lemon/opt2_tsp.h
author Antal Nemes <thoneyvazul@gmail.com>
Tue, 30 Nov 2010 20:21:52 +0100
changeset 1056 92a884824429
parent 1036 dff32ce3db71
child 1076 97d978243703
permissions -rw-r--r--
Port Edmonds-Karp algorithm from svn -r3524 (#177)
kpeter@1033
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
kpeter@1033
     2
 *
kpeter@1033
     3
 * This file is a part of LEMON, a generic C++ optimization library.
kpeter@1033
     4
 *
kpeter@1033
     5
 * Copyright (C) 2003-2010
kpeter@1033
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@1033
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@1033
     8
 *
kpeter@1033
     9
 * Permission to use, modify and distribute this software is granted
kpeter@1033
    10
 * provided that this copyright notice appears in all copies. For
kpeter@1033
    11
 * precise terms see the accompanying LICENSE file.
kpeter@1033
    12
 *
kpeter@1033
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@1033
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@1033
    15
 * purpose.
kpeter@1033
    16
 *
kpeter@1033
    17
 */
kpeter@1033
    18
f4c3@1031
    19
#ifndef LEMON_OPT2_TSP_H
f4c3@1031
    20
#define LEMON_OPT2_TSP_H
f4c3@1031
    21
kpeter@1033
    22
/// \ingroup tsp
kpeter@1033
    23
/// \file
kpeter@1034
    24
/// \brief 2-opt algorithm for symmetric TSP.
kpeter@1033
    25
f4c3@1031
    26
#include <vector>
f4c3@1031
    27
#include <lemon/full_graph.h>
f4c3@1031
    28
f4c3@1031
    29
namespace lemon {
kpeter@1033
    30
kpeter@1034
    31
  /// \ingroup tsp
kpeter@1034
    32
  ///
kpeter@1033
    33
  /// \brief 2-opt algorithm for symmetric TSP.
kpeter@1033
    34
  ///
kpeter@1033
    35
  /// Opt2Tsp implements the 2-opt heuristic for solving
kpeter@1033
    36
  /// symmetric \ref tsp "TSP".
kpeter@1033
    37
  ///
kpeter@1033
    38
  /// This algorithm starts with an initial tour and iteratively improves it.
kpeter@1033
    39
  /// At each step, it removes two edges and the reconnects the created two
kpeter@1033
    40
  /// paths in the other way if the resulting tour is shorter.
kpeter@1033
    41
  /// The algorithm finishes when no such 2-opt move can be applied, and so
kpeter@1033
    42
  /// the tour is 2-optimal.
kpeter@1033
    43
  ///
kpeter@1033
    44
  /// If no starting tour is given to the \ref run() function, then the
kpeter@1033
    45
  /// algorithm uses the node sequence determined by the node IDs.
kpeter@1033
    46
  /// Oherwise, it starts with the given tour.
kpeter@1033
    47
  ///
kpeter@1036
    48
  /// This is a rather slow but effective method.
kpeter@1036
    49
  /// Its typical usage is the improvement of the result of a fast tour
kpeter@1036
    50
  /// construction heuristic (e.g. the InsertionTsp algorithm).
kpeter@1033
    51
  ///
kpeter@1033
    52
  /// \tparam CM Type of the cost map.
f4c3@1031
    53
  template <typename CM>
kpeter@1033
    54
  class Opt2Tsp
kpeter@1033
    55
  {
kpeter@1033
    56
    public:
kpeter@1033
    57
kpeter@1033
    58
      /// Type of the cost map
kpeter@1033
    59
      typedef CM CostMap;
kpeter@1033
    60
      /// Type of the edge costs
kpeter@1033
    61
      typedef typename CM::Value Cost;
kpeter@1033
    62
f4c3@1031
    63
    private:
kpeter@1033
    64
f4c3@1031
    65
      GRAPH_TYPEDEFS(FullGraph);
f4c3@1031
    66
kpeter@1033
    67
      const FullGraph &_gr;
kpeter@1033
    68
      const CostMap &_cost;
kpeter@1033
    69
      Cost _sum;
kpeter@1033
    70
      std::vector<int> _plist;
kpeter@1033
    71
      std::vector<Node> _path;
kpeter@1033
    72
f4c3@1031
    73
    public:
kpeter@1033
    74
kpeter@1033
    75
      /// \brief Constructor
kpeter@1033
    76
      ///
kpeter@1033
    77
      /// Constructor.
