (_right[w] != INVALID){
alpar@100
  2370
	_parent.set(_right[w], w);
alpar@100
  2371
      }
alpar@100
  2372
    }
alpar@100
  2373
alpar@100
  2374
    void splay(Arc v) {
alpar@100
  2375
      while (_parent[v] != INVALID) {
alpar@100
  2376
	if (v == _left[_parent[v]]) {
alpar@100
  2377
	  if (_parent[_parent[v]] == INVALID) {
alpar@100
  2378
	    zig(v);
alpar@100
  2379
	  } else {
alpar@100
  2380
	    if (_parent[v] == _left[_parent[_parent[v]]]) {
alpar@100
  2381
	      zig(_parent[v]);
alpar@100
  2382
	      zig(v);
alpar@100
  2383
	    } else {
alpar@100
  2384
	      zig(v);
alpar@100
  2385
	      zag(v);
alpar@100
  2386
	    }
alpar@100
  2387
	  }
alpar@100
  2388
	} else {
alpar@100
  2389
	  if (_parent[_parent[v]] == INVALID) {
alpar@100
  2390
	    zag(v);
alpar@100
  2391
	  } else {
alpar@100
  2392
	    if (_parent[v] == _left[_parent[_parent[v]]]) {
alpar@100
  2393
	      zag(v);
alpar@100
  2394
	      zig(v);
alpar@100
  2395
	    } else {
alpar@100
  2396
	      zag(_parent[v]);
alpar@100
  2397
	      zag(v);
alpar@100
  2398
	    }
alpar@100
  2399
	  }
alpar@100
  2400
	}
alpar@100
  2401
      }
alpar@100
  2402
      _head[_g.source(v)] = v;
alpar@100
  2403
    }
alpar@100
  2404
alpar@100
  2405
alpar@100
  2406
  public:
alpar@100
  2407
    
alpar@100
  2408
    ///Find an arc between two nodes.
alpar@100
  2409
    
alpar@100
  2410
    ///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
alpar@100
  2411
    /// <em>d</em> is the number of outgoing arcs of \c s.
alpar@100
  2412
    ///\param s The source node
alpar@100
  2413
    ///\param t The target node
alpar@100
  2414
    ///\return An arc from \c s to \c t if there exists,
alpar@100
  2415
    ///\ref INVALID otherwise.
alpar@100
  2416
    Arc operator()(Node s, Node t) const
alpar@100
  2417
    {
deba@139
  2418
      Arc a = _head[s];
alpar@100
  2419
      while (true) {
deba@139
  2420
	if (_g.target(a) == t) {
deba@139
  2421
	  const_cast<DynArcLookUp&>(*this).splay(a);
deba@139
  2422
	  return a;
deba@139
  2423
	} else if (t < _g.target(a)) {
deba@139
  2424
	  if (_left[a] == INVALID) {
deba@139
  2425
	    const_cast<DynArcLookUp&>(*this).splay(a);
alpar@100
  2426
	    return INVALID;
alpar@100
  2427
	  } else {
deba@139
  2428
	    a = _left[a];
alpar@100
  2429
	  }
alpar@100
  2430
	} else  {
deba@139
  2431
	  if (_right[a] == INVALID) {
deba@139
  2432
	    const_cast<DynArcLookUp&>(*this).splay(a);
alpar@100
  2433
	    return INVALID;
alpar@100
  2434
	  } else {
deba@139
  2435
	    a = _right[a];
alpar@100
  2436
	  }
alpar@100
  2437
	}
alpar@100
  2438
      }
alpar@100
  2439
    }
alpar@100
  2440
alpar@100
  2441
    ///Find the first arc between two nodes.
alpar@100
  2442
    
