alpar@209
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
alpar@25
|
2 |
*
|
alpar@209
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
alpar@25
|
4 |
*
|
alpar@440
|
5 |
* Copyright (C) 2003-2009
|
alpar@25
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@25
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@25
|
8 |
*
|
alpar@25
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@25
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@25
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@25
|
12 |
*
|
alpar@25
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@25
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@25
|
15 |
* purpose.
|
alpar@25
|
16 |
*
|
alpar@25
|
17 |
*/
|
alpar@25
|
18 |
|
alpar@25
|
19 |
#ifndef LEMON_MAPS_H
|
alpar@25
|
20 |
#define LEMON_MAPS_H
|
alpar@25
|
21 |
|
alpar@25
|
22 |
#include <iterator>
|
alpar@25
|
23 |
#include <functional>
|
alpar@25
|
24 |
#include <vector>
|
kpeter@694
|
25 |
#include <map>
|
alpar@25
|
26 |
|
deba@220
|
27 |
#include <lemon/core.h>
|
alpar@25
|
28 |
|
alpar@25
|
29 |
///\file
|
alpar@25
|
30 |
///\ingroup maps
|
alpar@25
|
31 |
///\brief Miscellaneous property maps
|
kpeter@80
|
32 |
|
alpar@25
|
33 |
namespace lemon {
|
alpar@25
|
34 |
|
alpar@25
|
35 |
/// \addtogroup maps
|
alpar@25
|
36 |
/// @{
|
alpar@25
|
37 |
|
alpar@25
|
38 |
/// Base class of maps.
|
alpar@25
|
39 |
|
kpeter@80
|
40 |
/// Base class of maps. It provides the necessary type definitions
|
kpeter@80
|
41 |
/// required by the map %concepts.
|
kpeter@80
|
42 |
template<typename K, typename V>
|
alpar@25
|
43 |
class MapBase {
|
alpar@25
|
44 |
public:
|
kpeter@313
|
45 |
/// \brief The key type of the map.
|
alpar@25
|
46 |
typedef K Key;
|
kpeter@80
|
47 |
/// \brief The value type of the map.
|
kpeter@80
|
48 |
/// (The type of objects associated with the keys).
|
kpeter@80
|
49 |
typedef V Value;
|
alpar@25
|
50 |
};
|
alpar@25
|
51 |
|
kpeter@80
|
52 |
|
alpar@25
|
53 |
/// Null map. (a.k.a. DoNothingMap)
|
alpar@25
|
54 |
|
kpeter@29
|
55 |
/// This map can be used if you have to provide a map only for
|
kpeter@80
|
56 |
/// its type definitions, or if you have to provide a writable map,
|
kpeter@80
|
57 |
/// but data written to it is not required (i.e. it will be sent to
|
kpeter@29
|
58 |
/// <tt>/dev/null</tt>).
|
kpeter@80
|
59 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
|
kpeter@80
|
60 |
///
|
kpeter@80
|
61 |
/// \sa ConstMap
|
kpeter@80
|
62 |
template<typename K, typename V>
|
kpeter@80
|
63 |
class NullMap : public MapBase<K, V> {
|
alpar@25
|
64 |
public:
|
kpeter@559
|
65 |
///\e
|
kpeter@559
|
66 |
typedef K Key;
|
kpeter@559
|
67 |
///\e
|
kpeter@559
|
68 |
typedef V Value;
|
kpeter@80
|
69 |
|
alpar@25
|
70 |
/// Gives back a default constructed element.
|
kpeter@80
|
71 |
Value operator[](const Key&) const { return Value(); }
|
alpar@25
|
72 |
/// Absorbs the value.
|
kpeter@80
|
73 |
void set(const Key&, const Value&) {}
|
alpar@25
|
74 |
};
|
alpar@25
|
75 |
|
kpeter@301
|
76 |
/// Returns a \c NullMap class
|
kpeter@301
|
77 |
|
kpeter@301
|
78 |
/// This function just returns a \c NullMap class.
|
kpeter@80
|
79 |
/// \relates NullMap
|
kpeter@80
|
80 |
template <typename K, typename V>
|
alpar@25
|
81 |
NullMap<K, V> nullMap() {
|
alpar@25
|
82 |
return NullMap<K, V>();
|
alpar@25
|
83 |
}
|
alpar@25
|
84 |
|
alpar@25
|
85 |
|
alpar@25
|
86 |
/// Constant map.
|
alpar@25
|
87 |
|
kpeter@82
|
88 |
/// This \ref concepts::ReadMap "readable map" assigns a specified
|
kpeter@82
|
89 |
/// value to each key.
|
kpeter@80
|
90 |
///
|
kpeter@301
|
91 |
/// In other aspects it is equivalent to \c NullMap.
|
kpeter@80
|
92 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
|
kpeter@80
|
93 |
/// concept, but it absorbs the data written to it.
|
kpeter@80
|
94 |
///
|
kpeter@80
|
95 |
/// The simplest way of using this map is through the constMap()
|
kpeter@80
|
96 |
/// function.
|
kpeter@80
|
97 |
///
|
kpeter@80
|
98 |
/// \sa NullMap
|
kpeter@80
|
99 |
/// \sa IdentityMap
|
kpeter@80
|
100 |
template<typename K, typename V>
|
kpeter@80
|
101 |
class ConstMap : public MapBase<K, V> {
|
alpar@25
|
102 |
private:
|
kpeter@80
|
103 |
V _value;
|
alpar@25
|
104 |
public:
|
kpeter@559
|
105 |
///\e
|
kpeter@559
|
106 |
typedef K Key;
|
kpeter@559
|
107 |
///\e
|
kpeter@559
|
108 |
typedef V Value;
|
alpar@25
|
109 |
|
alpar@25
|
110 |
/// Default constructor
|
alpar@25
|
111 |
|
kpeter@29
|
112 |
/// Default constructor.
|
kpeter@80
|
113 |
/// The value of the map will be default constructed.
|
alpar@25
|
114 |
ConstMap() {}
|
kpeter@80
|
115 |
|
kpeter@29
|
116 |
/// Constructor with specified initial value
|
alpar@25
|
117 |
|
kpeter@29
|
118 |
/// Constructor with specified initial value.
|
kpeter@123
|
119 |
/// \param v The initial value of the map.
|
kpeter@80
|
120 |
ConstMap(const Value &v) : _value(v) {}
|
alpar@25
|
121 |
|
kpeter@80
|
122 |
/// Gives back the specified value.
|
kpeter@80
|
123 |
Value operator[](const Key&) const { return _value; }
|
alpar@25
|
124 |
|
kpeter@80
|
125 |
/// Absorbs the value.
|
kpeter@80
|
126 |
void set(const Key&, const Value&) {}
|
kpeter@80
|
127 |
|
kpeter@80
|
128 |
/// Sets the value that is assigned to each key.
|
kpeter@80
|
129 |
void setAll(const Value &v) {
|
kpeter@80
|
130 |
_value = v;
|
kpeter@80
|
131 |
}
|
kpeter@80
|
132 |
|
kpeter@80
|
133 |
template<typename V1>
|
kpeter@80
|
134 |
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
|
alpar@25
|
135 |
};
|
alpar@25
|
136 |
|
kpeter@301
|
137 |
/// Returns a \c ConstMap class
|
kpeter@301
|
138 |
|
kpeter@301
|
139 |
/// This function just returns a \c ConstMap class.
|
kpeter@80
|
140 |
/// \relates ConstMap
|
kpeter@80
|
141 |
template<typename K, typename V>
|
alpar@25
|
142 |
inline ConstMap<K, V> constMap(const V &v) {
|
alpar@25
|
143 |
return ConstMap<K, V>(v);
|
alpar@25
|
144 |
}
|
alpar@25
|
145 |
|
kpeter@123
|
146 |
template<typename K, typename V>
|
kpeter@123
|
147 |
inline ConstMap<K, V> constMap() {
|
kpeter@123
|
148 |
return ConstMap<K, V>();
|
kpeter@123
|
149 |
}
|
kpeter@123
|
150 |
|
alpar@25
|
151 |
|
alpar@25
|
152 |
template<typename T, T v>
|
kpeter@80
|
153 |
struct Const {};
|
alpar@25
|
154 |
|
alpar@25
|
155 |
/// Constant map with inlined constant value.
|
alpar@25
|
156 |
|
kpeter@82
|
157 |
/// This \ref concepts::ReadMap "readable map" assigns a specified
|
kpeter@82
|
158 |
/// value to each key.
|
kpeter@80
|
159 |
///
|
kpeter@301
|
160 |
/// In other aspects it is equivalent to \c NullMap.
|
kpeter@80
|
161 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
|
kpeter@80
|
162 |
/// concept, but it absorbs the data written to it.
|
kpeter@80
|
163 |
///
|
kpeter@80
|
164 |
/// The simplest way of using this map is through the constMap()
|
kpeter@80
|
165 |
/// function.
|
kpeter@80
|
166 |
///
|
kpeter@80
|
167 |
/// \sa NullMap
|
kpeter@80
|
168 |
/// \sa IdentityMap
|
alpar@25
|
169 |
template<typename K, typename V, V v>
|
alpar@25
|
170 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
|
alpar@25
|
171 |
public:
|
kpeter@559
|
172 |
///\e
|
kpeter@559
|
173 |
typedef K Key;
|
kpeter@559
|
174 |
///\e
|
kpeter@559
|
175 |
typedef V Value;
|
alpar@25
|
176 |
|
kpeter@80
|
177 |
/// Constructor.
|
kpeter@80
|
178 |
ConstMap() {}
|
kpeter@80
|
179 |
|
kpeter@80
|
180 |
/// Gives back the specified value.
|
kpeter@80
|
181 |
Value operator[](const Key&) const { return v; }
|
kpeter@80
|
182 |
|
kpeter@80
|
183 |
/// Absorbs the value.
|
kpeter@80
|
184 |
void set(const Key&, const Value&) {}
|
alpar@25
|
185 |
};
|
alpar@25
|
186 |
|
kpeter@301
|
187 |
/// Returns a \c ConstMap class with inlined constant value
|
kpeter@301
|
188 |
|
kpeter@301
|
189 |
/// This function just returns a \c ConstMap class with inlined
|
kpeter@80
|
190 |
/// constant value.
|
kpeter@80
|
191 |
/// \relates ConstMap
|
kpeter@80
|
192 |
template<typename K, typename V, V v>
|
alpar@25
|
193 |
inline ConstMap<K, Const<V, v> > constMap() {
|
alpar@25
|
194 |
return ConstMap<K, Const<V, v> >();
|
alpar@25
|
195 |
}
|
alpar@25
|
196 |
|
alpar@25
|
197 |
|
kpeter@82
|
198 |
/// Identity map.
|
kpeter@82
|
199 |
|
kpeter@82
|
200 |
/// This \ref concepts::ReadMap "read-only map" gives back the given
|
kpeter@82
|
201 |
/// key as value without any modification.
|
kpeter@80
|
202 |
///
|
kpeter@80
|
203 |
/// \sa ConstMap
|
kpeter@80
|
204 |
template <typename T>
|
kpeter@80
|
205 |
class IdentityMap : public MapBase<T, T> {
|
kpeter@80
|
206 |
public:
|
kpeter@559
|
207 |
///\e
|
kpeter@559
|
208 |
typedef T Key;
|
kpeter@559
|
209 |
///\e
|
kpeter@559
|
210 |
typedef T Value;
|
kpeter@80
|
211 |
|
kpeter@80
|
212 |
/// Gives back the given value without any modification.
|
kpeter@82
|
213 |
Value operator[](const Key &k) const {
|
kpeter@82
|
214 |
return k;
|
kpeter@80
|
215 |
}
|
kpeter@80
|
216 |
};
|
kpeter@80
|
217 |
|
kpeter@301
|
218 |
/// Returns an \c IdentityMap class
|
kpeter@301
|
219 |
|
kpeter@301
|
220 |
/// This function just returns an \c IdentityMap class.
|
kpeter@80
|
221 |
/// \relates IdentityMap
|
kpeter@80
|
222 |
template<typename T>
|
kpeter@80
|
223 |
inline IdentityMap<T> identityMap() {
|
kpeter@80
|
224 |
return IdentityMap<T>();
|
kpeter@80
|
225 |
}
|
kpeter@80
|
226 |
|
kpeter@80
|
227 |
|
kpeter@80
|
228 |
/// \brief Map for storing values for integer keys from the range
|
kpeter@80
|
229 |
/// <tt>[0..size-1]</tt>.
|
kpeter@80
|
230 |
///
|
kpeter@80
|
231 |
/// This map is essentially a wrapper for \c std::vector. It assigns
|
kpeter@80
|
232 |
/// values to integer keys from the range <tt>[0..size-1]</tt>.
|
kpeter@80
|
233 |
/// It can be used with some data structures, for example
|
kpeter@301
|
234 |
/// \c UnionFind, \c BinHeap, when the used items are small
|
kpeter@80
|
235 |
/// integers. This map conforms the \ref concepts::ReferenceMap
|
kpeter@80
|
236 |
/// "ReferenceMap" concept.
|
kpeter@80
|
237 |
///
|
kpeter@80
|
238 |
/// The simplest way of using this map is through the rangeMap()
|
kpeter@80
|
239 |
/// function.
|
kpeter@80
|
240 |
template <typename V>
|
kpeter@80
|
241 |
class RangeMap : public MapBase<int, V> {
|
kpeter@80
|
242 |
template <typename V1>
|
kpeter@80
|
243 |
friend class RangeMap;
|
kpeter@80
|
244 |
private:
|
kpeter@80
|
245 |
|
kpeter@80
|
246 |
typedef std::vector<V> Vector;
|
kpeter@80
|
247 |
Vector _vector;
|
kpeter@80
|
248 |
|
alpar@25
|
249 |
public:
|
alpar@25
|
250 |
|
kpeter@80
|
251 |
/// Key type
|
kpeter@559
|
252 |
typedef int Key;
|
kpeter@80
|
253 |
/// Value type
|
kpeter@559
|
254 |
typedef V Value;
|
kpeter@80
|
255 |
/// Reference type
|
kpeter@80
|
256 |
typedef typename Vector::reference Reference;
|
kpeter@80
|
257 |
/// Const reference type
|
kpeter@80
|
258 |
typedef typename Vector::const_reference ConstReference;
|
kpeter@80
|
259 |
|
kpeter@80
|
260 |
typedef True ReferenceMapTag;
|
kpeter@80
|
261 |
|
kpeter@80
|
262 |
public:
|
kpeter@80
|
263 |
|
kpeter@80
|
264 |
/// Constructor with specified default value.
|
kpeter@80
|
265 |
RangeMap(int size = 0, const Value &value = Value())
|
kpeter@80
|
266 |
: _vector(size, value) {}
|
kpeter@80
|
267 |
|
kpeter@80
|
268 |
/// Constructs the map from an appropriate \c std::vector.
|
kpeter@80
|
269 |
template <typename V1>
|
kpeter@80
|
270 |
RangeMap(const std::vector<V1>& vector)
|
kpeter@80
|
271 |
: _vector(vector.begin(), vector.end()) {}
|
kpeter@80
|
272 |
|
kpeter@301
|
273 |
/// Constructs the map from another \c RangeMap.
|
kpeter@80
|
274 |
template <typename V1>
|
kpeter@80
|
275 |
RangeMap(const RangeMap<V1> &c)
|
kpeter@80
|
276 |
: _vector(c._vector.begin(), c._vector.end()) {}
|
kpeter@80
|
277 |
|
kpeter@80
|
278 |
/// Returns the size of the map.
|
kpeter@80
|
279 |
int size() {
|
kpeter@80
|
280 |
return _vector.size();
|
kpeter@80
|
281 |
}
|
kpeter@80
|
282 |
|
kpeter@80
|
283 |
/// Resizes the map.
|
kpeter@80
|
284 |
|
kpeter@80
|
285 |
/// Resizes the underlying \c std::vector container, so changes the
|
kpeter@80
|
286 |
/// keyset of the map.
|
kpeter@80
|
287 |
/// \param size The new size of the map. The new keyset will be the
|
kpeter@80
|
288 |
/// range <tt>[0..size-1]</tt>.
|
kpeter@80
|
289 |
/// \param value The default value to assign to the new keys.
|
kpeter@80
|
290 |
void resize(int size, const Value &value = Value()) {
|
kpeter@80
|
291 |
_vector.resize(size, value);
|
kpeter@80
|
292 |
}
|
kpeter@80
|
293 |
|
kpeter@80
|
294 |
private:
|
kpeter@80
|
295 |
|
kpeter@80
|
296 |
RangeMap& operator=(const RangeMap&);
|
kpeter@80
|
297 |
|
kpeter@80
|
298 |
public:
|
kpeter@80
|
299 |
|
kpeter@80
|
300 |
///\e
|
kpeter@80
|
301 |
Reference operator[](const Key &k) {
|
kpeter@80
|
302 |
return _vector[k];
|
kpeter@80
|
303 |
}
|
kpeter@80
|
304 |
|
kpeter@80
|
305 |
///\e
|
kpeter@80
|
306 |
ConstReference operator[](const Key &k) const {
|
kpeter@80
|
307 |
return _vector[k];
|
kpeter@80
|
308 |
}
|
kpeter@80
|
309 |
|
kpeter@80
|
310 |
///\e
|
kpeter@80
|
311 |
void set(const Key &k, const Value &v) {
|
kpeter@80
|
312 |
_vector[k] = v;
|
kpeter@80
|
313 |
}
|
kpeter@80
|
314 |
};
|
kpeter@80
|
315 |
|
kpeter@301
|
316 |
/// Returns a \c RangeMap class
|
kpeter@301
|
317 |
|
kpeter@301
|
318 |
/// This function just returns a \c RangeMap class.
|
kpeter@80
|
319 |
/// \relates RangeMap
|
kpeter@80
|
320 |
template<typename V>
|
kpeter@80
|
321 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
|
kpeter@80
|
322 |
return RangeMap<V>(size, value);
|
kpeter@80
|
323 |
}
|
kpeter@80
|
324 |
|
kpeter@301
|
325 |
/// \brief Returns a \c RangeMap class created from an appropriate
|
kpeter@80
|
326 |
/// \c std::vector
|
kpeter@80
|
327 |
|
kpeter@301
|
328 |
/// This function just returns a \c RangeMap class created from an
|
kpeter@80
|
329 |
/// appropriate \c std::vector.
|
kpeter@80
|
330 |
/// \relates RangeMap
|
kpeter@80
|
331 |
template<typename V>
|
kpeter@80
|
332 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
|
kpeter@80
|
333 |
return RangeMap<V>(vector);
|
kpeter@80
|
334 |
}
|
kpeter@80
|
335 |
|
kpeter@80
|
336 |
|
kpeter@80
|
337 |
/// Map type based on \c std::map
|
kpeter@80
|
338 |
|
kpeter@80
|
339 |
/// This map is essentially a wrapper for \c std::map with addition
|
kpeter@80
|
340 |
/// that you can specify a default value for the keys that are not
|
kpeter@80
|
341 |
/// stored actually. This value can be different from the default
|
kpeter@80
|
342 |
/// contructed value (i.e. \c %Value()).
|
kpeter@80
|
343 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
|
kpeter@80
|
344 |
/// concept.
|
kpeter@80
|
345 |
///
|
kpeter@80
|
346 |
/// This map is useful if a default value should be assigned to most of
|
kpeter@80
|
347 |
/// the keys and different values should be assigned only to a few
|
kpeter@80
|
348 |
/// keys (i.e. the map is "sparse").
|
kpeter@80
|
349 |
/// The name of this type also refers to this important usage.
|
kpeter@80
|
350 |
///
|
kpeter@80
|
351 |
/// Apart form that this map can be used in many other cases since it
|
kpeter@80
|
352 |
/// is based on \c std::map, which is a general associative container.
|
kpeter@80
|
353 |
/// However keep in mind that it is usually not as efficient as other
|
kpeter@80
|
354 |
/// maps.
|
kpeter@80
|
355 |
///
|
kpeter@80
|
356 |
/// The simplest way of using this map is through the sparseMap()
|
kpeter@80
|
357 |
/// function.
|
kpeter@559
|
358 |
template <typename K, typename V, typename Comp = std::less<K> >
|
kpeter@80
|
359 |
class SparseMap : public MapBase<K, V> {
|
kpeter@80
|
360 |
template <typename K1, typename V1, typename C1>
|
kpeter@80
|
361 |
friend class SparseMap;
|
kpeter@80
|
362 |
public:
|
kpeter@80
|
363 |
|
kpeter@80
|
364 |
/// Key type
|
kpeter@559
|
365 |
typedef K Key;
|
kpeter@80
|
366 |
/// Value type
|
kpeter@559
|
367 |
typedef V Value;
|
kpeter@80
|
368 |
/// Reference type
|
kpeter@80
|
369 |
typedef Value& Reference;
|
kpeter@80
|
370 |
/// Const reference type
|
kpeter@80
|
371 |
typedef const Value& ConstReference;
|
alpar@25
|
372 |
|
kpeter@45
|
373 |
typedef True ReferenceMapTag;
|
kpeter@45
|
374 |
|
alpar@25
|
375 |
private:
|
kpeter@80
|
376 |
|
kpeter@559
|
377 |
typedef std::map<K, V, Comp> Map;
|
kpeter@80
|
378 |
Map _map;
|
alpar@25
|
379 |
Value _value;
|
alpar@25
|
380 |
|
alpar@25
|
381 |
public:
|
alpar@25
|
382 |
|
kpeter@80
|
383 |
/// \brief Constructor with specified default value.
|
kpeter@80
|
384 |
SparseMap(const Value &value = Value()) : _value(value) {}
|
kpeter@80
|
385 |
/// \brief Constructs the map from an appropriate \c std::map, and
|
kpeter@47
|
386 |
/// explicitly specifies a default value.
|
kpeter@80
|
387 |
template <typename V1, typename Comp1>
|
kpeter@80
|
388 |
SparseMap(const std::map<Key, V1, Comp1> &map,
|
kpeter@80
|
389 |
const Value &value = Value())
|
alpar@25
|
390 |
: _map(map.begin(), map.end()), _value(value) {}
|
kpeter@80
|
391 |
|
kpeter@301
|
392 |
/// \brief Constructs the map from another \c SparseMap.