kpeter@1033
    78
      /// \param gr The \ref FullGraph "full graph" the algorithm runs on.
kpeter@1033
    79
      /// \param cost The cost map.
kpeter@1033
    80
      Opt2Tsp(const FullGraph &gr, const CostMap &cost)
kpeter@1033
    81
        : _gr(gr), _cost(cost) {}
kpeter@1033
    82
kpeter@1033
    83
      /// \name Execution Control
kpeter@1033
    84
      /// @{
kpeter@1033
    85
kpeter@1033
    86
      /// \brief Runs the algorithm from scratch.
kpeter@1033
    87
      ///
kpeter@1033
    88
      /// This function runs the algorithm starting from the tour that is
kpeter@1033
    89
      /// determined by the node ID sequence.
kpeter@1033
    90
      ///
kpeter@1033
    91
      /// \return The total cost of the found tour.
kpeter@1033
    92
      Cost run() {
kpeter@1033
    93
        _path.clear();
kpeter@1033
    94
kpeter@1033
    95
        if (_gr.nodeNum() == 0) return _sum = 0;
kpeter@1033
    96
        else if (_gr.nodeNum() == 1) {
kpeter@1033
    97
          _path.push_back(_gr(0));
kpeter@1033
    98
          return _sum = 0;
f4c3@1031
    99
        }
kpeter@1033
   100
        else if (_gr.nodeNum() == 2) {
kpeter@1033
   101
          _path.push_back(_gr(0));
kpeter@1033
   102
          _path.push_back(_gr(1));
kpeter@1033
   103
          return _sum = 2 * _cost[_gr.edge(_gr(0), _gr(1))];
kpeter@1033
   104
        }
f4c3@1031
   105
kpeter@1033
   106
        _plist.resize(2*_gr.nodeNum());
kpeter@1033
   107
        for (int i = 1; i < _gr.nodeNum()-1; ++i) {
kpeter@1033
   108
          _plist[2*i] = i-1;
kpeter@1033
   109
          _plist[2*i+1] = i+1;
f4c3@1031
   110
        }
kpeter@1033
   111
        _plist[0] = _gr.nodeNum()-1;
kpeter@1033
   112
        _plist[1] = 1;
kpeter@1033
   113
        _plist[2*_gr.nodeNum()-2] = _gr.nodeNum()-2;
kpeter@1033
   114
        _plist[2*_gr.nodeNum()-1] = 0;
kpeter@1033
   115
kpeter@1033
   116
        return start();
f4c3@1031
   117
      }
f4c3@1031
   118
kpeter@1034
   119
      /// \brief Runs the algorithm starting from the given tour.
kpeter@1033
   120
      ///
kpeter@1033
   121
      /// This function runs the algorithm starting from the given tour.
kpeter@1033
   122
      ///
kpeter@1033
   123
      /// \param tour The tour as a path structure. It must be a
kpeter@1033
   124
      /// \ref checkPath() "valid path" containing excactly n arcs.
kpeter@1033
   125
      ///
kpeter@1033
   126
      /// \return The total cost of the found tour.