alpar@100
  2443
    ///Find the first arc between two nodes in time
alpar@100
  2444
    /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
alpar@100
  2445
    /// outgoing arcs of \c s.  
alpar@100
  2446
    ///\param s The source node 
alpar@100
  2447
    ///\param t The target node
alpar@100
  2448
    ///\return An arc from \c s to \c t if there exists, \ref INVALID
alpar@100
  2449
    /// otherwise.
alpar@100
  2450
    Arc findFirst(Node s, Node t) const
alpar@100
  2451
    {
deba@139
  2452
      Arc a = _head[s];
alpar@100
  2453
      Arc r = INVALID;
alpar@100
  2454
      while (true) {
deba@139
  2455
	if (_g.target(a) < t) {
deba@139
  2456
	  if (_right[a] == INVALID) {
deba@139
  2457
	    const_cast<DynArcLookUp&>(*this).splay(a);
alpar@100
  2458
	    return r;
alpar@100
  2459
	  } else {
deba@139
  2460
	    a = _right[a];
alpar@100
  2461
	  }
alpar@100
  2462
	} else {
deba@139
  2463
	  if (_g.target(a) == t) {
deba@139
  2464
	    r = a;
alpar@100
  2465
	  }
deba@139
  2466
	  if (_left[a] == INVALID) {
deba@139
  2467
	    const_cast<DynArcLookUp&>(*this).splay(a);
alpar@100
  2468
	    return r;
alpar@100
  2469
	  } else {
deba@139
  2470
	    a = _left[a];
alpar@100
  2471
	  }
alpar@100
  2472
	}
alpar@100
  2473
      }
alpar@100
  2474
    }
alpar@100
  2475
alpar@100
  2476
    ///Find the next arc between two nodes.
alpar@100
  2477
    
alpar@100
  2478
    ///Find the next arc between two nodes in time
alpar@100
  2479
    /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
alpar@100
  2480
    /// outgoing arcs of \c s.  
alpar@100
  2481
    ///\param s The source node 
alpar@100
  2482
    ///\param t The target node
alpar@100
  2483
    ///\return An arc from \c s to \c t if there exists, \ref INVALID
alpar@100
  2484
    /// otherwise.
alpar@100
  2485
alpar@100
  2486
    ///\note If \c e is not the result of the previous \c findFirst()
alpar@100
  2487
    ///operation then the amorized time bound can not be guaranteed.
alpar@100
  2488
#ifdef DOXYGEN
deba@139
  2489
    Arc findNext(Node s, Node t, Arc a) const
alpar@100
  2490
#else
deba@139
  2491
    Arc findNext(Node, Node t, Arc a) const
alpar@100
  2492
#endif
alpar@100
  2493
    {
deba@139
  2494
      if (_right[a] != INVALID) {
deba@139
  2495
	a = _right[a];
deba@139
  2496
	while (_left[a] != INVALID) {
deba@139
  2497
	  a = _left[a];
alpar@100
  2498
	}
deba@139
  2499
	const_cast<DynArcLookUp&>(*this).splay(a);
alpar@100
  2500
      } else {
deba@139
  2501
	while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
deba@139
  2502
	  a = _parent[a];
alpar@100
  2503
	}
deba@139
  2504
	if (_parent[a] == INVALID) {
alpar@100
  2505
	  return INVALID;
alpar@100
  2506
	} else {
deba@139
  2507
	  a = _parent[a];
deba@139
  2508
	  const_cast<DynArcLookUp&>(*this).splay(a);
alpar@100
  2509
	}
alpar@100
  2510
      }
deba@139
  2511
      if (_g.target(a) == t) return a;
alpar@100
  2512
      else return INVALID;    
alpar@100
  2513
    }
alpar@100
  2514
alpar@100
  2515
  };
alpar@100
  2516
alpar@100
  2517
  ///Fast arc look up between given endpoints.
alpar@100
  2518
  