|
kpeter@80
|
393 |
template<typename V1, typename Comp1>
|
kpeter@80
|
394 |
SparseMap(const SparseMap<Key, V1, Comp1> &c)
|
alpar@25
|
395 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {}
|
alpar@25
|
396 |
|
alpar@25
|
397 |
private:
|
alpar@25
|
398 |
|
kpeter@80
|
399 |
SparseMap& operator=(const SparseMap&);
|
alpar@25
|
400 |
|
alpar@25
|
401 |
public:
|
alpar@25
|
402 |
|
alpar@25
|
403 |
///\e
|
alpar@25
|
404 |
Reference operator[](const Key &k) {
|
alpar@25
|
405 |
typename Map::iterator it = _map.lower_bound(k);
|
alpar@25
|
406 |
if (it != _map.end() && !_map.key_comp()(k, it->first))
|
alpar@209
|
407 |
return it->second;
|
alpar@25
|
408 |
else
|
alpar@209
|
409 |
return _map.insert(it, std::make_pair(k, _value))->second;
|
alpar@25
|
410 |
}
|
alpar@25
|
411 |
|
kpeter@80
|
412 |
///\e
|
alpar@25
|
413 |
ConstReference operator[](const Key &k) const {
|
alpar@25
|
414 |
typename Map::const_iterator it = _map.find(k);
|
alpar@25
|
415 |
if (it != _map.end())
|
alpar@209
|
416 |
return it->second;
|
alpar@25
|
417 |
else
|
alpar@209
|
418 |
return _value;
|
alpar@25
|
419 |
}
|
alpar@25
|
420 |
|
kpeter@80
|
421 |
///\e
|
kpeter@80
|
422 |
void set(const Key &k, const Value &v) {
|
alpar@25
|
423 |
typename Map::iterator it = _map.lower_bound(k);
|
alpar@25
|
424 |
if (it != _map.end() && !_map.key_comp()(k, it->first))
|
alpar@209
|
425 |
it->second = v;
|
alpar@25
|
426 |
else
|
alpar@209
|
427 |
_map.insert(it, std::make_pair(k, v));
|
alpar@25
|
428 |
}
|
alpar@25
|
429 |
|
kpeter@80
|
430 |
///\e
|
kpeter@80
|
431 |
void setAll(const Value &v) {
|
kpeter@80
|
432 |
_value = v;
|
alpar@25
|
433 |
_map.clear();
|
kpeter@80
|
434 |
}
|
kpeter@80
|
435 |
};
|
alpar@25
|
436 |
|
kpeter@301
|
437 |
/// Returns a \c SparseMap class
|
kpeter@301
|
438 |
|
kpeter@301
|
439 |
/// This function just returns a \c SparseMap class with specified
|
kpeter@80
|
440 |
/// default value.
|
kpeter@80
|
441 |
/// \relates SparseMap
|
kpeter@80
|
442 |
template<typename K, typename V, typename Compare>
|
kpeter@80
|
443 |
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
|
kpeter@80
|
444 |
return SparseMap<K, V, Compare>(value);
|
kpeter@54
|
445 |
}
|
kpeter@45
|
446 |
|
kpeter@80
|
447 |
template<typename K, typename V>
|
kpeter@80
|
448 |
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
|
kpeter@80
|
449 |
return SparseMap<K, V, std::less<K> >(value);
|
kpeter@45
|
450 |
}
|
alpar@25
|
451 |
|
kpeter@301
|
452 |
/// \brief Returns a \c SparseMap class created from an appropriate
|
kpeter@80
|
453 |
/// \c std::map
|
alpar@25
|
454 |
|
kpeter@301
|
455 |
/// This function just returns a \c SparseMap class created from an
|
kpeter@80
|
456 |
/// appropriate \c std::map.
|
kpeter@80
|
457 |
/// \relates SparseMap
|
kpeter@80
|
458 |
template<typename K, typename V, typename Compare>
|
kpeter@80
|
459 |
inline SparseMap<K, V, Compare>
|
kpeter@80
|
460 |
sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
|
kpeter@80
|
461 |
{
|
kpeter@80
|
462 |
return SparseMap<K, V, Compare>(map, value);
|
kpeter@45
|
463 |
}
|
alpar@25
|
464 |
|
alpar@25
|
465 |
/// @}
|
alpar@25
|
466 |
|
alpar@25
|
467 |
/// \addtogroup map_adaptors
|
alpar@25
|
468 |
/// @{
|
alpar@25
|
469 |
|
kpeter@80
|
470 |
/// Composition of two maps
|
kpeter@80
|
471 |
|
kpeter@82
|
472 |
/// This \ref concepts::ReadMap "read-only map" returns the
|
kpeter@80
|
473 |
/// composition of two given maps. That is to say, if \c m1 is of
|
kpeter@80
|
474 |
/// type \c M1 and \c m2 is of \c M2, then for
|
kpeter@80
|
475 |
/// \code
|
kpeter@80
|
476 |
/// ComposeMap<M1, M2> cm(m1,m2);
|
kpeter@80
|
477 |
/// \endcode
|
kpeter@80
|
478 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
|
alpar@25
|
479 |
///
|
kpeter@80
|
480 |
/// The \c Key type of the map is inherited from \c M2 and the
|
kpeter@80
|
481 |
/// \c Value type is from \c M1.
|
kpeter@80
|
482 |
/// \c M2::Value must be convertible to \c M1::Key.
|
kpeter@80
|
483 |
///
|
kpeter@80
|
484 |
/// The simplest way of using this map is through the composeMap()
|
kpeter@80
|
485 |
/// function.
|
kpeter@80
|
486 |
///
|
kpeter@80
|
487 |
/// \sa CombineMap
|
kpeter@80
|
488 |
template <typename M1, typename M2>
|
kpeter@80
|
489 |
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
|
kpeter@80
|
490 |
const M1 &_m1;
|
kpeter@80
|
491 |
const M2 &_m2;
|
alpar@25
|
492 |
public:
|
kpeter@559
|
493 |
///\e
|
kpeter@559
|
494 |
typedef typename M2::Key Key;
|
kpeter@559
|
495 |
///\e
|
kpeter@559
|
496 |
typedef typename M1::Value Value;
|
alpar@25
|
497 |
|
kpeter@80
|
498 |
/// Constructor
|
kpeter@80
|
499 |
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@80
|
500 |
|
kpeter@559
|
501 |
///\e
|
kpeter@80
|
502 |
typename MapTraits<M1>::ConstReturnValue
|
kpeter@80
|
503 |
operator[](const Key &k) const { return _m1[_m2[k]]; }
|
alpar@25
|
504 |
};
|
alpar@25
|
505 |
|
kpeter@301
|
506 |
/// Returns a \c ComposeMap class
|
kpeter@301
|
507 |
|
kpeter@301
|
508 |
/// This function just returns a \c ComposeMap class.
|
kpeter@80
|
509 |
///
|
kpeter@80
|
510 |
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
|
kpeter@80
|
511 |
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
|
kpeter@80
|
512 |
/// will be equal to <tt>m1[m2[x]]</tt>.
|
kpeter@80
|
513 |
///
|
kpeter@80
|
514 |
/// \relates ComposeMap
|
kpeter@80
|
515 |
template <typename M1, typename M2>
|
kpeter@80
|
516 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
|
kpeter@80
|
517 |
return ComposeMap<M1, M2>(m1, m2);
|
alpar@25
|
518 |
}
|
alpar@25
|
519 |
|
kpeter@80
|
520 |
|
kpeter@80
|
521 |
/// Combination of two maps using an STL (binary) functor.
|
kpeter@80
|
522 |
|
kpeter@82
|
523 |
/// This \ref concepts::ReadMap "read-only map" takes two maps and a
|
kpeter@80
|
524 |
/// binary functor and returns the combination of the two given maps
|
kpeter@80
|
525 |
/// using the functor.
|
kpeter@80
|
526 |
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
|
kpeter@80
|
527 |
/// and \c f is of \c F, then for
|
kpeter@80
|
528 |
/// \code
|
kpeter@80
|
529 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f);
|
kpeter@80
|
530 |
/// \endcode
|
kpeter@80
|
531 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
|
alpar@26
|
532 |
///
|
kpeter@80
|
533 |
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key
|
kpeter@80
|
534 |
/// must be convertible to \c M2::Key) and the \c Value type is \c V.
|
kpeter@80
|
535 |
/// \c M2::Value and \c M1::Value must be convertible to the
|
kpeter@80
|
536 |
/// corresponding input parameter of \c F and the return type of \c F
|
kpeter@80
|
537 |
/// must be convertible to \c V.
|
kpeter@80
|
538 |
///
|
kpeter@80
|
539 |
/// The simplest way of using this map is through the combineMap()
|
kpeter@80
|
540 |
/// function.
|
kpeter@80
|
541 |
///
|
kpeter@80
|
542 |
/// \sa ComposeMap
|
kpeter@80
|
543 |
template<typename M1, typename M2, typename F,
|
alpar@209
|
544 |
typename V = typename F::result_type>
|
kpeter@80
|
545 |
class CombineMap : public MapBase<typename M1::Key, V> {
|
kpeter@80
|
546 |
const M1 &_m1;
|
kpeter@80
|
547 |
const M2 &_m2;
|
kpeter@80
|
548 |
F _f;
|
alpar@25
|
549 |
public:
|
kpeter@559
|
550 |
///\e
|
kpeter@559
|
551 |
typedef typename M1::Key Key;
|
kpeter@559
|
552 |
///\e
|
kpeter@559
|
553 |
typedef V Value;
|
alpar@25
|
554 |
|
kpeter@80
|
555 |
/// Constructor
|
kpeter@80
|
556 |
CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
|
kpeter@80
|
557 |
: _m1(m1), _m2(m2), _f(f) {}
|
kpeter@559
|
558 |
///\e
|
kpeter@80
|
559 |
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
|
kpeter@80
|
560 |
};
|
alpar@25
|
561 |
|
kpeter@301
|
562 |
/// Returns a \c CombineMap class
|
kpeter@301
|
563 |
|
kpeter@301
|
564 |
/// This function just returns a \c CombineMap class.
|
kpeter@80
|
565 |
///
|
kpeter@80
|
566 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
kpeter@80
|
567 |
/// values, then
|
kpeter@80
|
568 |
/// \code
|
kpeter@80
|
569 |
/// combineMap(m1,m2,std::plus<double>())
|
kpeter@80
|
570 |
/// \endcode
|
kpeter@80
|
571 |
/// is equivalent to
|
kpeter@80
|
572 |
/// \code
|
kpeter@80
|
573 |
/// addMap(m1,m2)
|
kpeter@80
|
574 |
/// \endcode
|
kpeter@80
|
575 |
///
|
kpeter@80
|
576 |
/// This function is specialized for adaptable binary function
|
kpeter@80
|
577 |
/// classes and C++ functions.
|
kpeter@80
|
578 |
///
|
kpeter@80
|
579 |
/// \relates CombineMap
|
kpeter@80
|
580 |
template<typename M1, typename M2, typename F, typename V>
|
kpeter@80
|
581 |
inline CombineMap<M1, M2, F, V>
|
kpeter@80
|
582 |
combineMap(const M1 &m1, const M2 &m2, const F &f) {
|
kpeter@80
|
583 |
return CombineMap<M1, M2, F, V>(m1,m2,f);
|
alpar@25
|
584 |
}
|
alpar@25
|
585 |
|
kpeter@80
|
586 |
template<typename M1, typename M2, typename F>
|
kpeter@80
|
587 |
inline CombineMap<M1, M2, F, typename F::result_type>
|
kpeter@80
|
588 |
combineMap(const M1 &m1, const M2 &m2, const F &f) {
|
kpeter@80
|
589 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
|
kpeter@80
|
590 |
}
|
alpar@25
|
591 |
|
kpeter@80
|
592 |
template<typename M1, typename M2, typename K1, typename K2, typename V>
|
kpeter@80
|
593 |
inline CombineMap<M1, M2, V (*)(K1, K2), V>
|
kpeter@80
|
594 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
|
kpeter@80
|
595 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
|
kpeter@80
|
596 |
}
|
kpeter@80
|
597 |
|
kpeter@80
|
598 |
|
kpeter@80
|
599 |
/// Converts an STL style (unary) functor to a map
|
kpeter@80
|
600 |
|
kpeter@82
|
601 |
/// This \ref concepts::ReadMap "read-only map" returns the value
|
kpeter@80
|
602 |
/// of a given functor. Actually, it just wraps the functor and
|
kpeter@80
|
603 |
/// provides the \c Key and \c Value typedefs.
|
alpar@26
|
604 |
///
|
kpeter@80
|
605 |
/// Template parameters \c K and \c V will become its \c Key and
|
kpeter@80
|
606 |
/// \c Value. In most cases they have to be given explicitly because
|
kpeter@80
|
607 |
/// a functor typically does not provide \c argument_type and
|
kpeter@80
|
608 |
/// \c result_type typedefs.
|
kpeter@80
|
609 |
/// Parameter \c F is the type of the used functor.
|
kpeter@29
|
610 |
///
|
kpeter@80
|
611 |
/// The simplest way of using this map is through the functorToMap()
|
kpeter@80
|
612 |
/// function.
|
kpeter@80
|
613 |
///
|
kpeter@80
|
614 |
/// \sa MapToFunctor
|
kpeter@80
|
615 |
template<typename F,
|
alpar@209
|
616 |
typename K = typename F::argument_type,
|
alpar@209
|
617 |
typename V = typename F::result_type>
|
kpeter@80
|
618 |
class FunctorToMap : public MapBase<K, V> {
|
kpeter@123
|
619 |
F _f;
|
kpeter@80
|
620 |
public:
|
kpeter@559
|
621 |
///\e
|
kpeter@559
|
622 |
typedef K Key;
|
kpeter@559
|
623 |
///\e
|
kpeter@559
|
624 |
typedef V Value;
|
alpar@25
|
625 |
|
kpeter@80
|
626 |
/// Constructor
|
kpeter@80
|
627 |
FunctorToMap(const F &f = F()) : _f(f) {}
|
kpeter@559
|
628 |
///\e
|
kpeter@80
|
629 |
Value operator[](const Key &k) const { return _f(k); }
|
kpeter@80
|
630 |
};
|
kpeter@80
|
631 |
|
kpeter@301
|
632 |
/// Returns a \c FunctorToMap class
|
kpeter@301
|
633 |
|
kpeter@301
|
634 |
/// This function just returns a \c FunctorToMap class.
|
kpeter@80
|
635 |
///
|
kpeter@80
|
636 |
/// This function is specialized for adaptable binary function
|
kpeter@80
|
637 |
/// classes and C++ functions.
|
kpeter@80
|
638 |
///
|
kpeter@80
|
639 |
/// \relates FunctorToMap
|
kpeter@80
|
640 |
template<typename K, typename V, typename F>
|
kpeter@80
|
641 |
inline FunctorToMap<F, K, V> functorToMap(const F &f) {
|
kpeter@80
|
642 |
return FunctorToMap<F, K, V>(f);
|
kpeter@80
|
643 |
}
|
kpeter@80
|
644 |
|
kpeter@80
|
645 |
template <typename F>
|
kpeter@80
|
646 |
inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
|
kpeter@80
|
647 |
functorToMap(const F &f)
|
kpeter@80
|
648 |
{
|
kpeter@80
|
649 |
return FunctorToMap<F, typename F::argument_type,
|
kpeter@80
|
650 |
typename F::result_type>(f);
|
kpeter@80
|
651 |
}
|
kpeter@80
|
652 |
|
kpeter@80
|
653 |
template <typename K, typename V>
|
kpeter@80
|
654 |
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
|
kpeter@80
|
655 |
return FunctorToMap<V (*)(K), K, V>(f);
|
kpeter@80
|
656 |
}
|
kpeter@80
|
657 |
|
kpeter@80
|
658 |
|
kpeter@80
|
659 |
/// Converts a map to an STL style (unary) functor
|
kpeter@80
|
660 |
|
kpeter@80
|
661 |
/// This class converts a map to an STL style (unary) functor.
|
kpeter@80
|
662 |
/// That is it provides an <tt>operator()</tt> to read its values.
|
kpeter@80
|
663 |
///
|
kpeter@80
|
664 |
/// For the sake of convenience it also works as a usual
|
kpeter@80
|
665 |
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
|
kpeter@80
|
666 |
/// and the \c Key and \c Value typedefs also exist.
|
kpeter@80
|
667 |
///
|
kpeter@80
|
668 |
/// The simplest way of using this map is through the mapToFunctor()
|
kpeter@80
|
669 |
/// function.
|
kpeter@80
|
670 |
///
|
kpeter@80
|
671 |
///\sa FunctorToMap
|
kpeter@80
|
672 |
template <typename M>
|
kpeter@80
|
673 |
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
|
kpeter@80
|
674 |
const M &_m;
|
alpar@25
|
675 |
public:
|
kpeter@559
|
676 |
///\e
|
kpeter@559
|
677 |
typedef typename M::Key Key;
|
kpeter@559
|
678 |
///\e
|
kpeter@559
|
679 |
typedef typename M::Value Value;
|
kpeter@559
|
680 |
|
kpeter@559
|
681 |
typedef typename M::Key argument_type;
|
kpeter@559
|
682 |
typedef typename M::Value result_type;
|
kpeter@80
|
683 |
|
kpeter@80
|
684 |
/// Constructor
|
kpeter@80
|
685 |
MapToFunctor(const M &m) : _m(m) {}
|
kpeter@559
|
686 |
///\e
|
kpeter@80
|
687 |
Value operator()(const Key &k) const { return _m[k]; }
|
kpeter@559
|
688 |
///\e
|
kpeter@80
|
689 |
Value operator[](const Key &k) const { return _m[k]; }
|
alpar@25
|
690 |
};
|
kpeter@45
|
691 |
|
kpeter@301
|
692 |
/// Returns a \c MapToFunctor class
|
kpeter@301
|
693 |
|
kpeter@301
|
694 |
/// This function just returns a \c MapToFunctor class.
|
kpeter@80
|
695 |
/// \relates MapToFunctor
|
kpeter@45
|
696 |
template<typename M>
|
kpeter@80
|
697 |
inline MapToFunctor<M> mapToFunctor(const M &m) {
|
kpeter@80
|
698 |
return MapToFunctor<M>(m);
|
kpeter@45
|
699 |
}
|
alpar@25
|
700 |
|
alpar@25
|
701 |
|
kpeter@80
|
702 |
/// \brief Map adaptor to convert the \c Value type of a map to
|
kpeter@80
|
703 |
/// another type using the default conversion.
|
kpeter@80
|
704 |
|
kpeter@80
|
705 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
|
kpeter@80
|
706 |
/// "readable map" to another type using the default conversion.
|
kpeter@80
|
707 |
/// The \c Key type of it is inherited from \c M and the \c Value
|
kpeter@80
|
708 |
/// type is \c V.
|
kpeter@80
|
709 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
|
alpar@26
|
710 |
///
|
kpeter@80
|
711 |
/// The simplest way of using this map is through the convertMap()
|
kpeter@80
|
712 |
/// function.
|
kpeter@80
|
713 |
template <typename M, typename V>
|
kpeter@80
|
714 |
class ConvertMap : public MapBase<typename M::Key, V> {
|
kpeter@80
|
715 |
const M &_m;
|
kpeter@80
|
716 |
public:
|
kpeter@559
|
717 |
///\e
|
kpeter@559
|
718 |
typedef typename M::Key Key;
|
kpeter@559
|
719 |
///\e
|
kpeter@559
|
720 |
typedef V Value;
|
kpeter@80
|
721 |
|
kpeter@80
|
722 |
/// Constructor
|
kpeter@80
|
723 |
|
kpeter@80
|
724 |
/// Constructor.
|
kpeter@80
|
725 |
/// \param m The underlying map.
|
kpeter@80
|
726 |
ConvertMap(const M &m) : _m(m) {}
|
kpeter@80
|
727 |
|
kpeter@559
|
728 |
///\e
|
kpeter@80
|
729 |
Value operator[](const Key &k) const { return _m[k]; }
|
kpeter@80
|
730 |
};
|
kpeter@80
|
731 |
|
kpeter@301
|
732 |
/// Returns a \c ConvertMap class
|
kpeter@301
|
733 |
|
kpeter@301
|
734 |
/// This function just returns a \c ConvertMap class.
|
kpeter@80
|
735 |
/// \relates ConvertMap
|
kpeter@80
|
736 |
template<typename V, typename M>
|
kpeter@80
|
737 |
inline ConvertMap<M, V> convertMap(const M &map) {
|
kpeter@80
|
738 |
return ConvertMap<M, V>(map);
|
kpeter@80
|
739 |
}
|
kpeter@80
|
740 |
|
kpeter@80
|
741 |
|
kpeter@80
|
742 |
/// Applies all map setting operations to two maps
|
kpeter@80
|
743 |
|
kpeter@80
|
744 |
/// This map has two \ref concepts::WriteMap "writable map" parameters
|
kpeter@80
|
745 |
/// and each write request will be passed to both of them.
|
kpeter@80
|
746 |
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read
|
kpeter@80
|
747 |
/// operations will return the corresponding values of \c M1.
|
kpeter@29
|
748 |
///
|
kpeter@80
|
749 |
/// The \c Key and \c Value types are inherited from \c M1.
|
kpeter@80
|
750 |
/// The \c Key and \c Value of \c M2 must be convertible from those
|
kpeter@80
|
751 |
/// of \c M1.
|
kpeter@80
|
752 |
///
|
kpeter@80
|
753 |
/// The simplest way of using this map is through the forkMap()
|
kpeter@80
|
754 |
/// function.
|
kpeter@80
|
755 |
template<typename M1, typename M2>
|
kpeter@80
|
756 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
|
kpeter@80
|
757 |
M1 &_m1;
|
kpeter@80
|
758 |
M2 &_m2;
|
kpeter@80
|
759 |
public:
|
kpeter@559
|
760 |
///\e
|
kpeter@559
|
761 |
typedef typename M1::Key Key;
|
kpeter@559
|
762 |
///\e
|
kpeter@559
|
763 |
typedef typename M1::Value Value;
|
alpar@25
|
764 |
|
kpeter@80
|
765 |
/// Constructor
|
kpeter@80
|
766 |
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@80
|
767 |
/// Returns the value associated with the given key in the first map.
|
kpeter@80
|
768 |
Value operator[](const Key &k) const { return _m1[k]; }
|
kpeter@80
|
769 |
/// Sets the value associated with the given key in both maps.
|
kpeter@80
|
770 |
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
|
kpeter@80
|
771 |
};
|
kpeter@80
|
772 |
|
kpeter@301
|
773 |
/// Returns a \c ForkMap class
|
kpeter@301
|
774 |
|
kpeter@301
|
775 |
/// This function just returns a \c ForkMap class.
|
kpeter@80
|
776 |
/// \relates ForkMap
|
kpeter@80
|
777 |
template <typename M1, typename M2>
|
kpeter@80
|
778 |
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
|
kpeter@80
|
779 |
return ForkMap<M1,M2>(m1,m2);
|
kpeter@80
|
780 |
}
|
kpeter@80
|
781 |
|
kpeter@80
|
782 |
|
kpeter@80
|
783 |
/// Sum of two maps
|
kpeter@80
|
784 |
|
kpeter@82
|
785 |
/// This \ref concepts::ReadMap "read-only map" returns the sum
|
kpeter@80
|
786 |
/// of the values of the two given maps.
|
kpeter@80
|
787 |
/// Its \c Key and \c Value types are inherited from \c M1.
|
kpeter@80
|
788 |
/// The \c Key and \c Value of \c M2 must be convertible to those of
|
kpeter@80
|
789 |
/// \c M1.
|
kpeter@80
|
790 |
///
|
kpeter@80
|
791 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
kpeter@80
|
792 |
/// \code
|
kpeter@80
|
793 |
/// AddMap<M1,M2> am(m1,m2);
|
kpeter@80
|
794 |
/// \endcode
|
kpeter@80
|
795 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
|
kpeter@80
|
796 |
///
|
kpeter@80
|
797 |
/// The simplest way of using this map is through the addMap()
|
kpeter@80
|
798 |
/// function.