kpeter@1033
   127
      template <typename Path>
kpeter@1033
   128
      Cost run(const Path& tour) {
kpeter@1033
   129
        _path.clear();
kpeter@1033
   130
kpeter@1033
   131
        if (_gr.nodeNum() == 0) return _sum = 0;
kpeter@1033
   132
        else if (_gr.nodeNum() == 1) {
kpeter@1033
   133
          _path.push_back(_gr(0));
kpeter@1033
   134
          return _sum = 0;
kpeter@1033
   135
        }
kpeter@1033
   136
        else if (_gr.nodeNum() == 2) {
kpeter@1033
   137
          _path.push_back(_gr(0));
kpeter@1033
   138
          _path.push_back(_gr(1));
kpeter@1033
   139
          return _sum = 2 * _cost[_gr.edge(_gr(0), _gr(1))];
kpeter@1033
   140
        }
kpeter@1033
   141
kpeter@1033
   142
        _plist.resize(2*_gr.nodeNum());
kpeter@1033
   143
        typename Path::ArcIt it(tour);
kpeter@1033
   144
        int first = _gr.id(_gr.source(it)),
kpeter@1033
   145
            prev = first,
kpeter@1033
   146
            curr = _gr.id(_gr.target(it)),
kpeter@1033
   147
            next = -1;
kpeter@1033
   148
        _plist[2*first+1] = curr;
kpeter@1033
   149
        for (++it; it != INVALID; ++it) {
kpeter@1033
   150
          next = _gr.id(_gr.target(it));
kpeter@1033
   151
          _plist[2*curr] = prev;
kpeter@1033
   152
          _plist[2*curr+1] = next;
kpeter@1033
   153
          prev = curr;
kpeter@1033
   154
          curr = next;
kpeter@1033
   155
        }
kpeter@1033
   156
        _plist[2*first] = prev;
kpeter@1033
   157
kpeter@1033
   158
        return start();
kpeter@1033
   159
      }
kpeter@1033
   160
kpeter@1034
   161
      /// \brief Runs the algorithm starting from the given tour.
kpeter@1033
   162
      ///
kpeter@1034
   163
      /// This function runs the algorithm starting from the given tour
kpeter@1034
   164
      /// (node sequence).
kpeter@1033
   165
      ///
kpeter@1034
   166
      /// \param tour A vector that stores all <tt>Node</tt>s of the graph
kpeter@1034
   167
      /// in the desired order.
kpeter@1033
   168
      ///
kpeter@1033
   169
      /// \return The total cost of the found tour.
kpeter@1034
   170
      Cost run(const std::vector<Node>& tour) {
kpeter@1033
   171
        _path.clear();
kpeter@1033
   172
kpeter@1033
   173
        if (_gr.nodeNum() == 0) return _sum = 0;
kpeter@1033
   174
        else if (_gr.nodeNum() == 1) {
kpeter@1033
   175
          _path.push_back(_gr(0));
kpeter@1033
   176
          return _sum = 0;
kpeter@1033
   177
        }
kpeter@1033
   178
        else if (_gr.nodeNum() == 2) {
kpeter@1033
   179
          _path.push_back(_gr(0));
kpeter@1033
   180
          _path.push_back(_gr(1));
kpeter@1033
   181
          return _sum = 2 * _cost[_gr.edge(_gr(0), _gr(1))];
kpeter@1033
   182
        }
kpeter@1033
   183
kpeter@1033
   184
        _plist.resize(2*_gr.nodeNum());
kpeter@1034
   185
        typename std::vector<Node>::const_iterator it = tour.begin();
kpeter@1033
   186
        int first = _gr.id(*it),
kpeter@1033
   187
            prev = first,
kpeter@1033
   188
            curr = _gr.id(*(++it)),
kpeter@1033
   189
            next = -1;
kpeter@1033
   190
        _plist[2*first+1] = curr;
kpeter@1033
   191
        for (++it; it != tour.end(); ++it) {
kpeter@1033
   192
          next = _gr.id(*it);
kpeter@1033
   193
          _plist[2*curr] = prev;
kpeter@1033
   194
          _plist[2*curr+1] = next;
kpeter@1033
   195
          prev = curr;
kpeter@1033
   196
          curr = next;
kpeter@1033
   197
        }
kpeter@1033
   198
        _plist[2*first] = curr;
kpeter@1033
   199
        _plist[2*curr] = prev;
kpeter@1033
   200
        _plist[2*curr+1] = first;
kpeter@1033
   201
kpeter@1033
   202
        return start();
kpeter@1033
   203
      }
kpeter@1033
   204
kpeter@1033
   205
      /// @}
kpeter@1033
   206
kpeter@1033
   207
      /// \name Query Functions
kpeter@1033
   208
      /// @{
kpeter@1033
   209
kpeter@1033
   210
      /// \brief The total cost of the found tour.
kpeter@1033
   211
      ///
kpeter@1033
   212
      /// This function returns the total cost of the found tour.
kpeter@1033
   213
      ///
kpeter@1033
   214
      /// \pre run() must be called before using this function.