alpar@100
  2519
  ///\ingroup gutils
alpar@100
  2520
  ///Using this class, you can find an arc in a digraph from a given
alpar@100
  2521
  ///source to a given target in time <em>O(log d)</em>,
alpar@100
  2522
  ///where <em>d</em> is the out-degree of the source node.
alpar@100
  2523
  ///
alpar@100
  2524
  ///It is not possible to find \e all parallel arcs between two nodes.
alpar@100
  2525
  ///Use \ref AllArcLookUp for this purpose.
alpar@100
  2526
  ///
alpar@100
  2527
  ///\warning This class is static, so you should refresh() (or at least
alpar@100
  2528
  ///refresh(Node)) this data structure
alpar@100
  2529
  ///whenever the digraph changes. This is a time consuming (superlinearly
alpar@100
  2530
  ///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
alpar@100
  2531
  ///
kpeter@157
  2532
  ///\tparam G The type of the underlying digraph.
alpar@100
  2533
  ///
alpar@100
  2534
  ///\sa DynArcLookUp
alpar@100
  2535
  ///\sa AllArcLookUp  
alpar@100
  2536
  template<class G>
alpar@100
  2537
  class ArcLookUp 
alpar@100
  2538
  {
alpar@100
  2539
  public:
deba@148
  2540
    TEMPLATE_DIGRAPH_TYPEDEFS(G);
alpar@100
  2541
    typedef G Digraph;
alpar@100
  2542
alpar@100
  2543
  protected:
alpar@100
  2544
    const Digraph &_g;
alpar@100
  2545
    typename Digraph::template NodeMap<Arc> _head;
alpar@100
  2546
    typename Digraph::template ArcMap<Arc> _left;
alpar@100
  2547
    typename Digraph::template ArcMap<Arc> _right;
alpar@100
  2548
    
alpar@100
  2549
    class ArcLess {
alpar@100
  2550
      const Digraph &g;
alpar@100
  2551
    public:
alpar@100
  2552
      ArcLess(const Digraph &_g) : g(_g) {}
alpar@100
  2553
      bool operator()(Arc a,Arc b) const 
alpar@100
  2554
      {
alpar@100
  2555
	return g.target(a)<g.target(b);
alpar@100
  2556
      }
alpar@100
  2557
    };
alpar@100
  2558
    
alpar@100
  2559
  public:
alpar@100
  2560
    
alpar@100
  2561
    ///Constructor
alpar@100
  2562
alpar@100
  2563
    ///Constructor.
alpar@100
  2564
    ///
alpar@100
  2565
    ///It builds up the search database, which remains valid until the digraph
alpar@100
  2566
    ///changes.
alpar@100
  2567
    ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
alpar@100
  2568
    
alpar@100
  2569
  private:
alpar@100
  2570
    Arc refreshRec(std::vector<Arc> &v,int a,int b) 
alpar@100
  2571
    {
alpar@100
  2572
      int m=(a+b)/2;
alpar@100
  2573
      Arc me=v[m];
alpar@100
  2574
      _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
alpar@100
  2575
      _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
alpar@100
  2576
      return me;
alpar@100
  2577
    }
alpar@100
  2578
  public:
alpar@100
  2579
    ///Refresh the data structure at a node.
alpar@100
  2580
alpar@100
  2581
    ///Build up the search database of node \c n.
alpar@100
  2582
    ///
alpar@100
  2583
    ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
alpar@100
  2584
    ///the number of the outgoing arcs of \c n.
alpar@100
  2585
    void refresh(Node n) 
alpar@100
  2586
    {
alpar@100
  2587
      std::vector<Arc> v;
alpar@100
  2588
      for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
alpar@100
  2589
      if(v.size()) {
alpar@100
  2590
	std::sort(v.begin(),v.end(),ArcLess(_g));
alpar@100
  2591
	_head[n]=refreshRec(v,0,v.size()-1);
alpar@100
  2592
      }
alpar@100
  2593
      else _head[n]=INVALID;
alpar@100
  2594
    }
alpar@100
  2595
    ///Refresh the full data structure.
alpar@100
  2596
alpar@100
  2597
    ///Build up the full search database. In fact, it simply calls
alpar@100
  2598
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
alpar@100
  2599
    ///
alpar@100
  2600
    ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
alpar@100
  2601
    ///the number of the arcs of \c n and <em>D</em> is the maximum
alpar@100
  2602
    ///out-degree of the digraph.
alpar@100
  2603
alpar@100
  2604
    void refresh() 
alpar@100
  2605
    {
alpar@100
  2606
      for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
alpar@100
  2607
    }
alpar@100
  2608
    