|
kpeter@80
|
799 |
///
|
kpeter@80
|
800 |
/// \sa SubMap, MulMap, DivMap
|
kpeter@80
|
801 |
/// \sa ShiftMap, ShiftWriteMap
|
kpeter@80
|
802 |
template<typename M1, typename M2>
|
alpar@25
|
803 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
|
kpeter@80
|
804 |
const M1 &_m1;
|
kpeter@80
|
805 |
const M2 &_m2;
|
alpar@25
|
806 |
public:
|
kpeter@559
|
807 |
///\e
|
kpeter@559
|
808 |
typedef typename M1::Key Key;
|
kpeter@559
|
809 |
///\e
|
kpeter@559
|
810 |
typedef typename M1::Value Value;
|
alpar@25
|
811 |
|
kpeter@80
|
812 |
/// Constructor
|
kpeter@80
|
813 |
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@559
|
814 |
///\e
|
kpeter@80
|
815 |
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
|
alpar@25
|
816 |
};
|
alpar@25
|
817 |
|
kpeter@301
|
818 |
/// Returns an \c AddMap class
|
kpeter@301
|
819 |
|
kpeter@301
|
820 |
/// This function just returns an \c AddMap class.
|
alpar@25
|
821 |
///
|
kpeter@80
|
822 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
kpeter@80
|
823 |
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
|
kpeter@80
|
824 |
/// <tt>m1[x]+m2[x]</tt>.
|
kpeter@80
|
825 |
///
|
kpeter@80
|
826 |
/// \relates AddMap
|
kpeter@80
|
827 |
template<typename M1, typename M2>
|
kpeter@80
|
828 |
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
|
alpar@25
|
829 |
return AddMap<M1, M2>(m1,m2);
|
alpar@25
|
830 |
}
|
alpar@25
|
831 |
|
alpar@25
|
832 |
|
kpeter@80
|
833 |
/// Difference of two maps
|
kpeter@80
|
834 |
|
kpeter@82
|
835 |
/// This \ref concepts::ReadMap "read-only map" returns the difference
|
kpeter@80
|
836 |
/// of the values of the two given maps.
|
kpeter@80
|
837 |
/// Its \c Key and \c Value types are inherited from \c M1.
|
kpeter@80
|
838 |
/// The \c Key and \c Value of \c M2 must be convertible to those of
|
kpeter@80
|
839 |
/// \c M1.
|
alpar@25
|
840 |
///
|
kpeter@80
|
841 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
kpeter@80
|
842 |
/// \code
|
kpeter@80
|
843 |
/// SubMap<M1,M2> sm(m1,m2);
|
kpeter@80
|
844 |
/// \endcode
|
kpeter@80
|
845 |
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
|
kpeter@29
|
846 |
///
|
kpeter@80
|
847 |
/// The simplest way of using this map is through the subMap()
|
kpeter@80
|
848 |
/// function.
|
kpeter@80
|
849 |
///
|
kpeter@80
|
850 |
/// \sa AddMap, MulMap, DivMap
|
kpeter@80
|
851 |
template<typename M1, typename M2>
|
kpeter@80
|
852 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
|
kpeter@80
|
853 |
const M1 &_m1;
|
kpeter@80
|
854 |
const M2 &_m2;
|
kpeter@80
|
855 |
public:
|
kpeter@559
|
856 |
///\e
|
kpeter@559
|
857 |
typedef typename M1::Key Key;
|
kpeter@559
|
858 |
///\e
|
kpeter@559
|
859 |
typedef typename M1::Value Value;
|
kpeter@80
|
860 |
|
kpeter@80
|
861 |
/// Constructor
|
kpeter@80
|
862 |
SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@559
|
863 |
///\e
|
kpeter@80
|
864 |
Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
|
kpeter@80
|
865 |
};
|
kpeter@80
|
866 |
|
kpeter@301
|
867 |
/// Returns a \c SubMap class
|
kpeter@301
|
868 |
|
kpeter@301
|
869 |
/// This function just returns a \c SubMap class.
|
kpeter@80
|
870 |
///
|
kpeter@80
|
871 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
kpeter@80
|
872 |
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
|
kpeter@80
|
873 |
/// <tt>m1[x]-m2[x]</tt>.
|
kpeter@80
|
874 |
///
|
kpeter@80
|
875 |
/// \relates SubMap
|
kpeter@80
|
876 |
template<typename M1, typename M2>
|
kpeter@80
|
877 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
|
kpeter@80
|
878 |
return SubMap<M1, M2>(m1,m2);
|
kpeter@80
|
879 |
}
|
kpeter@80
|
880 |
|
kpeter@80
|
881 |
|
kpeter@80
|
882 |
/// Product of two maps
|
kpeter@80
|
883 |
|
kpeter@82
|
884 |
/// This \ref concepts::ReadMap "read-only map" returns the product
|
kpeter@80
|
885 |
/// of the values of the two given maps.
|
kpeter@80
|
886 |
/// Its \c Key and \c Value types are inherited from \c M1.
|
kpeter@80
|
887 |
/// The \c Key and \c Value of \c M2 must be convertible to those of
|
kpeter@80
|
888 |
/// \c M1.
|
kpeter@80
|
889 |
///
|
kpeter@80
|
890 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
kpeter@80
|
891 |
/// \code
|
kpeter@80
|
892 |
/// MulMap<M1,M2> mm(m1,m2);
|
kpeter@80
|
893 |
/// \endcode
|
kpeter@80
|
894 |
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
|
kpeter@80
|
895 |
///
|
kpeter@80
|
896 |
/// The simplest way of using this map is through the mulMap()
|
kpeter@80
|
897 |
/// function.
|
kpeter@80
|
898 |
///
|
kpeter@80
|
899 |
/// \sa AddMap, SubMap, DivMap
|
kpeter@80
|
900 |
/// \sa ScaleMap, ScaleWriteMap
|
kpeter@80
|
901 |
template<typename M1, typename M2>
|
kpeter@80
|
902 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
|
kpeter@80
|
903 |
const M1 &_m1;
|
kpeter@80
|
904 |
const M2 &_m2;
|
kpeter@80
|
905 |
public:
|
kpeter@559
|
906 |
///\e
|
kpeter@559
|
907 |
typedef typename M1::Key Key;
|
kpeter@559
|
908 |
///\e
|
kpeter@559
|
909 |
typedef typename M1::Value Value;
|
kpeter@80
|
910 |
|
kpeter@80
|
911 |
/// Constructor
|
kpeter@80
|
912 |
MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@559
|
913 |
///\e
|
kpeter@80
|
914 |
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
|
kpeter@80
|
915 |
};
|
kpeter@80
|
916 |
|
kpeter@301
|
917 |
/// Returns a \c MulMap class
|
kpeter@301
|
918 |
|
kpeter@301
|
919 |
/// This function just returns a \c MulMap class.
|
kpeter@80
|
920 |
///
|
kpeter@80
|
921 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
kpeter@80
|
922 |
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
|
kpeter@80
|
923 |
/// <tt>m1[x]*m2[x]</tt>.
|
kpeter@80
|
924 |
///
|
kpeter@80
|
925 |
/// \relates MulMap
|
kpeter@80
|
926 |
template<typename M1, typename M2>
|
kpeter@80
|
927 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
|
kpeter@80
|
928 |
return MulMap<M1, M2>(m1,m2);
|
kpeter@80
|
929 |
}
|
kpeter@80
|
930 |
|
kpeter@80
|
931 |
|
kpeter@80
|
932 |
/// Quotient of two maps
|
kpeter@80
|
933 |
|
kpeter@82
|
934 |
/// This \ref concepts::ReadMap "read-only map" returns the quotient
|
kpeter@80
|
935 |
/// of the values of the two given maps.
|
kpeter@80
|
936 |
/// Its \c Key and \c Value types are inherited from \c M1.
|
kpeter@80
|
937 |
/// The \c Key and \c Value of \c M2 must be convertible to those of
|
kpeter@80
|
938 |
/// \c M1.
|
kpeter@80
|
939 |
///
|
kpeter@80
|
940 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
kpeter@80
|
941 |
/// \code
|
kpeter@80
|
942 |
/// DivMap<M1,M2> dm(m1,m2);
|
kpeter@80
|
943 |
/// \endcode
|
kpeter@80
|
944 |
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
|
kpeter@80
|
945 |
///
|
kpeter@80
|
946 |
/// The simplest way of using this map is through the divMap()
|
kpeter@80
|
947 |
/// function.
|
kpeter@80
|
948 |
///
|
kpeter@80
|
949 |
/// \sa AddMap, SubMap, MulMap
|
kpeter@80
|
950 |
template<typename M1, typename M2>
|
kpeter@80
|
951 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
|
kpeter@80
|
952 |
const M1 &_m1;
|
kpeter@80
|
953 |
const M2 &_m2;
|
kpeter@80
|
954 |
public:
|
kpeter@559
|
955 |
///\e
|
kpeter@559
|
956 |
typedef typename M1::Key Key;
|
kpeter@559
|
957 |
///\e
|
kpeter@559
|
958 |
typedef typename M1::Value Value;
|
kpeter@80
|
959 |
|
kpeter@80
|
960 |
/// Constructor
|
kpeter@80
|
961 |
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@559
|
962 |
///\e
|
kpeter@80
|
963 |
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
|
kpeter@80
|
964 |
};
|
kpeter@80
|
965 |
|
kpeter@301
|
966 |
/// Returns a \c DivMap class
|
kpeter@301
|
967 |
|
kpeter@301
|
968 |
/// This function just returns a \c DivMap class.
|
kpeter@80
|
969 |
///
|
kpeter@80
|
970 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
kpeter@80
|
971 |
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
|
kpeter@80
|
972 |
/// <tt>m1[x]/m2[x]</tt>.
|
kpeter@80
|
973 |
///
|
kpeter@80
|
974 |
/// \relates DivMap
|
kpeter@80
|
975 |
template<typename M1, typename M2>
|
kpeter@80
|
976 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
|
kpeter@80
|
977 |
return DivMap<M1, M2>(m1,m2);
|
kpeter@80
|
978 |
}
|
kpeter@80
|
979 |
|
kpeter@80
|
980 |
|
kpeter@80
|
981 |
/// Shifts a map with a constant.
|
kpeter@80
|
982 |
|
kpeter@82
|
983 |
/// This \ref concepts::ReadMap "read-only map" returns the sum of
|
kpeter@80
|
984 |
/// the given map and a constant value (i.e. it shifts the map with
|
kpeter@80
|
985 |
/// the constant). Its \c Key and \c Value are inherited from \c M.
|
kpeter@80
|
986 |
///
|
kpeter@80
|
987 |
/// Actually,
|
kpeter@80
|
988 |
/// \code
|
kpeter@80
|
989 |
/// ShiftMap<M> sh(m,v);
|
kpeter@80
|
990 |
/// \endcode
|
kpeter@80
|
991 |
/// is equivalent to
|
kpeter@80
|
992 |
/// \code
|
kpeter@80
|
993 |
/// ConstMap<M::Key, M::Value> cm(v);
|
kpeter@80
|
994 |
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
|
kpeter@80
|
995 |
/// \endcode
|
kpeter@80
|
996 |
///
|
kpeter@80
|
997 |
/// The simplest way of using this map is through the shiftMap()
|
kpeter@80
|
998 |
/// function.
|
kpeter@80
|
999 |
///
|
kpeter@80
|
1000 |
/// \sa ShiftWriteMap
|
kpeter@80
|
1001 |
template<typename M, typename C = typename M::Value>
|
alpar@25
|
1002 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
|
kpeter@80
|
1003 |
const M &_m;
|
kpeter@80
|
1004 |
C _v;
|
alpar@25
|
1005 |
public:
|
kpeter@559
|
1006 |
///\e
|
kpeter@559
|
1007 |
typedef typename M::Key Key;
|
kpeter@559
|
1008 |
///\e
|
kpeter@559
|
1009 |
typedef typename M::Value Value;
|
alpar@25
|
1010 |
|
kpeter@80
|
1011 |
/// Constructor
|
alpar@25
|
1012 |
|
kpeter@80
|
1013 |
/// Constructor.
|
kpeter@80
|
1014 |
/// \param m The undelying map.
|
kpeter@80
|
1015 |
/// \param v The constant value.
|
kpeter@80
|
1016 |
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
|
kpeter@559
|
1017 |
///\e
|
kpeter@80
|
1018 |
Value operator[](const Key &k) const { return _m[k]+_v; }
|
alpar@25
|
1019 |
};
|
alpar@25
|
1020 |
|
kpeter@80
|
1021 |
/// Shifts a map with a constant (read-write version).
|
alpar@25
|
1022 |
|
kpeter@80
|
1023 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum
|
kpeter@80
|
1024 |
/// of the given map and a constant value (i.e. it shifts the map with
|
kpeter@80
|
1025 |
/// the constant). Its \c Key and \c Value are inherited from \c M.
|
kpeter@80
|
1026 |
/// It makes also possible to write the map.
|
alpar@25
|
1027 |
///
|
kpeter@80
|
1028 |
/// The simplest way of using this map is through the shiftWriteMap()
|
kpeter@80
|
1029 |
/// function.
|
kpeter@80
|
1030 |
///
|
kpeter@80
|
1031 |
/// \sa ShiftMap
|
kpeter@80
|
1032 |
template<typename M, typename C = typename M::Value>
|
alpar@25
|
1033 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
kpeter@80
|
1034 |
M &_m;
|
kpeter@80
|
1035 |
C _v;
|
alpar@25
|
1036 |
public:
|
kpeter@559
|
1037 |
///\e
|
kpeter@559
|
1038 |
typedef typename M::Key Key;
|
kpeter@559
|
1039 |
///\e
|
kpeter@559
|
1040 |
typedef typename M::Value Value;
|
alpar@25
|
1041 |
|
kpeter@80
|
1042 |
/// Constructor
|
alpar@25
|
1043 |
|
kpeter@80
|
1044 |
/// Constructor.
|
kpeter@80
|
1045 |
/// \param m The undelying map.
|
kpeter@80
|
1046 |
/// \param v The constant value.
|
kpeter@80
|
1047 |
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
|
kpeter@559
|
1048 |
///\e
|
kpeter@80
|
1049 |
Value operator[](const Key &k) const { return _m[k]+_v; }
|
kpeter@559
|
1050 |
///\e
|
kpeter@80
|
1051 |
void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
|
alpar@25
|
1052 |
};
|
alpar@25
|
1053 |
|
kpeter@301
|
1054 |
/// Returns a \c ShiftMap class
|
kpeter@301
|
1055 |
|
kpeter@301
|
1056 |
/// This function just returns a \c ShiftMap class.
|
kpeter@80
|
1057 |
///
|
kpeter@80
|
1058 |
/// For example, if \c m is a map with \c double values and \c v is
|
kpeter@80
|
1059 |
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
|
kpeter@80
|
1060 |
/// <tt>m[x]+v</tt>.
|
kpeter@80
|
1061 |
///
|
kpeter@80
|
1062 |
/// \relates ShiftMap
|
kpeter@80
|
1063 |
template<typename M, typename C>
|
kpeter@80
|
1064 |
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
|
alpar@25
|
1065 |
return ShiftMap<M, C>(m,v);
|
alpar@25
|
1066 |
}
|
alpar@25
|
1067 |
|
kpeter@301
|
1068 |
/// Returns a \c ShiftWriteMap class
|
kpeter@301
|
1069 |
|
kpeter@301
|
1070 |
/// This function just returns a \c ShiftWriteMap class.
|
kpeter@80
|
1071 |
///
|
kpeter@80
|
1072 |
/// For example, if \c m is a map with \c double values and \c v is
|
kpeter@80
|
1073 |
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
|
kpeter@80
|
1074 |
/// <tt>m[x]+v</tt>.
|
kpeter@80
|
1075 |
/// Moreover it makes also possible to write the map.
|
kpeter@80
|
1076 |
///
|
kpeter@80
|
1077 |
/// \relates ShiftWriteMap
|
kpeter@80
|
1078 |
template<typename M, typename C>
|
kpeter@80
|
1079 |
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
|
alpar@25
|
1080 |
return ShiftWriteMap<M, C>(m,v);
|
alpar@25
|
1081 |
}
|
alpar@25
|
1082 |
|
alpar@25
|
1083 |
|
kpeter@80
|
1084 |
/// Scales a map with a constant.
|
kpeter@80
|
1085 |
|
kpeter@82
|
1086 |
/// This \ref concepts::ReadMap "read-only map" returns the value of
|
kpeter@80
|
1087 |
/// the given map multiplied from the left side with a constant value.
|
kpeter@80
|
1088 |
/// Its \c Key and \c Value are inherited from \c M.
|
alpar@26
|
1089 |
///
|
kpeter@80
|
1090 |
/// Actually,
|
kpeter@80
|
1091 |
/// \code
|
kpeter@80
|
1092 |
/// ScaleMap<M> sc(m,v);
|
kpeter@80
|
1093 |
/// \endcode
|
kpeter@80
|
1094 |
/// is equivalent to
|
kpeter@80
|
1095 |
/// \code
|
kpeter@80
|
1096 |
/// ConstMap<M::Key, M::Value> cm(v);
|
kpeter@80
|
1097 |
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
|
kpeter@80
|
1098 |
/// \endcode
|
alpar@25
|
1099 |
///
|
kpeter@80
|
1100 |
/// The simplest way of using this map is through the scaleMap()
|
kpeter@80
|
1101 |
/// function.
|
alpar@25
|
1102 |
///
|
kpeter@80
|
1103 |
/// \sa ScaleWriteMap
|
kpeter@80
|
1104 |
template<typename M, typename C = typename M::Value>
|
alpar@25
|
1105 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
|
kpeter@80
|
1106 |
const M &_m;
|
kpeter@80
|
1107 |
C _v;
|
alpar@25
|
1108 |
public:
|
kpeter@559
|
1109 |
///\e
|
kpeter@559
|
1110 |
typedef typename M::Key Key;
|
kpeter@559
|
1111 |
///\e
|
kpeter@559
|
1112 |
typedef typename M::Value Value;
|
alpar@25
|
1113 |
|
kpeter@80
|
1114 |
/// Constructor
|
alpar@25
|
1115 |
|
kpeter@80
|
1116 |
/// Constructor.
|
kpeter@80
|
1117 |
/// \param m The undelying map.
|
kpeter@80
|
1118 |
/// \param v The constant value.
|
kpeter@80
|
1119 |
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
|
kpeter@559
|
1120 |
///\e
|
kpeter@80
|
1121 |
Value operator[](const Key &k) const { return _v*_m[k]; }
|
alpar@25
|
1122 |
};
|
alpar@25
|
1123 |
|
kpeter@80
|
1124 |
/// Scales a map with a constant (read-write version).
|
alpar@25
|
1125 |
|
kpeter@80
|
1126 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of
|
kpeter@80
|
1127 |
/// the given map multiplied from the left side with a constant value.
|
kpeter@80
|
1128 |
/// Its \c Key and \c Value are inherited from \c M.
|
kpeter@80
|
1129 |
/// It can also be used as write map if the \c / operator is defined
|
kpeter@80
|
1130 |
/// between \c Value and \c C and the given multiplier is not zero.
|
kpeter@29
|
1131 |
///
|
kpeter@80
|
1132 |
/// The simplest way of using this map is through the scaleWriteMap()
|
kpeter@80
|
1133 |
/// function.
|
kpeter@80
|
1134 |
///
|
kpeter@80
|
1135 |
/// \sa ScaleMap
|
kpeter@80
|
1136 |
template<typename M, typename C = typename M::Value>
|
alpar@25
|
1137 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
kpeter@80
|
1138 |
M &_m;
|
kpeter@80
|
1139 |
C _v;
|
alpar@25
|
1140 |
public:
|
kpeter@559
|
1141 |
///\e
|
kpeter@559
|
1142 |
typedef typename M::Key Key;
|
kpeter@559
|
1143 |
///\e
|
kpeter@559
|
1144 |
typedef typename M::Value Value;
|
alpar@25
|
1145 |
|
kpeter@80
|
1146 |
/// Constructor
|
alpar@25
|
1147 |
|
kpeter@80
|
1148 |
/// Constructor.
|
kpeter@80
|
1149 |
/// \param m The undelying map.
|
kpeter@80
|
1150 |
/// \param v The constant value.
|
kpeter@80
|
1151 |
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
|
kpeter@559
|
1152 |
///\e
|
kpeter@80
|
1153 |
Value operator[](const Key &k) const { return _v*_m[k]; }
|
kpeter@559
|
1154 |
///\e
|
kpeter@80
|
1155 |
void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
|
alpar@25
|
1156 |
};
|
alpar@25
|
1157 |
|
kpeter@301
|
1158 |
/// Returns a \c ScaleMap class
|
kpeter@301
|
1159 |
|
kpeter@301
|
1160 |
/// This function just returns a \c ScaleMap class.
|
kpeter@80
|
1161 |
///
|
kpeter@80
|
1162 |
/// For example, if \c m is a map with \c double values and \c v is
|
kpeter@80
|
1163 |
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
|
kpeter@80
|
1164 |
/// <tt>v*m[x]</tt>.
|
kpeter@80
|
1165 |
///
|
kpeter@80
|
1166 |
/// \relates ScaleMap
|
kpeter@80
|
1167 |
template<typename M, typename C>
|
kpeter@80
|
1168 |
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
|
alpar@25
|
1169 |
return ScaleMap<M, C>(m,v);
|
alpar@25
|
1170 |
}
|
alpar@25
|
1171 |
|
kpeter@301
|
1172 |
/// Returns a \c ScaleWriteMap class
|
kpeter@301
|
1173 |
|
kpeter@301
|
1174 |
/// This function just returns a \c ScaleWriteMap class.
|
kpeter@80
|
1175 |
///
|
kpeter@80
|
1176 |
/// For example, if \c m is a map with \c double values and \c v is
|
kpeter@80
|
1177 |
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
|
kpeter@80
|
1178 |
/// <tt>v*m[x]</tt>.
|
kpeter@80
|
1179 |
/// Moreover it makes also possible to write the map.
|
kpeter@80
|
1180 |
///
|
kpeter@80
|
1181 |
/// \relates ScaleWriteMap
|
kpeter@80
|
1182 |
template<typename M, typename C>
|
kpeter@80
|
1183 |
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
|
alpar@25
|
1184 |
return ScaleWriteMap<M, C>(m,v);
|
alpar@25
|
1185 |
}
|
alpar@25
|
1186 |
|
alpar@25
|
1187 |
|
kpeter@80
|
1188 |
/// Negative of a map
|
alpar@25
|
1189 |
|
kpeter@82
|
1190 |
/// This \ref concepts::ReadMap "read-only map" returns the negative
|
kpeter@80
|
1191 |
/// of the values of the given map (using the unary \c - operator).
|
kpeter@80
|
1192 |
/// Its \c Key and \c Value are inherited from \c M.
|
alpar@25
|
1193 |
///
|
kpeter@80
|
1194 |
/// If M::Value is \c int, \c double etc., then
|
kpeter@80
|
1195 |
/// \code
|
kpeter@80
|
1196 |
/// NegMap<M> neg(m);
|
kpeter@80
|
1197 |
/// \endcode
|
kpeter@80
|
1198 |
/// is equivalent to
|
kpeter@80
|
1199 |
/// \code
|
kpeter@80
|
1200 |
/// ScaleMap<M> neg(m,-1);
|
kpeter@80
|
1201 |
/// \endcode
|
kpeter@29
|
1202 |
///
|
kpeter@80
|
1203 |
/// The simplest way of using this map is through the negMap()
|
kpeter@80
|
1204 |
/// function.