kpeter@1033
   215
      Cost tourCost() const {
kpeter@1033
   216
        return _sum;
kpeter@1033
   217
      }
kpeter@1033
   218
kpeter@1033
   219
      /// \brief Returns a const reference to the node sequence of the
kpeter@1033
   220
      /// found tour.
kpeter@1033
   221
      ///
kpeter@1034
   222
      /// This function returns a const reference to a vector
kpeter@1033
   223
      /// that stores the node sequence of the found tour.
kpeter@1033
   224
      ///
kpeter@1033
   225
      /// \pre run() must be called before using this function.
kpeter@1033
   226
      const std::vector<Node>& tourNodes() const {
kpeter@1033
   227
        return _path;
kpeter@1033
   228
      }
kpeter@1033
   229
kpeter@1033
   230
      /// \brief Gives back the node sequence of the found tour.
kpeter@1033
   231
      ///
kpeter@1033
   232
      /// This function copies the node sequence of the found tour into
kpeter@1037
   233
      /// an STL container through the given output iterator. The
kpeter@1037
   234
      /// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
kpeter@1037
   235
      /// For example,
kpeter@1037
   236
      /// \code
kpeter@1037
   237
      /// std::vector<FullGraph::Node> nodes(countNodes(graph));
kpeter@1037
   238
      /// tsp.tourNodes(nodes.begin());
kpeter@1037
   239
      /// \endcode
kpeter@1037
   240
      /// or
kpeter@1037
   241
      /// \code
kpeter@1037
   242
      /// std::list<FullGraph::Node> nodes;
kpeter@1037
   243
      /// tsp.tourNodes(std::back_inserter(nodes));
kpeter@1037
   244
      /// \endcode
kpeter@1033
   245
      ///
kpeter@1033
   246
      /// \pre run() must be called before using this function.
kpeter@1037
   247
      template <typename Iterator>
kpeter@1037
   248
      void tourNodes(Iterator out) const {
kpeter@1037
   249
        std::copy(_path.begin(), _path.end(), out);
kpeter@1033
   250
      }
kpeter@1033
   251
kpeter@1033
   252
      /// \brief Gives back the found tour as a path.
kpeter@1033
   253
      ///
kpeter@1033
   254
      /// This function copies the found tour as a list of arcs/edges into
kpeter@1033
   255
      /// the given \ref concept::Path "path structure".
kpeter@1033
   256
      ///
kpeter@1033
   257
      /// \pre run() must be called before using this function.
kpeter@1033
   258
      template <typename Path>
kpeter@1033
   259
      void tour(Path &path) const {
kpeter@1033
   260
        path.clear();
kpeter@1033
   261
        for (int i = 0; i < int(_path.size()) - 1; ++i) {
kpeter@1033
   262
          path.addBack(_gr.arc(_path[i], _path[i+1]));
kpeter@1033
   263
        }
kpeter@1033
   264
        if (int(_path.size()) >= 2) {
kpeter@1033
   265
          path.addBack(_gr.arc(_path.back(), _path.front()));
kpeter@1033
   266
        }
kpeter@1033
   267
      }
kpeter@1033
   268
kpeter@1033
   269
      /// @}
kpeter@1033
   270
f4c3@1031
   271
    private:
kpeter@1033
   272
kpeter@1033
   273
      // Iterator class for the linked list storage of the tour
kpeter@1033
   274
      class PathListIt {
f4c3@1031
   275
        public:
kpeter@1033
   276
          PathListIt(const std::vector<int> &pl, int i=0)
kpeter@1033
   277
            : plist(&pl), act(i), last(pl[2*act]) {}
kpeter@1033
   278
          PathListIt(const std::vector<int> &pl, int i, int l)
kpeter@1033
   279
            : plist(&pl), act(i), last(l) {}
f4c3@1031
   280
kpeter@1033
   281
          int nextIndex() const {
kpeter@1033
   282
            return (*plist)[2*act] == last ? 2*act+1 : 2*act;
f4c3@1031
   283
          }
kpeter@1033