alpar@100
  2609
    ///Find an arc between two nodes.
alpar@100
  2610
    
alpar@100
  2611
    ///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
alpar@100
  2612
    /// <em>d</em> is the number of outgoing arcs of \c s.
alpar@100
  2613
    ///\param s The source node
alpar@100
  2614
    ///\param t The target node
alpar@100
  2615
    ///\return An arc from \c s to \c t if there exists,
alpar@100
  2616
    ///\ref INVALID otherwise.
alpar@100
  2617
    ///
alpar@100
  2618
    ///\warning If you change the digraph, refresh() must be called before using
alpar@100
  2619
    ///this operator. If you change the outgoing arcs of
alpar@100
  2620
    ///a single node \c n, then
alpar@100
  2621
    ///\ref refresh(Node) "refresh(n)" is enough.
alpar@100
  2622
    ///
alpar@100
  2623
    Arc operator()(Node s, Node t) const
alpar@100
  2624
    {
alpar@100
  2625
      Arc e;
alpar@100
  2626
      for(e=_head[s];
alpar@100
  2627
	  e!=INVALID&&_g.target(e)!=t;
alpar@100
  2628
	  e = t < _g.target(e)?_left[e]:_right[e]) ;
alpar@100
  2629
      return e;
alpar@100
  2630
    }
alpar@100
  2631
alpar@100
  2632
  };
alpar@100
  2633
alpar@100
  2634
  ///Fast look up of all arcs between given endpoints.
alpar@100
  2635
  
alpar@100
  2636
  ///\ingroup gutils
alpar@100
  2637
  ///This class is the same as \ref ArcLookUp, with the addition
alpar@100
  2638
  ///that it makes it possible to find all arcs between given endpoints.
alpar@100
  2639
  ///
alpar@100
  2640
  ///\warning This class is static, so you should refresh() (or at least
alpar@100
  2641
  ///refresh(Node)) this data structure
alpar@100
  2642
  ///whenever the digraph changes. This is a time consuming (superlinearly
alpar@100
  2643
  ///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
alpar@100
  2644
  ///
kpeter@157
  2645
  ///\tparam G The type of the underlying digraph.
alpar@100
  2646
  ///
alpar@100
  2647
  ///\sa DynArcLookUp
alpar@100
  2648
  ///\sa ArcLookUp  
alpar@100
  2649
  template<class G>
alpar@100
  2650
  class AllArcLookUp : public ArcLookUp<G>
alpar@100
  2651
  {
alpar@100
  2652
    using ArcLookUp<G>::_g;
alpar@100
  2653
    using ArcLookUp<G>::_right;
alpar@100
  2654
    using ArcLookUp<G>::_left;
alpar@100
  2655
    using ArcLookUp<G>::_head;
alpar@100
  2656
deba@148
  2657
    TEMPLATE_DIGRAPH_TYPEDEFS(G);
alpar@100
  2658
    typedef G Digraph;
alpar@100
  2659
    
alpar@100
  2660
    typename Digraph::template ArcMap<Arc> _next;
alpar@100
  2661
    
alpar@100
  2662
    Arc refreshNext(Arc head,Arc next=INVALID)
alpar@100
  2663
    {
alpar@100
  2664
      if(head==INVALID) return next;
alpar@100
  2665
      else {
alpar@100
  2666
	next=refreshNext(_right[head],next);
alpar@100
  2667
// 	_next[head]=next;
alpar@100
  2668
	_next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
alpar@100
  2669
	  ? next : INVALID;
alpar@100
  2670
	return refreshNext(_left[head],head);
alpar@100
  2671
      }
alpar@100
  2672
    }
alpar@100
  2673
    
alpar@100
  2674
    void refreshNext()
alpar@100
  2675
    {
alpar@100
  2676
      for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
alpar@100
  2677
    }
alpar@100
  2678
    