|
kpeter@29
|
1205 |
///
|
kpeter@80
|
1206 |
/// \sa NegWriteMap
|
kpeter@80
|
1207 |
template<typename M>
|
alpar@25
|
1208 |
class NegMap : public MapBase<typename M::Key, typename M::Value> {
|
kpeter@80
|
1209 |
const M& _m;
|
alpar@25
|
1210 |
public:
|
kpeter@559
|
1211 |
///\e
|
kpeter@559
|
1212 |
typedef typename M::Key Key;
|
kpeter@559
|
1213 |
///\e
|
kpeter@559
|
1214 |
typedef typename M::Value Value;
|
alpar@25
|
1215 |
|
kpeter@80
|
1216 |
/// Constructor
|
kpeter@80
|
1217 |
NegMap(const M &m) : _m(m) {}
|
kpeter@559
|
1218 |
///\e
|
kpeter@80
|
1219 |
Value operator[](const Key &k) const { return -_m[k]; }
|
alpar@25
|
1220 |
};
|
alpar@25
|
1221 |
|
kpeter@80
|
1222 |
/// Negative of a map (read-write version)
|
kpeter@80
|
1223 |
|
kpeter@80
|
1224 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the
|
kpeter@80
|
1225 |
/// negative of the values of the given map (using the unary \c -
|
kpeter@80
|
1226 |
/// operator).
|
kpeter@80
|
1227 |
/// Its \c Key and \c Value are inherited from \c M.
|
kpeter@80
|
1228 |
/// It makes also possible to write the map.
|
kpeter@80
|
1229 |
///
|
kpeter@80
|
1230 |
/// If M::Value is \c int, \c double etc., then
|
kpeter@80
|
1231 |
/// \code
|
kpeter@80
|
1232 |
/// NegWriteMap<M> neg(m);
|
kpeter@80
|
1233 |
/// \endcode
|
kpeter@80
|
1234 |
/// is equivalent to
|
kpeter@80
|
1235 |
/// \code
|
kpeter@80
|
1236 |
/// ScaleWriteMap<M> neg(m,-1);
|
kpeter@80
|
1237 |
/// \endcode
|
kpeter@80
|
1238 |
///
|
kpeter@80
|
1239 |
/// The simplest way of using this map is through the negWriteMap()
|
kpeter@80
|
1240 |
/// function.
|
kpeter@29
|
1241 |
///
|
kpeter@29
|
1242 |
/// \sa NegMap
|
kpeter@80
|
1243 |
template<typename M>
|
alpar@25
|
1244 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
kpeter@80
|
1245 |
M &_m;
|
alpar@25
|
1246 |
public:
|
kpeter@559
|
1247 |
///\e
|
kpeter@559
|
1248 |
typedef typename M::Key Key;
|
kpeter@559
|
1249 |
///\e
|
kpeter@559
|
1250 |
typedef typename M::Value Value;
|
alpar@25
|
1251 |
|
kpeter@80
|
1252 |
/// Constructor
|
kpeter@80
|
1253 |
NegWriteMap(M &m) : _m(m) {}
|
kpeter@559
|
1254 |
///\e
|
kpeter@80
|
1255 |
Value operator[](const Key &k) const { return -_m[k]; }
|
kpeter@559
|
1256 |
///\e
|
kpeter@80
|
1257 |
void set(const Key &k, const Value &v) { _m.set(k, -v); }
|
alpar@25
|
1258 |
};
|
alpar@25
|
1259 |
|
kpeter@301
|
1260 |
/// Returns a \c NegMap class
|
kpeter@301
|
1261 |
|
kpeter@301
|
1262 |
/// This function just returns a \c NegMap class.
|
kpeter@80
|
1263 |
///
|
kpeter@80
|
1264 |
/// For example, if \c m is a map with \c double values, then
|
kpeter@80
|
1265 |
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
|
kpeter@80
|
1266 |
///
|
kpeter@80
|
1267 |
/// \relates NegMap
|
kpeter@80
|
1268 |
template <typename M>
|
alpar@25
|
1269 |
inline NegMap<M> negMap(const M &m) {
|
alpar@25
|
1270 |
return NegMap<M>(m);
|
alpar@25
|
1271 |
}
|
alpar@25
|
1272 |
|
kpeter@301
|
1273 |
/// Returns a \c NegWriteMap class
|
kpeter@301
|
1274 |
|
kpeter@301
|
1275 |
/// This function just returns a \c NegWriteMap class.
|
kpeter@80
|
1276 |
///
|
kpeter@80
|
1277 |
/// For example, if \c m is a map with \c double values, then
|
kpeter@80
|
1278 |
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
|
kpeter@80
|
1279 |
/// Moreover it makes also possible to write the map.
|
kpeter@80
|
1280 |
///
|
kpeter@80
|
1281 |
/// \relates NegWriteMap
|
kpeter@80
|
1282 |
template <typename M>
|
kpeter@80
|
1283 |
inline NegWriteMap<M> negWriteMap(M &m) {
|
alpar@25
|
1284 |
return NegWriteMap<M>(m);
|
alpar@25
|
1285 |
}
|
alpar@25
|
1286 |
|
alpar@25
|
1287 |
|
kpeter@80
|
1288 |
/// Absolute value of a map
|
kpeter@80
|
1289 |
|
kpeter@82
|
1290 |
/// This \ref concepts::ReadMap "read-only map" returns the absolute
|
kpeter@80
|
1291 |
/// value of the values of the given map.
|
kpeter@80
|
1292 |
/// Its \c Key and \c Value are inherited from \c M.
|
kpeter@80
|
1293 |
/// \c Value must be comparable to \c 0 and the unary \c -
|
kpeter@80
|
1294 |
/// operator must be defined for it, of course.
|
kpeter@80
|
1295 |
///
|
kpeter@80
|
1296 |
/// The simplest way of using this map is through the absMap()
|
kpeter@80
|
1297 |
/// function.
|
kpeter@80
|
1298 |
template<typename M>
|
alpar@25
|
1299 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> {
|
kpeter@80
|
1300 |
const M &_m;
|
alpar@25
|
1301 |
public:
|
kpeter@559
|
1302 |
///\e
|
kpeter@559
|
1303 |
typedef typename M::Key Key;
|
kpeter@559
|
1304 |
///\e
|
kpeter@559
|
1305 |
typedef typename M::Value Value;
|
alpar@25
|
1306 |
|
kpeter@80
|
1307 |
/// Constructor
|
kpeter@80
|
1308 |
AbsMap(const M &m) : _m(m) {}
|
kpeter@559
|
1309 |
///\e
|
kpeter@80
|
1310 |
Value operator[](const Key &k) const {
|
kpeter@80
|
1311 |
Value tmp = _m[k];
|
alpar@25
|
1312 |
return tmp >= 0 ? tmp : -tmp;
|
alpar@25
|
1313 |
}
|
alpar@25
|
1314 |
|
alpar@25
|
1315 |
};
|
alpar@25
|
1316 |
|
kpeter@301
|
1317 |
/// Returns an \c AbsMap class
|
kpeter@301
|
1318 |
|
kpeter@301
|
1319 |
/// This function just returns an \c AbsMap class.
|
kpeter@80
|
1320 |
///
|
kpeter@80
|
1321 |
/// For example, if \c m is a map with \c double values, then
|
kpeter@80
|
1322 |
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
|
kpeter@80
|
1323 |
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
|
kpeter@80
|
1324 |
/// negative.
|
kpeter@80
|
1325 |
///
|
kpeter@80
|
1326 |
/// \relates AbsMap
|
kpeter@80
|
1327 |
template<typename M>
|
alpar@25
|
1328 |
inline AbsMap<M> absMap(const M &m) {
|
alpar@25
|
1329 |
return AbsMap<M>(m);
|
alpar@25
|
1330 |
}
|
alpar@25
|
1331 |
|
kpeter@82
|
1332 |
/// @}
|
alpar@209
|
1333 |
|
kpeter@82
|
1334 |
// Logical maps and map adaptors:
|
kpeter@82
|
1335 |
|
kpeter@82
|
1336 |
/// \addtogroup maps
|
kpeter@82
|
1337 |
/// @{
|
kpeter@82
|
1338 |
|
kpeter@82
|
1339 |
/// Constant \c true map.
|
kpeter@82
|
1340 |
|
kpeter@82
|
1341 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
|
kpeter@82
|
1342 |
/// each key.
|
kpeter@82
|
1343 |
///
|
kpeter@82
|
1344 |
/// Note that
|
kpeter@82
|
1345 |
/// \code
|
kpeter@82
|
1346 |
/// TrueMap<K> tm;
|
kpeter@82
|
1347 |
/// \endcode
|
kpeter@82
|
1348 |
/// is equivalent to
|
kpeter@82
|
1349 |
/// \code
|
kpeter@82
|
1350 |
/// ConstMap<K,bool> tm(true);
|
kpeter@82
|
1351 |
/// \endcode
|
kpeter@82
|
1352 |
///
|
kpeter@82
|
1353 |
/// \sa FalseMap
|
kpeter@82
|
1354 |
/// \sa ConstMap
|
kpeter@82
|
1355 |
template <typename K>
|
kpeter@82
|
1356 |
class TrueMap : public MapBase<K, bool> {
|
kpeter@82
|
1357 |
public:
|
kpeter@559
|
1358 |
///\e
|
kpeter@559
|
1359 |
typedef K Key;
|
kpeter@559
|
1360 |
///\e
|
kpeter@559
|
1361 |
typedef bool Value;
|
kpeter@82
|
1362 |
|
kpeter@82
|
1363 |
/// Gives back \c true.
|
kpeter@82
|
1364 |
Value operator[](const Key&) const { return true; }
|
kpeter@82
|
1365 |
};
|
kpeter@82
|
1366 |
|
kpeter@301
|
1367 |
/// Returns a \c TrueMap class
|
kpeter@301
|
1368 |
|
kpeter@301
|
1369 |
/// This function just returns a \c TrueMap class.
|
kpeter@82
|
1370 |
/// \relates TrueMap
|
kpeter@82
|
1371 |
template<typename K>
|
kpeter@82
|
1372 |
inline TrueMap<K> trueMap() {
|
kpeter@82
|
1373 |
return TrueMap<K>();
|
kpeter@82
|
1374 |
}
|
kpeter@82
|
1375 |
|
kpeter@82
|
1376 |
|
kpeter@82
|
1377 |
/// Constant \c false map.
|
kpeter@82
|
1378 |
|
kpeter@82
|
1379 |
/// This \ref concepts::ReadMap "read-only map" assigns \c false to
|
kpeter@82
|
1380 |
/// each key.
|
kpeter@82
|
1381 |
///
|
kpeter@82
|
1382 |
/// Note that
|
kpeter@82
|
1383 |
/// \code
|
kpeter@82
|
1384 |
/// FalseMap<K> fm;
|
kpeter@82
|
1385 |
/// \endcode
|
kpeter@82
|
1386 |
/// is equivalent to
|
kpeter@82
|
1387 |
/// \code
|
kpeter@82
|
1388 |
/// ConstMap<K,bool> fm(false);
|
kpeter@82
|
1389 |
/// \endcode
|
kpeter@82
|
1390 |
///
|
kpeter@82
|
1391 |
/// \sa TrueMap
|
kpeter@82
|
1392 |
/// \sa ConstMap
|
kpeter@82
|
1393 |
template <typename K>
|
kpeter@82
|
1394 |
class FalseMap : public MapBase<K, bool> {
|
kpeter@82
|
1395 |
public:
|
kpeter@559
|
1396 |
///\e
|
kpeter@559
|
1397 |
typedef K Key;
|
kpeter@559
|
1398 |
///\e
|
kpeter@559
|
1399 |
typedef bool Value;
|
kpeter@82
|
1400 |
|
kpeter@82
|
1401 |
/// Gives back \c false.
|
kpeter@82
|
1402 |
Value operator[](const Key&) const { return false; }
|
kpeter@82
|
1403 |
};
|
kpeter@82
|
1404 |
|
kpeter@301
|
1405 |
/// Returns a \c FalseMap class
|
kpeter@301
|
1406 |
|
kpeter@301
|
1407 |
/// This function just returns a \c FalseMap class.
|
kpeter@82
|
1408 |
/// \relates FalseMap
|
kpeter@82
|
1409 |
template<typename K>
|
kpeter@82
|
1410 |
inline FalseMap<K> falseMap() {
|
kpeter@82
|
1411 |
return FalseMap<K>();
|
kpeter@82
|
1412 |
}
|
kpeter@82
|
1413 |
|
kpeter@82
|
1414 |
/// @}
|
kpeter@82
|
1415 |
|
kpeter@82
|
1416 |
/// \addtogroup map_adaptors
|
kpeter@82
|
1417 |
/// @{
|
kpeter@82
|
1418 |
|
kpeter@82
|
1419 |
/// Logical 'and' of two maps
|
kpeter@82
|
1420 |
|
kpeter@82
|
1421 |
/// This \ref concepts::ReadMap "read-only map" returns the logical
|
kpeter@82
|
1422 |
/// 'and' of the values of the two given maps.
|
kpeter@82
|
1423 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
kpeter@82
|
1424 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
kpeter@82
|
1425 |
///
|
kpeter@82
|
1426 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
kpeter@82
|
1427 |
/// \code
|
kpeter@82
|
1428 |
/// AndMap<M1,M2> am(m1,m2);
|
kpeter@82
|
1429 |
/// \endcode
|
kpeter@82
|
1430 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
|
kpeter@82
|
1431 |
///
|
kpeter@82
|
1432 |
/// The simplest way of using this map is through the andMap()
|
kpeter@82
|
1433 |
/// function.
|
kpeter@82
|
1434 |
///
|
kpeter@82
|
1435 |
/// \sa OrMap
|
kpeter@82
|
1436 |
/// \sa NotMap, NotWriteMap
|
kpeter@82
|
1437 |
template<typename M1, typename M2>
|
kpeter@82
|
1438 |
class AndMap : public MapBase<typename M1::Key, bool> {
|
kpeter@82
|
1439 |
const M1 &_m1;
|
kpeter@82
|
1440 |
const M2 &_m2;
|
kpeter@82
|
1441 |
public:
|
kpeter@559
|
1442 |
///\e
|
kpeter@559
|
1443 |
typedef typename M1::Key Key;
|
kpeter@559
|
1444 |
///\e
|
kpeter@559
|
1445 |
typedef bool Value;
|
kpeter@82
|
1446 |
|
kpeter@82
|
1447 |
/// Constructor
|
kpeter@82
|
1448 |
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@559
|
1449 |
///\e
|
kpeter@82
|
1450 |
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
|
kpeter@82
|
1451 |
};
|
kpeter@82
|
1452 |
|
kpeter@301
|
1453 |
/// Returns an \c AndMap class
|
kpeter@301
|
1454 |
|
kpeter@301
|
1455 |
/// This function just returns an \c AndMap class.
|
kpeter@82
|
1456 |
///
|
kpeter@82
|
1457 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
|
kpeter@82
|
1458 |
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to
|
kpeter@82
|
1459 |
/// <tt>m1[x]&&m2[x]</tt>.
|
kpeter@82
|
1460 |
///
|
kpeter@82
|
1461 |
/// \relates AndMap
|
kpeter@82
|
1462 |
template<typename M1, typename M2>
|
kpeter@82
|
1463 |
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
|
kpeter@82
|
1464 |
return AndMap<M1, M2>(m1,m2);
|
kpeter@82
|
1465 |
}
|
kpeter@82
|
1466 |
|
kpeter@82
|
1467 |
|
kpeter@82
|
1468 |
/// Logical 'or' of two maps
|
kpeter@82
|
1469 |
|
kpeter@82
|
1470 |
/// This \ref concepts::ReadMap "read-only map" returns the logical
|
kpeter@82
|
1471 |
/// 'or' of the values of the two given maps.
|
kpeter@82
|
1472 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
kpeter@82
|
1473 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
kpeter@82
|
1474 |
///
|
kpeter@82
|
1475 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
kpeter@82
|
1476 |
/// \code
|
kpeter@82
|
1477 |
/// OrMap<M1,M2> om(m1,m2);
|
kpeter@82
|
1478 |
/// \endcode
|
kpeter@82
|
1479 |
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
|
kpeter@82
|
1480 |
///
|
kpeter@82
|
1481 |
/// The simplest way of using this map is through the orMap()
|
kpeter@82
|
1482 |
/// function.
|
kpeter@82
|
1483 |
///
|
kpeter@82
|
1484 |
/// \sa AndMap
|
kpeter@82
|
1485 |
/// \sa NotMap, NotWriteMap
|
kpeter@82
|
1486 |
template<typename M1, typename M2>
|
kpeter@82
|
1487 |
class OrMap : public MapBase<typename M1::Key, bool> {
|
kpeter@82
|
1488 |
const M1 &_m1;
|
kpeter@82
|
1489 |
const M2 &_m2;
|
kpeter@82
|
1490 |
public:
|
kpeter@559
|
1491 |
///\e
|
kpeter@559
|
1492 |
typedef typename M1::Key Key;
|
kpeter@559
|
1493 |
///\e
|
kpeter@559
|
1494 |
typedef bool Value;
|
kpeter@82
|
1495 |
|
kpeter@82
|
1496 |
/// Constructor
|
kpeter@82
|
1497 |
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@559
|
1498 |
///\e
|
kpeter@82
|
1499 |
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
|
kpeter@82
|
1500 |
};
|
kpeter@82
|
1501 |
|
kpeter@301
|
1502 |
/// Returns an \c OrMap class
|
kpeter@301
|
1503 |
|
kpeter@301
|
1504 |
/// This function just returns an \c OrMap class.
|
kpeter@82
|
1505 |
///
|
kpeter@82
|
1506 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
|
kpeter@82
|
1507 |
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to
|
kpeter@82
|
1508 |
/// <tt>m1[x]||m2[x]</tt>.
|
kpeter@82
|
1509 |
///
|
kpeter@82
|
1510 |
/// \relates OrMap
|
kpeter@82
|
1511 |
template<typename M1, typename M2>
|
kpeter@82
|
1512 |
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
|
kpeter@82
|
1513 |
return OrMap<M1, M2>(m1,m2);
|
kpeter@82
|
1514 |
}
|
kpeter@82
|
1515 |
|
alpar@25
|
1516 |
|
kpeter@80
|
1517 |
/// Logical 'not' of a map
|
kpeter@80
|
1518 |
|
kpeter@82
|
1519 |
/// This \ref concepts::ReadMap "read-only map" returns the logical
|
kpeter@80
|
1520 |
/// negation of the values of the given map.
|
kpeter@80
|
1521 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
|
alpar@25
|
1522 |
///
|
kpeter@80
|
1523 |
/// The simplest way of using this map is through the notMap()
|
kpeter@80
|
1524 |
/// function.
|
alpar@25
|
1525 |
///
|
kpeter@80
|
1526 |
/// \sa NotWriteMap
|
kpeter@80
|
1527 |
template <typename M>
|
alpar@25
|
1528 |
class NotMap : public MapBase<typename M::Key, bool> {
|
kpeter@80
|
1529 |
const M &_m;
|
alpar@25
|
1530 |
public:
|
kpeter@559
|
1531 |
///\e
|
kpeter@559
|
1532 |
typedef typename M::Key Key;
|
kpeter@559
|
1533 |
///\e
|
kpeter@559
|
1534 |
typedef bool Value;
|
alpar@25
|
1535 |
|
alpar@25
|
1536 |
/// Constructor
|
kpeter@80
|
1537 |
NotMap(const M &m) : _m(m) {}
|
kpeter@559
|
1538 |
///\e
|
kpeter@80
|
1539 |
Value operator[](const Key &k) const { return !_m[k]; }
|
alpar@25
|
1540 |
};
|
alpar@25
|
1541 |
|
kpeter@80
|
1542 |
/// Logical 'not' of a map (read-write version)
|
kpeter@80
|
1543 |
|
kpeter@80
|
1544 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the
|
kpeter@80
|
1545 |
/// logical negation of the values of the given map.
|
kpeter@80
|
1546 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
|
kpeter@80
|
1547 |
/// It makes also possible to write the map. When a value is set,
|
kpeter@80
|
1548 |
/// the opposite value is set to the original map.
|
kpeter@29
|
1549 |
///
|
kpeter@80
|
1550 |
/// The simplest way of using this map is through the notWriteMap()
|
kpeter@80
|
1551 |
/// function.
|
kpeter@80
|
1552 |
///
|
kpeter@80
|
1553 |
/// \sa NotMap
|
kpeter@80
|
1554 |
template <typename M>
|
alpar@25
|
1555 |
class NotWriteMap : public MapBase<typename M::Key, bool> {
|
kpeter@80
|
1556 |
M &_m;
|
alpar@25
|
1557 |
public:
|
kpeter@559
|
1558 |
///\e
|
kpeter@559
|
1559 |
typedef typename M::Key Key;
|
kpeter@559
|
1560 |
///\e
|
kpeter@559
|
1561 |
typedef bool Value;
|
alpar@25
|
1562 |
|
alpar@25
|
1563 |
/// Constructor
|
kpeter@80
|
1564 |
NotWriteMap(M &m) : _m(m) {}
|
kpeter@559
|
1565 |
///\e
|
kpeter@80
|
1566 |
Value operator[](const Key &k) const { return !_m[k]; }
|
kpeter@559
|
1567 |
///\e
|
kpeter@80
|
1568 |
void set(const Key &k, bool v) { _m.set(k, !v); }
|
alpar@25
|
1569 |
};
|
kpeter@80
|
1570 |
|
kpeter@301
|
1571 |
/// Returns a \c NotMap class
|
kpeter@301
|
1572 |
|
kpeter@301
|
1573 |
/// This function just returns a \c NotMap class.
|
kpeter@80
|
1574 |
///
|
kpeter@80
|
1575 |
/// For example, if \c m is a map with \c bool values, then
|
kpeter@80
|
1576 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
|
kpeter@80
|
1577 |
///
|
kpeter@80
|
1578 |
/// \relates NotMap
|
kpeter@80
|
1579 |
template <typename M>
|
alpar@25
|
1580 |
inline NotMap<M> notMap(const M &m) {
|
alpar@25
|
1581 |
return NotMap<M>(m);
|
alpar@25
|
1582 |
}
|
kpeter@80
|
1583 |
|
kpeter@301
|
1584 |
/// Returns a \c NotWriteMap class
|
kpeter@301
|
1585 |
|
kpeter@301
|
1586 |
/// This function just returns a \c NotWriteMap class.
|
kpeter@80
|
1587 |
///
|
kpeter@80
|
1588 |
/// For example, if \c m is a map with \c bool values, then
|
kpeter@80
|
1589 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
|
kpeter@80
|
1590 |
/// Moreover it makes also possible to write the map.
|
kpeter@80
|
1591 |
///
|
kpeter@80
|
1592 |
/// \relates NotWriteMap
|
kpeter@80
|
1593 |
template <typename M>
|
kpeter@80
|
1594 |
inline NotWriteMap<M> notWriteMap(M &m) {
|
alpar@25
|
1595 |
return NotWriteMap<M>(m);
|
alpar@25
|
1596 |
}
|
alpar@25
|
1597 |
|
kpeter@82
|
1598 |
|
kpeter@82
|
1599 |
/// Combination of two maps using the \c == operator
|
kpeter@82
|
1600 |
|
kpeter@82
|
1601 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
|
kpeter@82
|
1602 |
/// the keys for which the corresponding values of the two maps are
|
kpeter@82
|
1603 |
/// equal.