   284
kpeter@1033
   285
          int prevIndex() const {
kpeter@1033
   286
            return (*plist)[2*act] == last ? 2*act : 2*act+1;
f4c3@1031
   287
          }
kpeter@1033
   288
f4c3@1031
   289
          int next() const {
kpeter@1033
   290
            int x = (*plist)[2*act];
kpeter@1033
   291
            return x == last ? (*plist)[2*act+1] : x;
f4c3@1031
   292
          }
f4c3@1031
   293
f4c3@1031
   294
          int prev() const {
kpeter@1033
   295
            return last;
f4c3@1031
   296
          }
kpeter@1033
   297
kpeter@1033
   298
          PathListIt& operator++() {
f4c3@1031
   299
            int tmp = act;
f4c3@1031
   300
            act = next();
f4c3@1031
   301
            last = tmp;
f4c3@1031
   302
            return *this;
f4c3@1031
   303
          }
kpeter@1033
   304
f4c3@1031
   305
          operator int() const {
f4c3@1031
   306
            return act;
f4c3@1031
   307
          }
kpeter@1033
   308
f4c3@1031
   309
        private:
kpeter@1033
   310
          const std::vector<int> *plist;
f4c3@1031
   311
          int act;
f4c3@1031
   312
          int last;
f4c3@1031
   313
      };
f4c3@1031
   314
kpeter@1033
   315
      // Checks and applies 2-opt move (if it improves the tour)
kpeter@1033
   316
      bool checkOpt2(const PathListIt& i, const PathListIt& j) {
kpeter@1033
   317
        Node u  = _gr.nodeFromId(i),
kpeter@1033
   318
             un = _gr.nodeFromId(i.next()),
kpeter@1033
   319
             v  = _gr.nodeFromId(j),
kpeter@1033
   320
             vn = _gr.nodeFromId(j.next());
f4c3@1031
   321
kpeter@1033
   322
        if (_cost[_gr.edge(u, un)] + _cost[_gr.edge(v, vn)] >
kpeter@1033
   323
            _cost[_gr.edge(u, v)] + _cost[_gr.edge(un, vn)])
kpeter@1033
   324
        {
kpeter@1033
   325
          _plist[PathListIt(_plist, i.next(), i).prevIndex()] = j.next();
kpeter@1033
   326
          _plist[PathListIt(_plist, j.next(), j).prevIndex()] = i.next();
f4c3@1031
   327
kpeter@1033
   328
          _plist[i.nextIndex()] = j;
kpeter@1033
   329
          _plist[j.nextIndex()] = i;
f4c3@1031
   330
kpeter@1033
   331
          return true;
f4c3@1031
   332
        }
kpeter@1033
   333
f4c3@1031
   334
        return false;
kpeter@1033
   335
     }
f4c3@1031
   336
kpeter@1033
   337
      // Executes the algorithm from the initial tour
kpeter@1033
   338
      Cost start() {
f4c3@1031
   339
kpeter@1033
   340
      restart_search:
kpeter@1033
   341
        for (PathListIt i(_plist); true; ++i) {
kpeter@1033
   342
          PathListIt j = i;
kpeter@1033
   343
          if (++j == 0 || ++j == 0) break;
kpeter@1033
   344
          for (; j != 0 && j != i.prev(); ++j) {
kpeter@1033
   345
            if (checkOpt2(i, j))
kpeter@1033
   346
              goto restart_search;
f4c3@1031
   347
          }
f4c3@1031
   348
        }
f4c3@1031
   349
kpeter@1033
   350
        PathListIt i(_plist);
kpeter@1033
   351
        _path.push_back(_gr.nodeFromId(i));
kpeter@1033
   352
        for (++i; i != 0; ++i)
kpeter@1033
   353
          _path.push_back(_gr.nodeFromId(i));
f4c3@1031
   354
kpeter@1033
   355
        _sum = _cost[_gr.edge(_path.back(), _path.front())];
kpeter@1033
   356
        for (int i = 0; i < int(_path.size())-1; ++i) {
kpeter@1033
   357
          _sum += _cost[_gr.edge(_path[i], _path[i+1])];
kpeter@1033
   358
        }
f4c3@1031
   359
f4c3@1031
   360
        return _sum;
f4c3@1031
   361
      }
f4c3@1031
   362
f4c3@1031
   363
  };
f4c3@1031
   364
f4c3@1031
   365
}; // namespace lemon
f4c3@1031
   366
f4c3@1031
   367
#endif