alpar@100
  2679
  public:
alpar@100
  2680
    ///Constructor
alpar@100
  2681
alpar@100
  2682
    ///Constructor.
alpar@100
  2683
    ///
alpar@100
  2684
    ///It builds up the search database, which remains valid until the digraph
alpar@100
  2685
    ///changes.
alpar@100
  2686
    AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();}
alpar@100
  2687
alpar@100
  2688
    ///Refresh the data structure at a node.
alpar@100
  2689
alpar@100
  2690
    ///Build up the search database of node \c n.
alpar@100
  2691
    ///
alpar@100
  2692
    ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
alpar@100
  2693
    ///the number of the outgoing arcs of \c n.
alpar@100
  2694
    
alpar@100
  2695
    void refresh(Node n) 
alpar@100
  2696
    {
alpar@100
  2697
      ArcLookUp<G>::refresh(n);
alpar@100
  2698
      refreshNext(_head[n]);
alpar@100
  2699
    }
alpar@100
  2700
    
alpar@100
  2701
    ///Refresh the full data structure.
alpar@100
  2702
alpar@100
  2703
    ///Build up the full search database. In fact, it simply calls
alpar@100
  2704
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
alpar@100
  2705
    ///
alpar@100
  2706
    ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
alpar@100
  2707
    ///the number of the arcs of \c n and <em>D</em> is the maximum
alpar@100
  2708
    ///out-degree of the digraph.
alpar@100
  2709
alpar@100
  2710
    void refresh() 
alpar@100
  2711
    {
alpar@100
  2712
      for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
alpar@100
  2713
    }
alpar@100
  2714
    
alpar@100
  2715
    ///Find an arc between two nodes.
alpar@100
  2716
    
alpar@100
  2717
    ///Find an arc between two nodes.
alpar@100
  2718
    ///\param s The source node
alpar@100
  2719
    ///\param t The target node
alpar@100
  2720
    ///\param prev The previous arc between \c s and \c t. It it is INVALID or
alpar@100
  2721
    ///not given, the operator finds the first appropriate arc.
alpar@100
  2722
    ///\return An arc from \c s to \c t after \c prev or
alpar@100
  2723
    ///\ref INVALID if there is no more.
alpar@100
  2724
    ///
alpar@100
  2725
    ///For example, you can count the number of arcs from \c u to \c v in the
alpar@100
  2726
    ///following way.
alpar@100
  2727
    ///\code
alpar@100
  2728
    ///AllArcLookUp<ListDigraph> ae(g);
alpar@100
  2729
    ///...
alpar@100
  2730
    ///int n=0;
alpar@100
  2731
    ///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
alpar@100
  2732
    ///\endcode
alpar@100
  2733
    ///
alpar@100
  2734
    ///Finding the first arc take <em>O(</em>log<em>d)</em> time, where
alpar@100
  2735
    /// <em>d</em> is the number of outgoing arcs of \c s. Then, the
alpar@100
  2736
    ///consecutive arcs are found in constant time.
alpar@100
  2737
    ///
alpar@100
  2738
    ///\warning If you change the digraph, refresh() must be called before using
alpar@100
  2739
    ///this operator. If you change the outgoing arcs of
alpar@100
  2740
    ///a single node \c n, then
alpar@100
  2741
    ///\ref refresh(Node) "refresh(n)" is enough.
alpar@100
  2742
    ///
alpar@100
  2743
#ifdef DOXYGEN
alpar@100
  2744
    Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
alpar@100
  2745
#else
alpar@100
  2746
    using ArcLookUp<G>::operator() ;
alpar@100
  2747
    Arc operator()(Node s, Node t, Arc prev) const
alpar@100
  2748
    {
alpar@100
  2749
      return prev==INVALID?(*this)(s,t):_next[prev];
alpar@100
  2750
    }
alpar@100
  2751
#endif
alpar@100
  2752
      
alpar@100
  2753
  };
alpar@100
  2754
alpar@100
  2755
  /// @}
alpar@100
  2756
alpar@100
  2757
} //END OF NAMESPACE LEMON
alpar@100
  2758
alpar@100
  2759
#endif