|
kpeter@82
|
1604 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
kpeter@82
|
1605 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
kpeter@82
|
1606 |
///
|
kpeter@82
|
1607 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
kpeter@82
|
1608 |
/// \code
|
kpeter@82
|
1609 |
/// EqualMap<M1,M2> em(m1,m2);
|
kpeter@82
|
1610 |
/// \endcode
|
kpeter@82
|
1611 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
|
kpeter@82
|
1612 |
///
|
kpeter@82
|
1613 |
/// The simplest way of using this map is through the equalMap()
|
kpeter@82
|
1614 |
/// function.
|
kpeter@82
|
1615 |
///
|
kpeter@82
|
1616 |
/// \sa LessMap
|
kpeter@82
|
1617 |
template<typename M1, typename M2>
|
kpeter@82
|
1618 |
class EqualMap : public MapBase<typename M1::Key, bool> {
|
kpeter@82
|
1619 |
const M1 &_m1;
|
kpeter@82
|
1620 |
const M2 &_m2;
|
kpeter@82
|
1621 |
public:
|
kpeter@559
|
1622 |
///\e
|
kpeter@559
|
1623 |
typedef typename M1::Key Key;
|
kpeter@559
|
1624 |
///\e
|
kpeter@559
|
1625 |
typedef bool Value;
|
kpeter@82
|
1626 |
|
kpeter@82
|
1627 |
/// Constructor
|
kpeter@82
|
1628 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@559
|
1629 |
///\e
|
kpeter@82
|
1630 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
|
kpeter@82
|
1631 |
};
|
kpeter@82
|
1632 |
|
kpeter@301
|
1633 |
/// Returns an \c EqualMap class
|
kpeter@301
|
1634 |
|
kpeter@301
|
1635 |
/// This function just returns an \c EqualMap class.
|
kpeter@82
|
1636 |
///
|
kpeter@82
|
1637 |
/// For example, if \c m1 and \c m2 are maps with keys and values of
|
kpeter@82
|
1638 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
|
kpeter@82
|
1639 |
/// <tt>m1[x]==m2[x]</tt>.
|
kpeter@82
|
1640 |
///
|
kpeter@82
|
1641 |
/// \relates EqualMap
|
kpeter@82
|
1642 |
template<typename M1, typename M2>
|
kpeter@82
|
1643 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
|
kpeter@82
|
1644 |
return EqualMap<M1, M2>(m1,m2);
|
kpeter@82
|
1645 |
}
|
kpeter@82
|
1646 |
|
kpeter@82
|
1647 |
|
kpeter@82
|
1648 |
/// Combination of two maps using the \c < operator
|
kpeter@82
|
1649 |
|
kpeter@82
|
1650 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
|
kpeter@82
|
1651 |
/// the keys for which the corresponding value of the first map is
|
kpeter@82
|
1652 |
/// less then the value of the second map.
|
kpeter@82
|
1653 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
kpeter@82
|
1654 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
kpeter@82
|
1655 |
///
|
kpeter@82
|
1656 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
kpeter@82
|
1657 |
/// \code
|
kpeter@82
|
1658 |
/// LessMap<M1,M2> lm(m1,m2);
|
kpeter@82
|
1659 |
/// \endcode
|
kpeter@82
|
1660 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
|
kpeter@82
|
1661 |
///
|
kpeter@82
|
1662 |
/// The simplest way of using this map is through the lessMap()
|
kpeter@82
|
1663 |
/// function.
|
kpeter@82
|
1664 |
///
|
kpeter@82
|
1665 |
/// \sa EqualMap
|
kpeter@82
|
1666 |
template<typename M1, typename M2>
|
kpeter@82
|
1667 |
class LessMap : public MapBase<typename M1::Key, bool> {
|
kpeter@82
|
1668 |
const M1 &_m1;
|
kpeter@82
|
1669 |
const M2 &_m2;
|
kpeter@82
|
1670 |
public:
|
kpeter@559
|
1671 |
///\e
|
kpeter@559
|
1672 |
typedef typename M1::Key Key;
|
kpeter@559
|
1673 |
///\e
|
kpeter@559
|
1674 |
typedef bool Value;
|
kpeter@82
|
1675 |
|
kpeter@82
|
1676 |
/// Constructor
|
kpeter@82
|
1677 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@559
|
1678 |
///\e
|
kpeter@82
|
1679 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
|
kpeter@82
|
1680 |
};
|
kpeter@82
|
1681 |
|
kpeter@301
|
1682 |
/// Returns an \c LessMap class
|
kpeter@301
|
1683 |
|
kpeter@301
|
1684 |
/// This function just returns an \c LessMap class.
|
kpeter@82
|
1685 |
///
|
kpeter@82
|
1686 |
/// For example, if \c m1 and \c m2 are maps with keys and values of
|
kpeter@82
|
1687 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
|
kpeter@82
|
1688 |
/// <tt>m1[x]<m2[x]</tt>.
|
kpeter@82
|
1689 |
///
|
kpeter@82
|
1690 |
/// \relates LessMap
|
kpeter@82
|
1691 |
template<typename M1, typename M2>
|
kpeter@82
|
1692 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
|
kpeter@82
|
1693 |
return LessMap<M1, M2>(m1,m2);
|
kpeter@82
|
1694 |
}
|
kpeter@82
|
1695 |
|
alpar@104
|
1696 |
namespace _maps_bits {
|
alpar@104
|
1697 |
|
alpar@104
|
1698 |
template <typename _Iterator, typename Enable = void>
|
alpar@104
|
1699 |
struct IteratorTraits {
|
alpar@104
|
1700 |
typedef typename std::iterator_traits<_Iterator>::value_type Value;
|
alpar@104
|
1701 |
};
|
alpar@104
|
1702 |
|
alpar@104
|
1703 |
template <typename _Iterator>
|
alpar@104
|
1704 |
struct IteratorTraits<_Iterator,
|
alpar@104
|
1705 |
typename exists<typename _Iterator::container_type>::type>
|
alpar@104
|
1706 |
{
|
alpar@104
|
1707 |
typedef typename _Iterator::container_type::value_type Value;
|
alpar@104
|
1708 |
};
|
alpar@104
|
1709 |
|
alpar@104
|
1710 |
}
|
alpar@104
|
1711 |
|
kpeter@314
|
1712 |
/// @}
|
kpeter@314
|
1713 |
|
kpeter@314
|
1714 |
/// \addtogroup maps
|
kpeter@314
|
1715 |
/// @{
|
kpeter@314
|
1716 |
|
alpar@104
|
1717 |
/// \brief Writable bool map for logging each \c true assigned element
|
alpar@104
|
1718 |
///
|
kpeter@159
|
1719 |
/// A \ref concepts::WriteMap "writable" bool map for logging
|
alpar@104
|
1720 |
/// each \c true assigned element, i.e it copies subsequently each
|
alpar@104
|
1721 |
/// keys set to \c true to the given iterator.
|
kpeter@159
|
1722 |
/// The most important usage of it is storing certain nodes or arcs
|
kpeter@159
|
1723 |
/// that were marked \c true by an algorithm.
|
alpar@104
|
1724 |
///
|
kpeter@159
|
1725 |
/// There are several algorithms that provide solutions through bool
|
kpeter@159
|
1726 |
/// maps and most of them assign \c true at most once for each key.
|
kpeter@159
|
1727 |
/// In these cases it is a natural request to store each \c true
|
kpeter@159
|
1728 |
/// assigned elements (in order of the assignment), which can be
|
kpeter@167
|
1729 |
/// easily done with LoggerBoolMap.
|
kpeter@159
|
1730 |
///
|
kpeter@167
|
1731 |
/// The simplest way of using this map is through the loggerBoolMap()
|
kpeter@159
|
1732 |
/// function.
|
kpeter@159
|
1733 |
///
|
kpeter@559
|
1734 |
/// \tparam IT The type of the iterator.
|
kpeter@559
|
1735 |
/// \tparam KEY The key type of the map. The default value set
|
kpeter@159
|
1736 |
/// according to the iterator type should work in most cases.
|
alpar@104
|
1737 |
///
|
alpar@104
|
1738 |
/// \note The container of the iterator must contain enough space
|
kpeter@159
|
1739 |
/// for the elements or the iterator should be an inserter iterator.
|
kpeter@159
|
1740 |
#ifdef DOXYGEN
|
kpeter@559
|
1741 |
template <typename IT, typename KEY>
|
kpeter@159
|
1742 |
#else
|
kpeter@559
|
1743 |
template <typename IT,
|
kpeter@559
|
1744 |
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
|
kpeter@159
|
1745 |
#endif
|
kpeter@559
|
1746 |
class LoggerBoolMap : public MapBase<KEY, bool> {
|
alpar@104
|
1747 |
public:
|
kpeter@559
|
1748 |
|
kpeter@559
|
1749 |
///\e
|
kpeter@559
|
1750 |
typedef KEY Key;
|
kpeter@559
|
1751 |
///\e
|
alpar@104
|
1752 |
typedef bool Value;
|
kpeter@559
|
1753 |
///\e
|
kpeter@559
|
1754 |
typedef IT Iterator;
|
alpar@104
|
1755 |
|
alpar@104
|
1756 |
/// Constructor
|
kpeter@167
|
1757 |
LoggerBoolMap(Iterator it)
|
alpar@104
|
1758 |
: _begin(it), _end(it) {}
|
alpar@104
|
1759 |
|
alpar@104
|
1760 |
/// Gives back the given iterator set for the first key
|
alpar@104
|
1761 |
Iterator begin() const {
|
alpar@104
|
1762 |
return _begin;
|
alpar@104
|
1763 |
}
|
alpar@104
|
1764 |
|
alpar@104
|
1765 |
/// Gives back the the 'after the last' iterator
|
alpar@104
|
1766 |
Iterator end() const {
|
alpar@104
|
1767 |
return _end;
|
alpar@104
|
1768 |
}
|
alpar@104
|
1769 |
|
alpar@104
|
1770 |
/// The set function of the map
|
kpeter@159
|
1771 |
void set(const Key& key, Value value) {
|
alpar@104
|
1772 |
if (value) {
|
alpar@209
|
1773 |
*_end++ = key;
|
alpar@104
|
1774 |
}
|
alpar@104
|
1775 |
}
|
alpar@104
|
1776 |
|
alpar@104
|
1777 |
private:
|
alpar@104
|
1778 |
Iterator _begin;
|
kpeter@159
|
1779 |
Iterator _end;
|
alpar@104
|
1780 |
};
|
alpar@209
|
1781 |
|
kpeter@301
|
1782 |
/// Returns a \c LoggerBoolMap class
|
kpeter@301
|
1783 |
|
kpeter@301
|
1784 |
/// This function just returns a \c LoggerBoolMap class.
|
kpeter@159
|
1785 |
///
|
kpeter@159
|
1786 |
/// The most important usage of it is storing certain nodes or arcs
|
kpeter@159
|
1787 |
/// that were marked \c true by an algorithm.
|
kpeter@159
|
1788 |
/// For example it makes easier to store the nodes in the processing
|
kpeter@159
|
1789 |
/// order of Dfs algorithm, as the following examples show.
|
kpeter@159
|
1790 |
/// \code
|
kpeter@159
|
1791 |
/// std::vector<Node> v;
|
kpeter@716
|
1792 |
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s);
|
kpeter@159
|
1793 |
/// \endcode
|
kpeter@159
|
1794 |
/// \code
|
kpeter@159
|
1795 |
/// std::vector<Node> v(countNodes(g));
|
kpeter@716
|
1796 |
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s);
|
kpeter@159
|
1797 |
/// \endcode
|
kpeter@159
|
1798 |
///
|
kpeter@159
|
1799 |
/// \note The container of the iterator must contain enough space
|
kpeter@159
|
1800 |
/// for the elements or the iterator should be an inserter iterator.
|
kpeter@159
|
1801 |
///
|
kpeter@167
|
1802 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
|
kpeter@159
|
1803 |
/// it cannot be used when a readable map is needed, for example as
|
kpeter@301
|
1804 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
|
kpeter@159
|
1805 |
///
|
kpeter@167
|
1806 |
/// \relates LoggerBoolMap
|
kpeter@159
|
1807 |
template<typename Iterator>
|
kpeter@167
|
1808 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
|
kpeter@167
|
1809 |
return LoggerBoolMap<Iterator>(it);
|
kpeter@159
|
1810 |
}
|
alpar@104
|
1811 |
|
kpeter@314
|
1812 |
/// @}
|
kpeter@314
|
1813 |
|
kpeter@314
|
1814 |
/// \addtogroup graph_maps
|
kpeter@314
|
1815 |
/// @{
|
kpeter@314
|
1816 |
|
kpeter@559
|
1817 |
/// \brief Provides an immutable and unique id for each item in a graph.
|
kpeter@559
|
1818 |
///
|
kpeter@559
|
1819 |
/// IdMap provides a unique and immutable id for each item of the
|
deba@693
|
1820 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
|
kpeter@559
|
1821 |
/// - \b unique: different items get different ids,
|
kpeter@559
|
1822 |
/// - \b immutable: the id of an item does not change (even if you
|
kpeter@559
|
1823 |
/// delete other nodes).
|
kpeter@559
|
1824 |
///
|
kpeter@559
|
1825 |
/// Using this map you get access (i.e. can read) the inner id values of
|
kpeter@559
|
1826 |
/// the items stored in the graph, which is returned by the \c id()
|
kpeter@559
|
1827 |
/// function of the graph. This map can be inverted with its member
|
deba@220
|
1828 |
/// class \c InverseMap or with the \c operator() member.
|
deba@220
|
1829 |
///
|
kpeter@559
|
1830 |
/// \tparam GR The graph type.
|
kpeter@559
|
1831 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
|
kpeter@559
|
1832 |
/// \c GR::Edge).
|
kpeter@559
|
1833 |
///
|
alpar@572
|
1834 |
/// \see RangeIdMap
|
kpeter@559
|
1835 |
template <typename GR, typename K>
|
kpeter@559
|
1836 |
class IdMap : public MapBase<K, int> {
|
deba@220
|
1837 |
public:
|
kpeter@559
|
1838 |
/// The graph type of IdMap.
|
kpeter@559
|
1839 |
typedef GR Graph;
|
kpeter@617
|
1840 |
typedef GR Digraph;
|
kpeter@559
|
1841 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge).
|
kpeter@559
|
1842 |
typedef K Item;
|
kpeter@559
|
1843 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge).
|
kpeter@559
|
1844 |
typedef K Key;
|
kpeter@559
|
1845 |
/// The value type of IdMap.
|
deba@220
|
1846 |
typedef int Value;
|
deba@220
|
1847 |
|
deba@220
|
1848 |
/// \brief Constructor.
|
deba@220
|
1849 |
///
|
deba@220
|
1850 |
/// Constructor of the map.
|
deba@220
|
1851 |
explicit IdMap(const Graph& graph) : _graph(&graph) {}
|
deba@220
|
1852 |
|
deba@220
|
1853 |
/// \brief Gives back the \e id of the item.
|
deba@220
|
1854 |
///
|
deba@220
|
1855 |
/// Gives back the immutable and unique \e id of the item.
|
deba@220
|
1856 |
int operator[](const Item& item) const { return _graph->id(item);}
|
deba@220
|
1857 |
|
kpeter@559
|
1858 |
/// \brief Gives back the \e item by its id.
|
deba@220
|
1859 |
///
|
kpeter@559
|
1860 |
/// Gives back the \e item by its id.
|
deba@220
|
1861 |
Item operator()(int id) { return _graph->fromId(id, Item()); }
|
deba@220
|
1862 |
|
deba@220
|
1863 |
private:
|
deba@220
|
1864 |
const Graph* _graph;
|
deba@220
|
1865 |
|
deba@220
|
1866 |
public:
|
deba@220
|
1867 |
|
kpeter@559
|
1868 |
/// \brief This class represents the inverse of its owner (IdMap).
|
deba@220
|
1869 |
///
|
kpeter@559
|
1870 |
/// This class represents the inverse of its owner (IdMap).
|
deba@220
|
1871 |
/// \see inverse()
|
deba@220
|
1872 |
class InverseMap {
|
deba@220
|
1873 |
public:
|
deba@220
|
1874 |
|
deba@220
|
1875 |
/// \brief Constructor.
|
deba@220
|
1876 |
///
|
deba@220
|
1877 |
/// Constructor for creating an id-to-item map.
|
deba@220
|
1878 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {}
|
deba@220
|
1879 |
|
deba@220
|
1880 |
/// \brief Constructor.
|
deba@220
|
1881 |
///
|
deba@220
|
1882 |
/// Constructor for creating an id-to-item map.
|
deba@220
|
1883 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
|
deba@220
|
1884 |
|
deba@220
|
1885 |
/// \brief Gives back the given item from its id.
|
deba@220
|
1886 |
///
|
deba@220
|
1887 |
/// Gives back the given item from its id.
|
deba@220
|
1888 |
Item operator[](int id) const { return _graph->fromId(id, Item());}
|
deba@220
|
1889 |
|
deba@220
|
1890 |
private:
|
deba@220
|
1891 |
const Graph* _graph;
|
deba@220
|
1892 |
};
|
deba@220
|
1893 |
|
deba@220
|
1894 |
/// \brief Gives back the inverse of the map.
|
deba@220
|
1895 |
///
|
deba@220
|
1896 |
/// Gives back the inverse of the IdMap.
|
deba@220
|
1897 |
InverseMap inverse() const { return InverseMap(*_graph);}
|
deba@220
|
1898 |
};
|
deba@220
|
1899 |
|
deba@220
|
1900 |
|
alpar@572
|
1901 |
/// \brief General cross reference graph map type.
|
kpeter@559
|
1902 |
|
kpeter@559
|
1903 |
/// This class provides simple invertable graph maps.
|
kpeter@684
|
1904 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
|
kpeter@684
|
1905 |
/// and if a key is set to a new value, then stores it in the inverse map.
|
deba@220
|
1906 |
/// The values of the map can be accessed
|
deba@220
|
1907 |
/// with stl compatible forward iterator.
|
deba@220
|
1908 |
///
|
kpeter@694
|
1909 |
/// This type is not reference map, so it cannot be modified with
|
kpeter@684
|
1910 |
/// the subscript operator.
|
kpeter@694
|
1911 |
///
|
kpeter@559
|
1912 |
/// \tparam GR The graph type.
|
kpeter@559
|
1913 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
|
kpeter@559
|
1914 |
/// \c GR::Edge).
|
kpeter@559
|
1915 |
/// \tparam V The value type of the map.
|
deba@220
|
1916 |
///
|
deba@220
|
1917 |
/// \see IterableValueMap
|
kpeter@559
|
1918 |
template <typename GR, typename K, typename V>
|
alpar@572
|
1919 |
class CrossRefMap
|
kpeter@559
|
1920 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type {
|
deba@220
|
1921 |
private:
|
deba@220
|
1922 |
|
kpeter@559
|
1923 |
typedef typename ItemSetTraits<GR, K>::
|
kpeter@559
|
1924 |
template Map<V>::Type Map;
|
kpeter@559
|
1925 |
|
kpeter@684
|
1926 |
typedef std::multimap<V, K> Container;
|
deba@220
|
1927 |
Container _inv_map;
|
deba@220
|
1928 |
|
deba@220
|
1929 |
public:
|
deba@220
|
1930 |
|
alpar@572
|
1931 |
/// The graph type of CrossRefMap.
|
kpeter@559
|
1932 |
typedef GR Graph;
|
kpeter@617
|
1933 |
typedef GR Digraph;
|
alpar@572
|
1934 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
|
kpeter@559
|
1935 |
typedef K Item;
|
alpar@572
|
1936 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
|
kpeter@559
|
1937 |
typedef K Key;
|
alpar@572
|
1938 |
/// The value type of CrossRefMap.
|
kpeter@559
|
1939 |
typedef V Value;
|
deba@220
|
1940 |
|
deba@220
|
1941 |
/// \brief Constructor.
|
deba@220
|
1942 |
///
|
alpar@572
|
1943 |
/// Construct a new CrossRefMap for the given graph.
|
alpar@572
|
1944 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {}
|
deba@220
|
1945 |
|
deba@220
|
1946 |
/// \brief Forward iterator for values.
|
deba@220
|
1947 |
///
|
deba@220
|
1948 |
/// This iterator is an stl compatible forward
|
deba@220
|
1949 |
/// iterator on the values of the map. The values can
|
kpeter@559
|
1950 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range.
|
kpeter@684
|
1951 |
/// They are considered with multiplicity, so each value is
|
kpeter@684
|
1952 |
/// traversed for each item it is assigned to.
|
deba@220
|
1953 |
class ValueIterator
|
deba@220
|
1954 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
alpar@572
|
1955 |
friend class CrossRefMap;
|
deba@220
|
1956 |
private:
|
deba@220
|
1957 |
ValueIterator(typename Container::const_iterator _it)
|
deba@220
|
1958 |
: it(_it) {}
|
deba@220
|
1959 |
public:
|
deba@220
|
1960 |
|
deba@220
|
1961 |
ValueIterator() {}
|
deba@220
|
1962 |
|
deba@220
|
1963 |
ValueIterator& operator++() { ++it; return *this; }
|
deba@220
|
1964 |
ValueIterator operator++(int) {
|
deba@220
|
1965 |
ValueIterator tmp(*this);
|
deba@220
|
1966 |
operator++();
|
deba@220
|
1967 |
return tmp;
|
deba@220
|
1968 |
}
|
deba@220
|
1969 |
|
deba@220
|
1970 |
const Value& operator*() const { return it->first; }
|
deba@220
|
1971 |
const Value* operator->() const { return &(it->first); }
|
deba@220
|
1972 |
|
deba@220
|
1973 |
bool operator==(ValueIterator jt) const { return it == jt.it; }
|
deba@220
|
1974 |
bool operator!=(ValueIterator jt) const { return it != jt.it; }
|
deba@220
|
1975 |
|
deba@220
|
1976 |
private:
|
deba@220
|
1977 |
typename Container::const_iterator it;
|
deba@220
|
1978 |
};
|
deba@220
|
1979 |
|
deba@220
|
1980 |
/// \brief Returns an iterator to the first value.
|
deba@220
|
1981 |
///
|
deba@220
|
1982 |
/// Returns an stl compatible iterator to the
|
deba@220
|
1983 |
/// first value of the map. The values of the
|
kpeter@559
|
1984 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
|
deba@220
|
1985 |
/// range.
|
deba@220
|
1986 |
ValueIterator beginValue() const {
|
deba@220
|
1987 |
return ValueIterator(_inv_map.begin());
|
deba@220
|
1988 |
}
|
deba@220
|
1989 |
|
deba@220
|
1990 |
/// \brief Returns an iterator after the last value.
|
deba@220
|
1991 |
///
|
deba@220
|
1992 |
/// Returns an stl compatible iterator after the
|
deba@220
|
1993 |
/// last value of the map. The values of the
|
kpeter@559
|
1994 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
|
deba@220
|
1995 |
/// range.
|
deba@220
|
1996 |
ValueIterator endValue() const {
|
deba@220
|
1997 |
return ValueIterator(_inv_map.end());
|
deba@220
|
1998 |
}
|
deba@220
|
1999 |
|
kpeter@559
|
2000 |
/// \brief Sets the value associated with the given key.
|
deba@220
|
2001 |
///
|
kpeter@559
|
2002 |
/// Sets the value associated with the given key.
|
deba@220
|
2003 |
void set(const Key& key, const Value& val) {
|
deba@220
|
2004 |
Value oldval = Map::operator[](key);
|
kpeter@684
|
2005 |
typename Container::iterator it;
|
kpeter@684
|
2006 |
for (it = _inv_map.equal_range(oldval).first;
|
kpeter@684
|
2007 |
it != _inv_map.equal_range(oldval).second; ++it) {
|
kpeter@684
|
2008 |
if (it->second == key) {
|
kpeter@684
|
2009 |
_inv_map.erase(it);
|
kpeter@684
|
2010 |
break;
|
kpeter@684
|
2011 |
}
|
deba@220
|
2012 |
}
|
deba@693
|
2013 |
_inv_map.insert(std::make_pair(val, key));
|
deba@220
|
2014 |
Map::set(key, val);
|
deba@220
|
2015 |
}
|
deba@220
|
2016 |
|
kpeter@559
|
2017 |
/// \brief Returns the value associated with the given key.
|
deba@220
|
2018 |
///
|
kpeter@559
|
2019 |
/// Returns the value associated with the given key.
|
deba@220
|
2020 |
typename MapTraits<Map>::ConstReturnValue
|
deba@220
|
2021 |
operator[](const Key& key) const {
|
deba@220
|
2022 |
return Map::operator[](key);
|
deba@220
|
2023 |
}
|
deba@220
|
2024 |
|
kpeter@684
|
2025 |
/// \brief Gives back an item by its value.
|
deba@220
|
2026 |
///
|
kpeter@684
|
2027 |
/// This function gives back an item that is assigned to
|
kpeter@684
|
2028 |
/// the given value or \c INVALID if no such item exists.
|
kpeter@684
|
2029 |
/// If there are more items with the same associated value,
|
kpeter@684
|
2030 |
/// only one of them is returned.
|
kpeter@684
|
2031 |
Key operator()(const Value& val) const {
|
kpeter@684
|
2032 |
typename Container::const_iterator it = _inv_map.find(val);
|
deba@220
|
2033 |
return it != _inv_map.end() ? it->second : INVALID;
|
deba@220
|
2034 |
}
|
deba@220
|
2035 |
|
deba@220
|
2036 |
protected:
|
deba@220
|
2037 |
|
kpeter@559
|
2038 |
/// \brief Erase the key from the map and the inverse map.
|
deba@220
|
2039 |
///
|
kpeter@559
|
2040 |
/// Erase the key from the map and the inverse map. It is called by the
|
deba@220
|
2041 |
/// \c AlterationNotifier.
|
deba@220
|
2042 |
virtual void erase(const Key& key) {
|
deba@220
|
2043 |
Value val = Map::operator[](key);
|
kpeter@684
|
2044 |
typename Container::iterator it;
|
kpeter@684
|
2045 |
for (it = _inv_map.equal_range(val).first;
|
kpeter@684
|
2046 |
it != _inv_map.equal_range(val).second; ++it) {
|
kpeter@684
|
2047 |
if (it->second == key) {
|
kpeter@684
|
2048 |
_inv_map.erase(it);
|
kpeter@684
|
2049 |
break;
|
kpeter@684
|
2050 |
}
|
deba@220
|
2051 |
}
|
deba@220
|
2052 |
Map::erase(key);
|
deba@220
|
2053 |
}
|
deba@220
|
2054 |
|
kpeter@559
|
2055 |
/// \brief Erase more keys from the map and the inverse map.
|
deba@220
|
2056 |
///
|
kpeter@559
|
2057 |
/// Erase more keys from the map and the inverse map. It is called by the
|
deba@220
|
2058 |
/// \c AlterationNotifier.
|
deba@220
|
2059 |
virtual void erase(const std::vector<Key>& keys) {
|
deba@220
|
2060 |
for (int i = 0; i < int(keys.size()); ++i) {
|
deba@220
|
2061 |
Value val = Map::operator[](keys[i]);
|
kpeter@684
|
2062 |
typename Container::iterator it;
|
kpeter@684
|
2063 |
for (it = _inv_map.equal_range(val).first;
|
kpeter@684
|
2064 |
it != _inv_map.equal_range(val).second; ++it) {
|
kpeter@684
|
2065 |
if (it->second == keys[i]) {
|
kpeter@684
|
2066 |
_inv_map.erase(it);
|
kpeter@684
|
2067 |
break;
|
kpeter@684
|
2068 |
}
|
deba@220
|
2069 |
}
|
deba@220
|
2070 |
}
|
deba@220
|
2071 |
Map::erase(keys);
|
deba@220
|
2072 |
}
|
deba@220
|
2073 |
|
kpeter@559
|
2074 |
/// \brief Clear the keys from the map and the inverse map.
|
deba@220
|
2075 |
///
|
kpeter@559
|
2076 |
/// Clear the keys from the map and the inverse map. It is called by the
|
deba@220
|
2077 |
/// \c AlterationNotifier.
|
deba@220
|
2078 |
virtual void clear() {
|
deba@220
|
2079 |
_inv_map.clear();
|
deba@220
|
2080 |
Map::clear();
|
deba@220
|
2081 |
}
|
deba@220
|
2082 |
|
deba@220
|
2083 |
public:
|
deba@220
|
2084 |
|
deba@220
|
2085 |
/// \brief The inverse map type.
|
deba@220
|
2086 |
///
|
deba@220
|
2087 |
/// The inverse of this map. The subscript operator of the map
|
kpeter@559
|
2088 |
/// gives back the item that was last assigned to the value.
|
deba@220
|
2089 |
class InverseMap {
|
deba@220
|
2090 |
public:
|
kpeter@559
|
2091 |
/// \brief Constructor
|
deba@220
|
2092 |
///
|
deba@220
|
2093 |
/// Constructor of the InverseMap.
|
alpar@572
|
2094 |
explicit InverseMap(const CrossRefMap& inverted)
|
deba@220
|
2095 |
: _inverted(inverted) {}
|
deba@220
|
2096 |
|
deba@220
|
2097 |
/// The value type of the InverseMap.
|
alpar@572
|
2098 |
typedef typename CrossRefMap::Key Value;
|
deba@220
|
2099 |
/// The key type of the InverseMap.
|
alpar@572
|
2100 |
typedef typename CrossRefMap::Value Key;
|
deba@220
|
2101 |
|
deba@220
|
2102 |
/// \brief Subscript operator.
|
deba@220
|
2103 |
///
|
kpeter@684
|
2104 |
/// Subscript operator. It gives back an item
|
kpeter@684
|
2105 |
/// that is assigned to the given value or \c INVALID
|
kpeter@684
|
2106 |
/// if no such item exists.
|
deba@220
|
2107 |
Value operator[](const Key& key) const {
|
deba@220
|
2108 |
return _inverted(key);
|
deba@220
|
2109 |
}
|
deba@220
|
2110 |
|
deba@220
|
2111 |
private:
|
alpar@572
|
2112 |
const CrossRefMap& _inverted;
|
deba@220
|
2113 |
};
|
deba@220
|
2114 |
|
kpeter@559
|
2115 |
/// \brief It gives back the read-only inverse map.
|
deba@220
|
2116 |
///
|
kpeter@559
|
2117 |
/// It gives back the read-only inverse map.
|
deba@220
|
2118 |
InverseMap inverse() const {
|
deba@220
|
2119 |
return InverseMap(*this);
|
deba@220
|
2120 |
}
|
deba@220
|
2121 |
|
deba@220
|
2122 |
};
|
deba@220
|
2123 |
|
alpar@572
|
2124 |
/// \brief Provides continuous and unique ID for the
|
alpar@572
|
2125 |
/// items of a graph.
|
deba@220
|
2126 |
///
|
alpar@572
|
2127 |
/// RangeIdMap provides a unique and continuous
|
alpar@572
|
2128 |
/// ID for each item of a given type (\c Node, \c Arc or
|
kpeter@559
|
2129 |
/// \c Edge) in a graph. This id is
|
kpeter@559
|
2130 |
/// - \b unique: different items get different ids,
|
kpeter@559
|
2131 |
/// - \b continuous: the range of the ids is the set of integers
|
kpeter@559
|
2132 |
/// between 0 and \c n-1, where \c n is the number of the items of
|
alpar@572
|
2133 |
/// this type (\c Node, \c Arc or \c Edge).
|
alpar@572
|
2134 |
/// - So, the ids can change when deleting an item of the same type.
|
deba@220
|
2135 |
///
|
kpeter@559
|
2136 |
/// Thus this id is not (necessarily) the same as what can get using
|
kpeter@559
|
2137 |
/// the \c id() function of the graph or \ref IdMap.
|
kpeter@559
|
2138 |
/// This map can be inverted with its member class \c InverseMap,
|
kpeter@559
|
2139 |
/// or with the \c operator() member.
|
kpeter@559
|
2140 |
///
|
kpeter@559
|
2141 |
/// \tparam GR The graph type.
|
kpeter@559
|
2142 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
|
kpeter@559
|
2143 |
/// \c GR::Edge).
|
kpeter@559
|
2144 |
///
|
kpeter@559
|
2145 |
/// \see IdMap
|
kpeter@559
|
2146 |
template <typename GR, typename K>
|
alpar@572
|
2147 |
class RangeIdMap
|
kpeter@559
|
2148 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
|
kpeter@559
|
2149 |
|
kpeter@559
|
2150 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
|
deba@220
|
2151 |
|
deba@220
|
2152 |
public:
|
alpar@572
|
2153 |
/// The graph type of RangeIdMap.
|
kpeter@559
|
2154 |
typedef GR Graph;
|
kpeter@617
|
2155 |
typedef GR Digraph;
|
alpar@572
|
2156 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
|
kpeter@559
|
2157 |
typedef K Item;
|
alpar@572
|
2158 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
|
kpeter@559
|
2159 |
typedef K Key;
|
alpar@572
|
2160 |
/// The value type of RangeIdMap.
|
kpeter@559
|
2161 |
typedef int Value;
|
deba@220
|
2162 |
|
deba@220
|
2163 |
/// \brief Constructor.
|
deba@220
|
2164 |
///
|
alpar@572
|
2165 |
/// Constructor.
|
alpar@572
|
2166 |
explicit RangeIdMap(const Graph& gr) : Map(gr) {
|
deba@220
|
2167 |
Item it;
|
deba@220
|
2168 |
const typename Map::Notifier* nf = Map::notifier();
|
deba@220
|
2169 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
deba@220
|
2170 |
Map::set(it, _inv_map.size());
|
deba@220
|
2171 |
_inv_map.push_back(it);
|
deba@220
|
2172 |
}
|
deba@220
|
2173 |
}
|
deba@220
|
2174 |
|
deba@220
|
2175 |
protected:
|
deba@220
|
2176 |
|
kpeter@559
|
2177 |
/// \brief Adds a new key to the map.
|
deba@220
|
2178 |
///
|
deba@220
|
2179 |
/// Add a new key to the map. It is called by the
|
deba@220
|
2180 |
/// \c AlterationNotifier.
|
deba@220
|
2181 |
virtual void add(const Item& item) {
|
deba@220
|
2182 |
Map::add(item);
|
deba@220
|
2183 |
Map::set(item, _inv_map.size());
|
deba@220
|
2184 |
_inv_map.push_back(item);
|
deba@220
|
2185 |
}
|
deba@220
|
2186 |
|
deba@220
|
2187 |
/// \brief Add more new keys to the map.
|
deba@220
|
2188 |
///
|
deba@220
|
2189 |
/// Add more new keys to the map. It is called by the
|
deba@220
|
2190 |
/// \c AlterationNotifier.
|
deba@220
|
2191 |
virtual void add(const std::vector<Item>& items) {
|
deba@220
|
2192 |
Map::add(items);
|
deba@220
|
2193 |
for (int i = 0; i < int(items.size()); ++i) {
|
deba@220
|
2194 |
Map::set(items[i], _inv_map.size());
|
deba@220
|
2195 |
_inv_map.push_back(items[i]);
|
deba@220
|
2196 |
}
|
deba@220
|
2197 |
}
|
deba@220
|
2198 |
|
deba@220
|
2199 |
/// \brief Erase the key from the map.
|
deba@220
|
2200 |
///
|
deba@220
|
2201 |
/// Erase the key from the map. It is called by the
|
deba@220
|
2202 |
/// \c AlterationNotifier.
|
deba@220
|
2203 |
virtual void erase(const Item& item) {
|
deba@220
|
2204 |
Map::set(_inv_map.back(), Map::operator[](item));
|
deba@220
|
2205 |
_inv_map[Map::operator[](item)] = _inv_map.back();
|
deba@220
|
2206 |
_inv_map.pop_back();
|
deba@220
|
2207 |
Map::erase(item);
|
deba@220
|
2208 |
}
|
deba@220
|
2209 |
|
deba@220
|
2210 |
/// \brief Erase more keys from the map.
|
deba@220
|
2211 |
///
|
deba@220
|
2212 |
/// Erase more keys from the map. It is called by the
|
deba@220
|
2213 |
/// \c AlterationNotifier.
|
deba@220
|
2214 |
virtual void erase(const std::vector<Item>& items) {
|
deba@220
|
2215 |
for (int i = 0; i < int(items.size()); ++i) {
|
deba@220
|
2216 |
Map::set(_inv_map.back(), Map::operator[](items[i]));
|
deba@220
|
2217 |
_inv_map[Map::operator[](items[i])] = _inv_map.back();
|
deba@220
|
2218 |
_inv_map.pop_back();
|
deba@220
|
2219 |
}
|
deba@220
|
2220 |
Map::erase(items);
|
deba@220
|
2221 |
}
|
deba@220
|
2222 |
|
deba@220
|
2223 |
/// \brief Build the unique map.
|
deba@220
|
2224 |
///
|
deba@220
|
2225 |
/// Build the unique map. It is called by the
|
deba@220
|
2226 |
/// \c AlterationNotifier.
|
deba@220
|
2227 |
virtual void build() {
|
deba@220
|
2228 |
Map::build();
|
deba@220
|
2229 |
Item it;
|
deba@220
|
2230 |
const typename Map::Notifier* nf = Map::notifier();
|
deba@220
|
2231 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
deba@220
|
2232 |
Map::set(it, _inv_map.size());
|
deba@220
|
2233 |
_inv_map.push_back(it);
|
deba@220
|
2234 |
}
|
deba@220
|
2235 |
}
|
deba@220
|
2236 |
|
deba@220
|
2237 |
/// \brief Clear the keys from the map.
|
deba@220
|
2238 |
///
|
deba@220
|
2239 |
/// Clear the keys from the map. It is called by the
|
deba@220
|
2240 |
/// \c AlterationNotifier.
|
deba@220
|
2241 |
virtual void clear() {
|
deba@220
|
2242 |
_inv_map.clear();
|
deba@220
|
2243 |
Map::clear();
|
deba@220
|
2244 |
}
|
deba@220
|
2245 |
|
deba@220
|
2246 |
public:
|
deba@220
|
2247 |
|
deba@220
|
2248 |
/// \brief Returns the maximal value plus one.
|
deba@220
|
2249 |
///
|
deba@220
|
2250 |
/// Returns the maximal value plus one in the map.
|
deba@220
|
2251 |
unsigned int size() const {
|
deba@220
|
2252 |
return _inv_map.size();
|
deba@220
|
2253 |
}
|
deba@220
|
2254 |
|
deba@220
|
2255 |
/// \brief Swaps the position of the two items in the map.
|
deba@220
|
2256 |
///
|
deba@220
|
2257 |
/// Swaps the position of the two items in the map.
|
deba@220
|
2258 |
void swap(const Item& p, const Item& q) {
|
deba@220
|
2259 |
int pi = Map::operator[](p);
|
deba@220
|
2260 |
int qi = Map::operator[](q);
|
deba@220
|
2261 |
Map::set(p, qi);
|
deba@220
|
2262 |
_inv_map[qi] = p;
|
deba@220
|
2263 |
Map::set(q, pi);
|
deba@220
|
2264 |
_inv_map[pi] = q;
|
deba@220
|
2265 |
}
|
deba@220
|
2266 |
|
alpar@572
|
2267 |
/// \brief Gives back the \e RangeId of the item
|
deba@220
|
2268 |
///
|
alpar@572
|
2269 |
/// Gives back the \e RangeId of the item.
|
deba@220
|
2270 |
int operator[](const Item& item) const {
|
deba@220
|
2271 |
return Map::operator[](item);
|
deba@220
|
2272 |
}
|
deba@220
|
2273 |
|
alpar@572
|
2274 |
/// \brief Gives back the item belonging to a \e RangeId
|
deba@693
|
2275 |
///
|
alpar@572
|
2276 |
/// Gives back the item belonging to a \e RangeId.
|
deba@220
|
2277 |
Item operator()(int id) const {
|
deba@220
|
2278 |
return _inv_map[id];
|
deba@220
|
2279 |
}
|
deba@220
|
2280 |
|
deba@220
|
2281 |
private:
|
deba@220
|
2282 |
|
deba@220
|
2283 |
typedef std::vector<Item> Container;
|
deba@220
|
2284 |
Container _inv_map;
|
deba@220
|
2285 |
|
deba@220
|
2286 |
public:
|
kpeter@559
|
2287 |
|
alpar@572
|
2288 |
/// \brief The inverse map type of RangeIdMap.
|
deba@220
|
2289 |
///
|
alpar@572
|
2290 |
/// The inverse map type of RangeIdMap.
|
deba@220
|
2291 |
class InverseMap {
|
deba@220
|
2292 |
public:
|
kpeter@559
|
2293 |
/// \brief Constructor
|
deba@220
|
2294 |
///
|
deba@220
|
2295 |
/// Constructor of the InverseMap.
|
alpar@572
|
2296 |
explicit InverseMap(const RangeIdMap& inverted)
|
deba@220
|
2297 |
: _inverted(inverted) {}
|
deba@220
|
2298 |
|
deba@220
|
2299 |
|
deba@220
|
2300 |
/// The value type of the InverseMap.
|
alpar@572
|
2301 |
typedef typename RangeIdMap::Key Value;
|
deba@220
|
2302 |
/// The key type of the InverseMap.
|
alpar@572
|
2303 |
typedef typename RangeIdMap::Value Key;
|
deba@220
|
2304 |
|
deba@220
|
2305 |
/// \brief Subscript operator.
|
deba@220
|
2306 |
///
|
deba@220
|
2307 |
/// Subscript operator. It gives back the item
|
kpeter@559
|
2308 |
/// that the descriptor currently belongs to.
|
deba@220
|
2309 |
Value operator[](const Key& key) const {
|
deba@220
|
2310 |
return _inverted(key);
|
deba@220
|
2311 |
}
|
deba@220
|
2312 |
|
deba@220
|
2313 |
/// \brief Size of the map.
|
deba@220
|
2314 |
///
|
deba@220
|
2315 |
/// Returns the size of the map.
|
deba@220
|
2316 |
unsigned int size() const {
|
deba@220
|
2317 |
return _inverted.size();
|
deba@220
|
2318 |
}
|
deba@220
|
2319 |
|
deba@220
|
2320 |
private:
|
alpar@572
|
2321 |
const RangeIdMap& _inverted;
|
deba@220
|
2322 |
};
|
deba@220
|
2323 |
|
deba@220
|
2324 |
/// \brief Gives back the inverse of the map.
|
deba@220
|
2325 |
///
|
deba@220
|
2326 |
/// Gives back the inverse of the map.
|
deba@220
|
2327 |
const InverseMap inverse() const {
|
deba@220
|
2328 |
return InverseMap(*this);
|
deba@220
|
2329 |
}
|
deba@220
|
2330 |
};
|
deba@220
|
2331 |
|
kpeter@694
|
2332 |
/// \brief Dynamic iterable \c bool map.
|
deba@693
|
2333 |
///
|
kpeter@694
|
2334 |
/// This class provides a special graph map type which can store a
|
kpeter@694
|
2335 |
/// \c bool value for graph items (\c Node, \c Arc or \c Edge).
|
kpeter@694
|
2336 |
/// For both \c true and \c false values it is possible to iterate on
|
kpeter@694
|
2337 |
/// the keys.
|
deba@693
|
2338 |
///
|
kpeter@694
|
2339 |
/// This type is a reference map, so it can be modified with the
|
alpar@695
|
2340 |
/// subscript operator.
|
kpeter@694
|
2341 |
///
|
kpeter@694
|
2342 |
/// \tparam GR The graph type.
|
kpeter@694
|
2343 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
|
kpeter@694
|
2344 |
/// \c GR::Edge).
|
kpeter@694
|
2345 |
///
|
kpeter@694
|
2346 |
/// \see IterableIntMap, IterableValueMap
|
kpeter@694
|
2347 |
/// \see CrossRefMap
|
kpeter@694
|
2348 |
template <typename GR, typename K>
|
deba@693
|
2349 |
class IterableBoolMap
|
kpeter@694
|
2350 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
|
deba@693
|
2351 |
private:
|
deba@693
|
2352 |
typedef GR Graph;
|
deba@693
|
2353 |
|
kpeter@694
|
2354 |
typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt;
|
kpeter@694
|
2355 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent;
|
kpeter@694
|
2356 |
|
kpeter@694
|
2357 |
std::vector<K> _array;
|
deba@693
|
2358 |
int _sep;
|
deba@693
|
2359 |
|
deba@693
|
2360 |
public:
|
deba@693
|
2361 |
|
kpeter@694
|
2362 |
/// Indicates that the map is reference map.
|
deba@693
|
2363 |
typedef True ReferenceMapTag;
|
deba@693
|
2364 |
|
deba@693
|
2365 |
/// The key type
|
kpeter@694
|
2366 |
typedef K Key;
|
deba@693
|
2367 |
/// The value type
|
deba@693
|
2368 |
typedef bool Value;
|
deba@693
|
2369 |
/// The const reference type.
|
deba@693
|
2370 |
typedef const Value& ConstReference;
|
deba@693
|
2371 |
|
deba@693
|
2372 |
private:
|
deba@693
|
2373 |
|
deba@693
|
2374 |
int position(const Key& key) const {
|
deba@693
|
2375 |
return Parent::operator[](key);
|
deba@693
|
2376 |
}
|
deba@693
|
2377 |
|
deba@693
|
2378 |
public:
|
deba@693
|
2379 |
|
kpeter@694
|
2380 |
/// \brief Reference to the value of the map.
|
deba@693
|
2381 |
///
|
kpeter@694
|
2382 |
/// This class is similar to the \c bool type. It can be converted to
|
kpeter@694
|
2383 |
/// \c bool and it provides the same operators.
|
deba@693
|
2384 |
class Reference {
|
deba@693
|
2385 |
friend class IterableBoolMap;
|
deba@693
|
2386 |
private:
|
deba@693
|
2387 |
Reference(IterableBoolMap& map, const Key& key)
|
deba@693
|
2388 |
: _key(key), _map(map) {}
|
deba@693
|
2389 |
public:
|
deba@693
|
2390 |
|
deba@693
|
2391 |
Reference& operator=(const Reference& value) {
|
deba@693
|
2392 |
_map.set(_key, static_cast<bool>(value));
|
deba@693
|
2393 |
return *this;
|
deba@693
|
2394 |
}
|
deba@693
|
2395 |
|
deba@693
|
2396 |
operator bool() const {
|
deba@693
|
2397 |
return static_cast<const IterableBoolMap&>(_map)[_key];
|
deba@693
|
2398 |
}
|
deba@693
|
2399 |
|
deba@693
|
2400 |
Reference& operator=(bool value) {
|
deba@693
|
2401 |
_map.set(_key, value);
|
deba@693
|
2402 |
return *this;
|
deba@693
|
2403 |
}
|
deba@693
|
2404 |
Reference& operator&=(bool value) {
|
deba@693
|
2405 |
_map.set(_key, _map[_key] & value);
|
deba@693
|
2406 |
return *this;
|
deba@693
|
2407 |
}
|
deba@693
|
2408 |
Reference& operator|=(bool value) {
|
deba@693
|
2409 |
_map.set(_key, _map[_key] | value);
|
deba@693
|
2410 |
return *this;
|
deba@693
|
2411 |
}
|
deba@693
|
2412 |
Reference& operator^=(bool value) {
|
deba@693
|
2413 |
_map.set(_key, _map[_key] ^ value);
|
deba@693
|
2414 |
return *this;
|
deba@693
|
2415 |
}
|
deba@693
|
2416 |
private:
|
deba@693
|
2417 |
Key _key;
|
deba@693
|
2418 |
IterableBoolMap& _map;
|
deba@693
|
2419 |
};
|
deba@693
|
2420 |
|
deba@693
|
2421 |
/// \brief Constructor of the map with a default value.
|
deba@693
|
2422 |
///
|
deba@693
|
2423 |
/// Constructor of the map with a default value.
|
deba@693
|
2424 |
explicit IterableBoolMap(const Graph& graph, bool def = false)
|
deba@693
|
2425 |
: Parent(graph) {
|
deba@693
|
2426 |
typename Parent::Notifier* nf = Parent::notifier();
|
deba@693
|
2427 |
Key it;
|
deba@693
|
2428 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
deba@693
|
2429 |
Parent::set(it, _array.size());
|
deba@693
|
2430 |
_array.push_back(it);
|
deba@693
|
2431 |
}
|
deba@693
|
2432 |
_sep = (def ? _array.size() : 0);
|
deba@693
|
2433 |
}
|
deba@693
|
2434 |
|
deba@693
|
2435 |
/// \brief Const subscript operator of the map.
|
deba@693
|
2436 |
///
|
deba@693
|
2437 |
/// Const subscript operator of the map.
|
deba@693
|
2438 |
bool operator[](const Key& key) const {
|
deba@693
|
2439 |
return position(key) < _sep;
|
deba@693
|
2440 |
}
|
deba@693
|
2441 |
|
deba@693
|
2442 |
/// \brief Subscript operator of the map.
|
deba@693
|
2443 |
///
|
deba@693
|
2444 |
/// Subscript operator of the map.
|
deba@693
|
2445 |
Reference operator[](const Key& key) {
|
deba@693
|
2446 |
return Reference(*this, key);
|
deba@693
|
2447 |
}
|
deba@693
|
2448 |
|
deba@693
|
2449 |
/// \brief Set operation of the map.
|
deba@693
|
2450 |
///
|
deba@693
|
2451 |
/// Set operation of the map.
|
deba@693
|
2452 |
void set(const Key& key, bool value) {
|
deba@693
|
2453 |
int pos = position(key);
|
deba@693
|
2454 |
if (value) {
|
deba@693
|
2455 |
if (pos < _sep) return;
|
deba@693
|
2456 |
Key tmp = _array[_sep];
|
deba@693
|
2457 |
_array[_sep] = key;
|
deba@693
|
2458 |
Parent::set(key, _sep);
|
deba@693
|
2459 |
_array[pos] = tmp;
|
deba@693
|
2460 |
Parent::set(tmp, pos);
|
deba@693
|
2461 |
++_sep;
|
deba@693
|
2462 |
} else {
|
deba@693
|
2463 |
if (pos >= _sep) return;
|
deba@693
|
2464 |
--_sep;
|
deba@693
|
2465 |
Key tmp = _array[_sep];
|
deba@693
|
2466 |
_array[_sep] = key;
|
deba@693
|
2467 |
Parent::set(key, _sep);
|
deba@693
|
2468 |
_array[pos] = tmp;
|
deba@693
|
2469 |
Parent::set(tmp, pos);
|
deba@693
|
2470 |
}
|
deba@693
|
2471 |
}
|
deba@693
|
2472 |
|
deba@693
|
2473 |
/// \brief Set all items.
|
deba@693
|
2474 |
///
|
deba@693
|
2475 |
/// Set all items in the map.
|
deba@693
|
2476 |
/// \note Constant time operation.
|
deba@693
|
2477 |
void setAll(bool value) {
|
deba@693
|
2478 |
_sep = (value ? _array.size() : 0);
|
deba@693
|
2479 |
}
|
deba@693
|
2480 |
|
kpeter@694
|
2481 |
/// \brief Returns the number of the keys mapped to \c true.
|
deba@693
|
2482 |
///
|
kpeter@694
|
2483 |
/// Returns the number of the keys mapped to \c true.
|
deba@693
|
2484 |
int trueNum() const {
|
deba@693
|
2485 |
return _sep;
|
deba@693
|
2486 |
}
|
deba@693
|
2487 |
|
kpeter@694
|
2488 |
/// \brief Returns the number of the keys mapped to \c false.
|
deba@693
|
2489 |
///
|
kpeter@694
|
2490 |
/// Returns the number of the keys mapped to \c false.
|
deba@693
|
2491 |
int falseNum() const {
|
deba@693
|
2492 |
return _array.size() - _sep;
|
deba@693
|
2493 |
}
|
deba@693
|
2494 |
|
kpeter@694
|
2495 |
/// \brief Iterator for the keys mapped to \c true.
|
deba@693
|
2496 |
///
|
kpeter@694
|
2497 |
/// Iterator for the keys mapped to \c true. It works
|
kpeter@694
|
2498 |
/// like a graph item iterator, it can be converted to
|
deba@693
|
2499 |
/// the key type of the map, incremented with \c ++ operator, and
|
kpeter@694
|
2500 |
/// if the iterator leaves the last valid key, it will be equal to
|
deba@693
|
2501 |
/// \c INVALID.
|
deba@693
|
2502 |
class TrueIt : public Key {
|
deba@693
|
2503 |
public:
|
deba@693
|
2504 |
typedef Key Parent;
|
deba@693
|
2505 |
|
deba@693
|
2506 |
/// \brief Creates an iterator.
|
deba@693
|
2507 |
///
|
deba@693
|
2508 |
/// Creates an iterator. It iterates on the
|
kpeter@694
|
2509 |
/// keys mapped to \c true.
|
kpeter@694
|
2510 |
/// \param map The IterableBoolMap.
|
deba@693
|
2511 |
explicit TrueIt(const IterableBoolMap& map)
|
deba@693
|
2512 |
: Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
|
deba@693
|
2513 |
_map(&map) {}
|
deba@693
|
2514 |
|
deba@693
|
2515 |
/// \brief Invalid constructor \& conversion.
|
deba@693
|
2516 |
///
|
kpeter@694
|
2517 |
/// This constructor initializes the iterator to be invalid.
|
deba@693
|
2518 |
/// \sa Invalid for more details.
|
deba@693
|
2519 |
TrueIt(Invalid) : Parent(INVALID), _map(0) {}
|
deba@693
|
2520 |
|
deba@693
|
2521 |
/// \brief Increment operator.
|
deba@693
|
2522 |
///
|
kpeter@694
|
2523 |
/// Increment operator.
|
deba@693
|
2524 |
TrueIt& operator++() {
|
deba@693
|
2525 |
int pos = _map->position(*this);
|
deba@693
|
2526 |
Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
|
deba@693
|
2527 |
return *this;
|
deba@693
|
2528 |
}
|
deba@693
|
2529 |
|
deba@693
|
2530 |
private:
|
deba@693
|
2531 |
const IterableBoolMap* _map;
|
deba@693
|
2532 |
};
|
deba@693
|
2533 |
|
kpeter@694
|
2534 |
/// \brief Iterator for the keys mapped to \c false.
|
deba@693
|
2535 |
///
|
kpeter@694
|
2536 |
/// Iterator for the keys mapped to \c false. It works
|
kpeter@694
|
2537 |
/// like a graph item iterator, it can be converted to
|
deba@693
|
2538 |
/// the key type of the map, incremented with \c ++ operator, and
|
kpeter@694
|
2539 |
/// if the iterator leaves the last valid key, it will be equal to
|
deba@693
|
2540 |
/// \c INVALID.
|
deba@693
|
2541 |
class FalseIt : public Key {
|
deba@693
|
2542 |
public:
|
deba@693
|
2543 |
typedef Key Parent;
|
deba@693
|
2544 |
|
deba@693
|
2545 |
/// \brief Creates an iterator.
|
deba@693
|
2546 |
///
|
deba@693
|
2547 |
/// Creates an iterator. It iterates on the
|
kpeter@694
|
2548 |
/// keys mapped to \c false.
|
kpeter@694
|
2549 |
/// \param map The IterableBoolMap.
|
deba@693
|
2550 |
explicit FalseIt(const IterableBoolMap& map)
|
deba@693
|
2551 |
: Parent(map._sep < int(map._array.size()) ?
|
deba@693
|
2552 |
map._array.back() : INVALID), _map(&map) {}
|
deba@693
|
2553 |
|
deba@693
|
2554 |
/// \brief Invalid constructor \& conversion.
|
deba@693
|
2555 |
///
|
kpeter@694
|
2556 |
/// This constructor initializes the iterator to be invalid.
|
deba@693
|
2557 |
/// \sa Invalid for more details.
|
deba@693
|
2558 |
FalseIt(Invalid) : Parent(INVALID), _map(0) {}
|
deba@693
|
2559 |
|
deba@693
|
2560 |
/// \brief Increment operator.
|
deba@693
|
2561 |
///
|
kpeter@694
|
2562 |
/// Increment operator.
|
deba@693
|
2563 |
FalseIt& operator++() {
|
deba@693
|
2564 |
int pos = _map->position(*this);
|
deba@693
|
2565 |
Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
|
deba@693
|
2566 |
return *this;
|
deba@693
|
2567 |
}
|
deba@693
|
2568 |
|
deba@693
|
2569 |
private:
|
deba@693
|
2570 |
const IterableBoolMap* _map;
|
deba@693
|
2571 |
};
|
deba@693
|
2572 |
|
deba@693
|
2573 |
/// \brief Iterator for the keys mapped to a given value.
|
deba@693
|
2574 |
///
|
deba@693
|
2575 |
/// Iterator for the keys mapped to a given value. It works
|
kpeter@694
|
2576 |
/// like a graph item iterator, it can be converted to
|
deba@693
|
2577 |
/// the key type of the map, incremented with \c ++ operator, and
|
kpeter@694
|
2578 |
/// if the iterator leaves the last valid key, it will be equal to
|
deba@693
|
2579 |
/// \c INVALID.
|
deba@693
|
2580 |
class ItemIt : public Key {
|
deba@693
|
2581 |
public:
|
deba@693
|
2582 |
typedef Key Parent;
|
deba@693
|
2583 |
|
kpeter@694
|
2584 |
/// \brief Creates an iterator with a value.
|
deba@693
|
2585 |
///
|
kpeter@694
|
2586 |
/// Creates an iterator with a value. It iterates on the
|
kpeter@694
|
2587 |
/// keys mapped to the given value.
|
kpeter@694
|
2588 |
/// \param map The IterableBoolMap.
|
kpeter@694
|
2589 |
/// \param value The value.
|
deba@693
|
2590 |
ItemIt(const IterableBoolMap& map, bool value)
|
deba@693
|
2591 |
: Parent(value ?
|
deba@693
|
2592 |
(map._sep > 0 ?
|
deba@693
|
2593 |
map._array[map._sep - 1] : INVALID) :
|
deba@693
|
2594 |
(map._sep < int(map._array.size()) ?
|
deba@693
|
2595 |
map._array.back() : INVALID)), _map(&map) {}
|
deba@693
|
2596 |
|
deba@693
|
2597 |
/// \brief Invalid constructor \& conversion.
|
deba@693
|
2598 |
///
|
kpeter@694
|
2599 |
/// This constructor initializes the iterator to be invalid.
|
deba@693
|
2600 |
/// \sa Invalid for more details.
|
deba@693
|
2601 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
|
deba@693
|
2602 |
|
deba@693
|
2603 |
/// \brief Increment operator.
|
deba@693
|
2604 |
///
|
kpeter@694
|
2605 |
/// Increment operator.
|
deba@693
|
2606 |
ItemIt& operator++() {
|
deba@693
|
2607 |
int pos = _map->position(*this);
|
deba@693
|
2608 |
int _sep = pos >= _map->_sep ? _map->_sep : 0;
|
deba@693
|
2609 |
Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
|
deba@693
|
2610 |
return *this;
|
deba@693
|
2611 |
}
|
deba@693
|
2612 |
|
deba@693
|
2613 |
private:
|
deba@693
|
2614 |
const IterableBoolMap* _map;
|
deba@693
|
2615 |
};
|
deba@693
|
2616 |
|
deba@693
|
2617 |
protected:
|
deba@693
|
2618 |
|
deba@693
|
2619 |
virtual void add(const Key& key) {
|
deba@693
|
2620 |
Parent::add(key);
|
deba@693
|
2621 |
Parent::set(key, _array.size());
|
deba@693
|
2622 |
_array.push_back(key);
|
deba@693
|
2623 |
}
|
deba@693
|
2624 |
|
deba@693
|
2625 |
virtual void add(const std::vector<Key>& keys) {
|
deba@693
|
2626 |
Parent::add(keys);
|
deba@693
|
2627 |
for (int i = 0; i < int(keys.size()); ++i) {
|
deba@693
|
2628 |
Parent::set(keys[i], _array.size());
|
deba@693
|
2629 |
_array.push_back(keys[i]);
|
deba@693
|
2630 |
}
|
deba@693
|
2631 |
}
|
deba@693
|
2632 |
|
deba@693
|
2633 |
virtual void erase(const Key& key) {
|
deba@693
|
2634 |
int pos = position(key);
|
deba@693
|
2635 |
if (pos < _sep) {
|
deba@693
|
2636 |
--_sep;
|
deba@693
|
2637 |
Parent::set(_array[_sep], pos);
|
deba@693
|
2638 |
_array[pos] = _array[_sep];
|
deba@693
|
2639 |
Parent::set(_array.back(), _sep);
|
deba@693
|
2640 |
_array[_sep] = _array.back();
|
deba@693
|
2641 |
_array.pop_back();
|
deba@693
|
2642 |
} else {
|
deba@693
|
2643 |
Parent::set(_array.back(), pos);
|
deba@693
|
2644 |
_array[pos] = _array.back();
|
deba@693
|
2645 |
_array.pop_back();
|
deba@693
|
2646 |
}
|
deba@693
|
2647 |
Parent::erase(key);
|
deba@693
|
2648 |
}
|
deba@693
|
2649 |
|
deba@693
|
2650 |
virtual void erase(const std::vector<Key>& keys) {
|
deba@693
|
2651 |
for (int i = 0; i < int(keys.size()); ++i) {
|
deba@693
|
2652 |
int pos = position(keys[i]);
|
deba@693
|
2653 |
if (pos < _sep) {
|
deba@693
|
2654 |
--_sep;
|
deba@693
|
2655 |
Parent::set(_array[_sep], pos);
|
deba@693
|
2656 |
_array[pos] = _array[_sep];
|
deba@693
|
2657 |
Parent::set(_array.back(), _sep);
|
deba@693
|
2658 |
_array[_sep] = _array.back();
|
deba@693
|
2659 |
_array.pop_back();
|
deba@693
|
2660 |
} else {
|
deba@693
|
2661 |
Parent::set(_array.back(), pos);
|
deba@693
|
2662 |
_array[pos] = _array.back();
|
deba@693
|
2663 |
_array.pop_back();
|
deba@693
|
2664 |
}
|
deba@693
|
2665 |
}
|
deba@693
|
2666 |
Parent::erase(keys);
|
deba@693
|
2667 |
}
|
deba@693
|
2668 |
|
deba@693
|
2669 |
virtual void build() {
|
deba@693
|
2670 |
Parent::build();
|
deba@693
|
2671 |
typename Parent::Notifier* nf = Parent::notifier();
|
deba@693
|
2672 |
Key it;
|
deba@693
|
2673 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
deba@693
|
2674 |
Parent::set(it, _array.size());
|
deba@693
|
2675 |
_array.push_back(it);
|
deba@693
|
2676 |
}
|
deba@693
|
2677 |
_sep = 0;
|
deba@693
|
2678 |
}
|
deba@693
|
2679 |
|
deba@693
|
2680 |
virtual void clear() {
|
deba@693
|
2681 |
_array.clear();
|
deba@693
|
2682 |
_sep = 0;
|
deba@693
|
2683 |
Parent::clear();
|
deba@693
|
2684 |
}
|
deba@693
|
2685 |
|
deba@693
|
2686 |
};
|
deba@693
|
2687 |
|
deba@693
|
2688 |
|
deba@693
|
2689 |
namespace _maps_bits {
|
deba@693
|
2690 |
template <typename Item>
|
deba@693
|
2691 |
struct IterableIntMapNode {
|
deba@693
|
2692 |
IterableIntMapNode() : value(-1) {}
|
deba@693
|
2693 |
IterableIntMapNode(int _value) : value(_value) {}
|
deba@693
|
2694 |
Item prev, next;
|
deba@693
|
2695 |
int value;
|
deba@693
|
2696 |
};
|
deba@693
|
2697 |
}
|
deba@693
|
2698 |
|
deba@693
|
2699 |
/// \brief Dynamic iterable integer map.
|
deba@693
|
2700 |
///
|
kpeter@694
|
2701 |
/// This class provides a special graph map type which can store an
|
kpeter@694
|
2702 |
/// integer value for graph items (\c Node, \c Arc or \c Edge).
|
kpeter@694
|
2703 |
/// For each non-negative value it is possible to iterate on the keys
|
kpeter@694
|
2704 |
/// mapped to the value.
|
deba@693
|
2705 |
///
|
kpeter@694
|
2706 |
/// This type is a reference map, so it can be modified with the
|
alpar@695
|
2707 |
/// subscript operator.
|
kpeter@694
|
2708 |
///
|
kpeter@694
|
2709 |
/// \note The size of the data structure depends on the largest
|
deba@693
|
2710 |
/// value in the map.
|
deba@693
|
2711 |
///
|
kpeter@694
|
2712 |
/// \tparam GR The graph type.
|
kpeter@694
|
2713 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
|
kpeter@694
|
2714 |
/// \c GR::Edge).
|
kpeter@694
|
2715 |
///
|
kpeter@694
|
2716 |
/// \see IterableBoolMap, IterableValueMap
|
kpeter@694
|
2717 |
/// \see CrossRefMap
|
kpeter@694
|
2718 |
template <typename GR, typename K>
|
deba@693
|
2719 |
class IterableIntMap
|
kpeter@694
|
2720 |
: protected ItemSetTraits<GR, K>::
|
kpeter@694
|
2721 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type {
|
deba@693
|
2722 |
public:
|
kpeter@694
|
2723 |
typedef typename ItemSetTraits<GR, K>::
|
kpeter@694
|
2724 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent;
|
deba@693
|
2725 |
|
deba@693
|
2726 |
/// The key type
|
kpeter@694
|
2727 |
typedef K Key;
|
deba@693
|
2728 |
/// The value type
|
deba@693
|
2729 |
typedef int Value;
|
deba@693
|
2730 |
/// The graph type
|
deba@693
|
2731 |
typedef GR Graph;
|
deba@693
|
2732 |
|
deba@693
|
2733 |
/// \brief Constructor of the map.
|
deba@693
|
2734 |
///
|
kpeter@694
|
2735 |
/// Constructor of the map. It sets all values to -1.
|
deba@693
|
2736 |
explicit IterableIntMap(const Graph& graph)
|
deba@693
|
2737 |
: Parent(graph) {}
|
deba@693
|
2738 |
|
deba@693
|
2739 |
/// \brief Constructor of the map with a given value.
|
deba@693
|
2740 |
///
|
deba@693
|
2741 |
/// Constructor of the map with a given value.
|
deba@693
|
2742 |
explicit IterableIntMap(const Graph& graph, int value)
|
kpeter@694
|
2743 |
: Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
|
deba@693
|
2744 |
if (value >= 0) {
|
deba@693
|
2745 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
deba@693
|
2746 |
lace(it);
|
deba@693
|
2747 |
}
|
deba@693
|
2748 |
}
|
deba@693
|
2749 |
}
|
deba@693
|
2750 |
|
deba@693
|
2751 |
private:
|
deba@693
|
2752 |
|
deba@693
|
2753 |
void unlace(const Key& key) {
|
deba@693
|
2754 |
typename Parent::Value& node = Parent::operator[](key);
|
deba@693
|
2755 |
if (node.value < 0) return;
|
deba@693
|
2756 |
if (node.prev != INVALID) {
|
deba@693
|
2757 |
Parent::operator[](node.prev).next = node.next;
|
deba@693
|
2758 |
} else {
|
deba@693
|
2759 |
_first[node.value] = node.next;
|
deba@693
|
2760 |
}
|
deba@693
|
2761 |
if (node.next != INVALID) {
|
deba@693
|
2762 |
Parent::operator[](node.next).prev = node.prev;
|
deba@693
|
2763 |
}
|
deba@693
|
2764 |
while (!_first.empty() && _first.back() == INVALID) {
|
deba@693
|
2765 |
_first.pop_back();
|
deba@693
|
2766 |
}
|
deba@693
|
2767 |
}
|
deba@693
|
2768 |
|
deba@693
|
2769 |
void lace(const Key& key) {
|
deba@693
|
2770 |
typename Parent::Value& node = Parent::operator[](key);
|
deba@693
|
2771 |
if (node.value < 0) return;
|
deba@693
|
2772 |
if (node.value >= int(_first.size())) {
|
deba@693
|
2773 |
_first.resize(node.value + 1, INVALID);
|
deba@693
|
2774 |
}
|
deba@693
|
2775 |
node.prev = INVALID;
|
deba@693
|
2776 |
node.next = _first[node.value];
|
deba@693
|
2777 |
if (node.next != INVALID) {
|
deba@693
|
2778 |
Parent::operator[](node.next).prev = key;
|
deba@693
|
2779 |
}
|
deba@693
|
2780 |
_first[node.value] = key;
|
deba@693
|
2781 |
}
|
deba@693
|
2782 |
|
deba@693
|
2783 |
public:
|
deba@693
|
2784 |
|
kpeter@694
|
2785 |
/// Indicates that the map is reference map.
|
deba@693
|
2786 |
typedef True ReferenceMapTag;
|
deba@693
|
2787 |
|
kpeter@694
|
2788 |
/// \brief Reference to the value of the map.
|
deba@693
|
2789 |
///
|
kpeter@694
|
2790 |
/// This class is similar to the \c int type. It can
|
kpeter@694
|
2791 |
/// be converted to \c int and it has the same operators.
|
deba@693
|
2792 |
class Reference {
|
deba@693
|
2793 |
friend class IterableIntMap;
|
deba@693
|
2794 |
private:
|
deba@693
|
2795 |
Reference(IterableIntMap& map, const Key& key)
|
deba@693
|
2796 |
: _key(key), _map(map) {}
|
deba@693
|
2797 |
public:
|
deba@693
|
2798 |
|
deba@693
|
2799 |
Reference& operator=(const Reference& value) {
|
deba@693
|
2800 |
_map.set(_key, static_cast<const int&>(value));
|
deba@693
|
2801 |
return *this;
|
deba@693
|
2802 |
}
|
deba@693
|
2803 |
|
deba@693
|
2804 |
operator const int&() const {
|
deba@693
|
2805 |
return static_cast<const IterableIntMap&>(_map)[_key];
|
deba@693
|
2806 |
}
|
deba@693
|
2807 |
|
deba@693
|
2808 |
Reference& operator=(int value) {
|
deba@693
|
2809 |
_map.set(_key, value);
|
deba@693
|
2810 |
return *this;
|
deba@693
|
2811 |
}
|
deba@693
|
2812 |
Reference& operator++() {
|
deba@693
|
2813 |
_map.set(_key, _map[_key] + 1);
|
deba@693
|
2814 |
return *this;
|
deba@693
|
2815 |
}
|
deba@693
|
2816 |
int operator++(int) {
|
deba@693
|
2817 |
int value = _map[_key];
|
deba@693
|
2818 |
_map.set(_key, value + 1);
|
deba@693
|
2819 |
return value;
|
deba@693
|
2820 |
}
|
deba@693
|
2821 |
Reference& operator--() {
|
deba@693
|
2822 |
_map.set(_key, _map[_key] - 1);
|
deba@693
|
2823 |
return *this;
|
deba@693
|
2824 |
}
|
deba@693
|
2825 |
int operator--(int) {
|
deba@693
|
2826 |
int value = _map[_key];
|
deba@693
|
2827 |
_map.set(_key, value - 1);
|
deba@693
|
2828 |
return value;
|
deba@693
|
2829 |
}
|
deba@693
|
2830 |
Reference& operator+=(int value) {
|
deba@693
|
2831 |
_map.set(_key, _map[_key] + value);
|
deba@693
|
2832 |
return *this;
|
deba@693
|
2833 |
}
|
deba@693
|
2834 |
Reference& operator-=(int value) {
|
deba@693
|
2835 |
_map.set(_key, _map[_key] - value);
|
deba@693
|
2836 |
return *this;
|
deba@693
|
2837 |
}
|
deba@693
|
2838 |
Reference& operator*=(int value) {
|
deba@693
|
2839 |
_map.set(_key, _map[_key] * value);
|
deba@693
|
2840 |
return *this;
|
deba@693
|
2841 |
}
|
deba@693
|
2842 |
Reference& operator/=(int value) {
|
deba@693
|
2843 |
_map.set(_key, _map[_key] / value);
|
deba@693
|
2844 |
return *this;
|
deba@693
|
2845 |
}
|
deba@693
|
2846 |
Reference& operator%=(int value) {
|
deba@693
|
2847 |
_map.set(_key, _map[_key] % value);
|
deba@693
|
2848 |
return *this;
|
deba@693
|
2849 |
}
|
deba@693
|
2850 |
Reference& operator&=(int value) {
|
deba@693
|
2851 |
_map.set(_key, _map[_key] & value);
|
deba@693
|
2852 |
return *this;
|
deba@693
|
2853 |
}
|
deba@693
|
2854 |
Reference& operator|=(int value) {
|
deba@693
|
2855 |
_map.set(_key, _map[_key] | value);
|
deba@693
|
2856 |
return *this;
|
deba@693
|
2857 |
}
|
deba@693
|
2858 |
Reference& operator^=(int value) {
|
deba@693
|
2859 |
_map.set(_key, _map[_key] ^ value);
|
deba@693
|
2860 |
return *this;
|
deba@693
|
2861 |
}
|
deba@693
|
2862 |
Reference& operator<<=(int value) {
|
deba@693
|
2863 |
_map.set(_key, _map[_key] << value);
|
deba@693
|
2864 |
return *this;
|
deba@693
|
2865 |
}
|
deba@693
|
2866 |
Reference& operator>>=(int value) {
|
deba@693
|
2867 |
_map.set(_key, _map[_key] >> value);
|
deba@693
|
2868 |
return *this;
|
deba@693
|
2869 |
}
|
deba@693
|
2870 |
|
deba@693
|
2871 |
private:
|
deba@693
|
2872 |
Key _key;
|
deba@693
|
2873 |
IterableIntMap& _map;
|
deba@693
|
2874 |
};
|
deba@693
|
2875 |
|
deba@693
|
2876 |
/// The const reference type.
|
deba@693
|
2877 |
typedef const Value& ConstReference;
|
deba@693
|
2878 |
|
deba@693
|
2879 |
/// \brief Gives back the maximal value plus one.
|
deba@693
|
2880 |
///
|
deba@693
|
2881 |
/// Gives back the maximal value plus one.
|
deba@693
|
2882 |
int size() const {
|
deba@693
|
2883 |
return _first.size();
|
deba@693
|
2884 |
}
|
deba@693
|
2885 |
|
deba@693
|
2886 |
/// \brief Set operation of the map.
|
deba@693
|
2887 |
///
|
deba@693
|
2888 |
/// Set operation of the map.
|
deba@693
|
2889 |
void set(const Key& key, const Value& value) {
|
deba@693
|
2890 |
unlace(key);
|
deba@693
|
2891 |
Parent::operator[](key).value = value;
|
deba@693
|
2892 |
lace(key);
|
deba@693
|
2893 |
}
|
deba@693
|
2894 |
|
deba@693
|
2895 |
/// \brief Const subscript operator of the map.
|
deba@693
|
2896 |
///
|
deba@693
|
2897 |
/// Const subscript operator of the map.
|
deba@693
|
2898 |
const Value& operator[](const Key& key) const {
|
deba@693
|
2899 |
return Parent::operator[](key).value;
|
deba@693
|
2900 |
}
|
deba@693
|
2901 |
|
deba@693
|
2902 |
/// \brief Subscript operator of the map.
|
deba@693
|
2903 |
///
|
deba@693
|
2904 |
/// Subscript operator of the map.
|
deba@693
|
2905 |
Reference operator[](const Key& key) {
|
deba@693
|
2906 |
return Reference(*this, key);
|
deba@693
|
2907 |
}
|
deba@693
|
2908 |
|
deba@693
|
2909 |
/// \brief Iterator for the keys with the same value.
|
deba@693
|
2910 |
///
|
deba@693
|
2911 |
/// Iterator for the keys with the same value. It works
|
kpeter@694
|
2912 |
/// like a graph item iterator, it can be converted to
|
deba@693
|
2913 |
/// the item type of the map, incremented with \c ++ operator, and
|
kpeter@694
|
2914 |
/// if the iterator leaves the last valid item, it will be equal to
|
deba@693
|
2915 |
/// \c INVALID.
|
kpeter@694
|
2916 |
class ItemIt : public Key {
|
deba@693
|
2917 |
public:
|
kpeter@694
|
2918 |
typedef Key Parent;
|
deba@693
|
2919 |
|
deba@693
|
2920 |
/// \brief Invalid constructor \& conversion.
|
deba@693
|
2921 |
///
|
kpeter@694
|
2922 |
/// This constructor initializes the iterator to be invalid.
|
deba@693
|
2923 |
/// \sa Invalid for more details.
|
deba@693
|
2924 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
|
deba@693
|
2925 |
|
deba@693
|
2926 |
/// \brief Creates an iterator with a value.
|
deba@693
|
2927 |
///
|
deba@693
|
2928 |
/// Creates an iterator with a value. It iterates on the
|
kpeter@694
|
2929 |
/// keys mapped to the given value.
|
kpeter@694
|
2930 |
/// \param map The IterableIntMap.
|
kpeter@694
|
2931 |
/// \param value The value.
|
deba@693
|
2932 |
ItemIt(const IterableIntMap& map, int value) : _map(&map) {
|
deba@693
|
2933 |
if (value < 0 || value >= int(_map->_first.size())) {
|
deba@693
|
2934 |
Parent::operator=(INVALID);
|
deba@693
|
2935 |
} else {
|
deba@693
|
2936 |
Parent::operator=(_map->_first[value]);
|
deba@693
|
2937 |
}
|
deba@693
|
2938 |
}
|
deba@693
|
2939 |
|
deba@693
|
2940 |
/// \brief Increment operator.
|
deba@693
|
2941 |
///
|
kpeter@694
|
2942 |
/// Increment operator.
|
deba@693
|
2943 |
ItemIt& operator++() {
|
deba@693
|
2944 |
Parent::operator=(_map->IterableIntMap::Parent::
|
deba@693
|
2945 |
operator[](static_cast<Parent&>(*this)).next);
|
deba@693
|
2946 |
return *this;
|
deba@693
|
2947 |
}
|
deba@693
|
2948 |
|
deba@693
|
2949 |
private:
|
deba@693
|
2950 |
const IterableIntMap* _map;
|
deba@693
|
2951 |
};
|
deba@693
|
2952 |
|
deba@693
|
2953 |
protected:
|
deba@693
|
2954 |
|
deba@693
|
2955 |
virtual void erase(const Key& key) {
|
deba@693
|
2956 |
unlace(key);
|
deba@693
|
2957 |
Parent::erase(key);
|
deba@693
|
2958 |
}
|
deba@693
|
2959 |
|
deba@693
|
2960 |
virtual void erase(const std::vector<Key>& keys) {
|
deba@693
|
2961 |
for (int i = 0; i < int(keys.size()); ++i) {
|
deba@693
|
2962 |
unlace(keys[i]);
|
deba@693
|
2963 |
}
|
deba@693
|
2964 |
Parent::erase(keys);
|
deba@693
|
2965 |
}
|
deba@693
|
2966 |
|
deba@693
|
2967 |
virtual void clear() {
|
deba@693
|
2968 |
_first.clear();
|
deba@693
|
2969 |
Parent::clear();
|
deba@693
|
2970 |
}
|
deba@693
|
2971 |
|
deba@693
|
2972 |
private:
|
kpeter@694
|
2973 |
std::vector<Key> _first;
|
deba@693
|
2974 |
};
|
deba@693
|
2975 |
|
deba@693
|
2976 |
namespace _maps_bits {
|
deba@693
|
2977 |
template <typename Item, typename Value>
|
deba@693
|
2978 |
struct IterableValueMapNode {
|
deba@693
|
2979 |
IterableValueMapNode(Value _value = Value()) : value(_value) {}
|
deba@693
|
2980 |
Item prev, next;
|
deba@693
|
2981 |
Value value;
|
deba@693
|
2982 |
};
|
deba@693
|
2983 |
}
|
deba@693
|
2984 |
|
deba@693
|
2985 |
/// \brief Dynamic iterable map for comparable values.
|
deba@693
|
2986 |
///
|
kpeter@694
|
2987 |
/// This class provides a special graph map type which can store an
|
kpeter@694
|
2988 |
/// comparable value for graph items (\c Node, \c Arc or \c Edge).
|
kpeter@694
|
2989 |
/// For each value it is possible to iterate on the keys mapped to
|
kpeter@694
|
2990 |
/// the value.
|
kpeter@694
|
2991 |
///
|
kpeter@694
|
2992 |
/// The map stores for each value a linked list with
|
deba@693
|
2993 |
/// the items which mapped to the value, and the values are stored
|
deba@693
|
2994 |
/// in balanced binary tree. The values of the map can be accessed
|
deba@693
|
2995 |
/// with stl compatible forward iterator.
|
deba@693
|
2996 |
///
|
kpeter@694
|
2997 |
/// This type is not reference map, so it cannot be modified with
|
alpar@695
|
2998 |
/// the subscript operator.
|
deba@693
|
2999 |
///
|
kpeter@694
|
3000 |
/// \tparam GR The graph type.
|
kpeter@694
|
3001 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
|
kpeter@694
|
3002 |
/// \c GR::Edge).
|
kpeter@694
|
3003 |
/// \tparam V The value type of the map. It can be any comparable
|
kpeter@694
|
3004 |
/// value type.
|
deba@693
|
3005 |
///
|
kpeter@694
|
3006 |
/// \see IterableBoolMap, IterableIntMap
|
kpeter@694
|
3007 |
/// \see CrossRefMap
|
kpeter@694
|
3008 |
template <typename GR, typename K, typename V>
|
deba@693
|
3009 |
class IterableValueMap
|
kpeter@694
|
3010 |
: protected ItemSetTraits<GR, K>::
|
kpeter@694
|
3011 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
|
deba@693
|
3012 |
public:
|
kpeter@694
|
3013 |
typedef typename ItemSetTraits<GR, K>::
|
kpeter@694
|
3014 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent;
|
deba@693
|
3015 |
|
deba@693
|
3016 |
/// The key type
|
kpeter@694
|
3017 |
typedef K Key;
|
deba@693
|
3018 |
/// The value type
|
kpeter@694
|
3019 |
typedef V Value;
|
deba@693
|
3020 |
/// The graph type
|
deba@693
|
3021 |
typedef GR Graph;
|
deba@693
|
3022 |
|
deba@693
|
3023 |
public:
|
deba@693
|
3024 |
|
kpeter@694
|
3025 |
/// \brief Constructor of the map with a given value.
|
deba@693
|
3026 |
///
|
kpeter@694
|
3027 |
/// Constructor of the map with a given value.
|
deba@693
|
3028 |
explicit IterableValueMap(const Graph& graph,
|
deba@693
|
3029 |
const Value& value = Value())
|
kpeter@694
|
3030 |
: Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
|
deba@693
|
3031 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
deba@693
|
3032 |
lace(it);
|
deba@693
|
3033 |
}
|
deba@693
|
3034 |
}
|
deba@693
|
3035 |
|
deba@693
|
3036 |
protected:
|
deba@693
|
3037 |
|
deba@693
|
3038 |
void unlace(const Key& key) {
|
deba@693
|
3039 |
typename Parent::Value& node = Parent::operator[](key);
|
deba@693
|
3040 |
if (node.prev != INVALID) {
|
deba@693
|
3041 |
Parent::operator[](node.prev).next = node.next;
|
deba@693
|
3042 |
} else {
|
deba@693
|
3043 |
if (node.next != INVALID) {
|
deba@693
|
3044 |
_first[node.value] = node.next;
|
deba@693
|
3045 |
} else {
|
deba@693
|
3046 |
_first.erase(node.value);
|
deba@693
|
3047 |
}
|
deba@693
|
3048 |
}
|
deba@693
|
3049 |
if (node.next != INVALID) {
|
deba@693
|
3050 |
Parent::operator[](node.next).prev = node.prev;
|
deba@693
|
3051 |
}
|
deba@693
|
3052 |
}
|
deba@693
|
3053 |
|
deba@693
|
3054 |
void lace(const Key& key) {
|
deba@693
|
3055 |
typename Parent::Value& node = Parent::operator[](key);
|
deba@693
|
3056 |
typename std::map<Value, Key>::iterator it = _first.find(node.value);
|
deba@693
|
3057 |
if (it == _first.end()) {
|
deba@693
|
3058 |
node.prev = node.next = INVALID;
|
deba@693
|
3059 |
_first.insert(std::make_pair(node.value, key));
|
deba@693
|
3060 |
} else {
|
deba@693
|
3061 |
node.prev = INVALID;
|
deba@693
|
3062 |
node.next = it->second;
|
deba@693
|
3063 |
if (node.next != INVALID) {
|
deba@693
|
3064 |
Parent::operator[](node.next).prev = key;
|
deba@693
|
3065 |
}
|
deba@693
|
3066 |
it->second = key;
|
deba@693
|
3067 |
}
|
deba@693
|
3068 |
}
|
deba@693
|
3069 |
|
deba@693
|
3070 |
public:
|
deba@693
|
3071 |
|
deba@693
|
3072 |
/// \brief Forward iterator for values.
|
deba@693
|
3073 |
///
|
deba@693
|
3074 |
/// This iterator is an stl compatible forward
|
deba@693
|
3075 |
/// iterator on the values of the map. The values can
|
kpeter@694
|
3076 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range.
|
deba@693
|
3077 |
class ValueIterator
|
deba@693
|
3078 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
deba@693
|
3079 |
friend class IterableValueMap;
|
deba@693
|
3080 |
private:
|
deba@693
|
3081 |
ValueIterator(typename std::map<Value, Key>::const_iterator _it)
|
deba@693
|
3082 |
: it(_it) {}
|
deba@693
|
3083 |
public:
|
deba@693
|
3084 |
|
deba@693
|
3085 |
ValueIterator() {}
|
deba@693
|
3086 |
|
deba@693
|
3087 |
ValueIterator& operator++() { ++it; return *this; }
|
deba@693
|
3088 |
ValueIterator operator++(int) {
|
deba@693
|
3089 |
ValueIterator tmp(*this);
|
deba@693
|
3090 |
operator++();
|
deba@693
|
3091 |
return tmp;
|
deba@693
|
3092 |
}
|
deba@693
|
3093 |
|
deba@693
|
3094 |
const Value& operator*() const { return it->first; }
|
deba@693
|
3095 |
const Value* operator->() const { return &(it->first); }
|
deba@693
|
3096 |
|
deba@693
|
3097 |
bool operator==(ValueIterator jt) const { return it == jt.it; }
|
deba@693
|
3098 |
bool operator!=(ValueIterator jt) const { return it != jt.it; }
|
deba@693
|
3099 |
|
deba@693
|
3100 |
private:
|
deba@693
|
3101 |
typename std::map<Value, Key>::const_iterator it;
|
deba@693
|
3102 |
};
|
deba@693
|
3103 |
|
deba@693
|
3104 |
/// \brief Returns an iterator to the first value.
|
deba@693
|
3105 |
///
|
deba@693
|
3106 |
/// Returns an stl compatible iterator to the
|
deba@693
|
3107 |
/// first value of the map. The values of the
|
kpeter@694
|
3108 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
|
deba@693
|
3109 |
/// range.
|
deba@693
|
3110 |
ValueIterator beginValue() const {
|
deba@693
|
3111 |
return ValueIterator(_first.begin());
|
deba@693
|
3112 |
}
|
deba@693
|
3113 |
|
deba@693
|
3114 |
/// \brief Returns an iterator after the last value.
|
deba@693
|
3115 |
///
|
deba@693
|
3116 |
/// Returns an stl compatible iterator after the
|
deba@693
|
3117 |
/// last value of the map. The values of the
|
kpeter@694
|
3118 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
|
deba@693
|
3119 |
/// range.
|
deba@693
|
3120 |
ValueIterator endValue() const {
|
deba@693
|
3121 |
return ValueIterator(_first.end());
|
deba@693
|
3122 |
}
|
deba@693
|
3123 |
|
deba@693
|
3124 |
/// \brief Set operation of the map.
|
deba@693
|
3125 |
///
|
deba@693
|
3126 |
/// Set operation of the map.
|
deba@693
|
3127 |
void set(const Key& key, const Value& value) {
|
deba@693
|
3128 |
unlace(key);
|
deba@693
|
3129 |
Parent::operator[](key).value = value;
|
deba@693
|
3130 |
lace(key);
|
deba@693
|
3131 |
}
|
deba@693
|
3132 |
|
deba@693
|
3133 |
/// \brief Const subscript operator of the map.
|
deba@693
|
3134 |
///
|
deba@693
|
3135 |
/// Const subscript operator of the map.
|
deba@693
|
3136 |
const Value& operator[](const Key& key) const {
|
deba@693
|
3137 |
return Parent::operator[](key).value;
|
deba@693
|
3138 |
}
|
deba@693
|
3139 |
|
deba@693
|
3140 |
/// \brief Iterator for the keys with the same value.
|
deba@693
|
3141 |
///
|
deba@693
|
3142 |
/// Iterator for the keys with the same value. It works
|
kpeter@694
|
3143 |
/// like a graph item iterator, it can be converted to
|
deba@693
|
3144 |
/// the item type of the map, incremented with \c ++ operator, and
|
kpeter@694
|
3145 |
/// if the iterator leaves the last valid item, it will be equal to
|
deba@693
|
3146 |
/// \c INVALID.
|
kpeter@694
|
3147 |
class ItemIt : public Key {
|
deba@693
|
3148 |
public:
|
kpeter@694
|
3149 |
typedef Key Parent;
|
deba@693
|
3150 |
|
deba@693
|
3151 |
/// \brief Invalid constructor \& conversion.
|
deba@693
|
3152 |
///
|
kpeter@694
|
3153 |
/// This constructor initializes the iterator to be invalid.
|
deba@693
|
3154 |
/// \sa Invalid for more details.
|
deba@693
|
3155 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
|
deba@693
|
3156 |
|
deba@693
|
3157 |
/// \brief Creates an iterator with a value.
|
deba@693
|
3158 |
///
|
deba@693
|
3159 |
/// Creates an iterator with a value. It iterates on the
|
deba@693
|
3160 |
/// keys which have the given value.
|
deba@693
|
3161 |
/// \param map The IterableValueMap
|
deba@693
|
3162 |
/// \param value The value
|
deba@693
|
3163 |
ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
|
deba@693
|
3164 |
typename std::map<Value, Key>::const_iterator it =
|
deba@693
|
3165 |
map._first.find(value);
|
deba@693
|
3166 |
if (it == map._first.end()) {
|
deba@693
|
3167 |
Parent::operator=(INVALID);
|
deba@693
|
3168 |
} else {
|
deba@693
|
3169 |
Parent::operator=(it->second);
|
deba@693
|
3170 |
}
|
deba@693
|
3171 |
}
|
deba@693
|
3172 |
|
deba@693
|
3173 |
/// \brief Increment operator.
|
deba@693
|
3174 |
///
|
deba@693
|
3175 |
/// Increment Operator.
|
deba@693
|
3176 |
ItemIt& operator++() {
|
deba@693
|
3177 |
Parent::operator=(_map->IterableValueMap::Parent::
|
deba@693
|
3178 |
operator[](static_cast<Parent&>(*this)).next);
|
deba@693
|
3179 |
return *this;
|
deba@693
|
3180 |
}
|
deba@693
|
3181 |
|
deba@693
|
3182 |
|
deba@693
|
3183 |
private:
|
deba@693
|
3184 |
const IterableValueMap* _map;
|
deba@693
|
3185 |
};
|
deba@693
|
3186 |
|
deba@693
|
3187 |
protected:
|
deba@693
|
3188 |
|
deba@693
|
3189 |
virtual void add(const Key& key) {
|
deba@693
|
3190 |
Parent::add(key);
|
deba@693
|
3191 |
unlace(key);
|
deba@693
|
3192 |
}
|
deba@693
|
3193 |
|
deba@693
|
3194 |
virtual void add(const std::vector<Key>& keys) {
|
deba@693
|
3195 |
Parent::add(keys);
|
deba@693
|
3196 |
for (int i = 0; i < int(keys.size()); ++i) {
|
deba@693
|
3197 |
lace(keys[i]);
|
deba@693
|
3198 |
}
|
deba@693
|
3199 |
}
|
deba@693
|
3200 |
|
deba@693
|
3201 |
virtual void erase(const Key& key) {
|
deba@693
|
3202 |
unlace(key);
|
deba@693
|
3203 |
Parent::erase(key);
|
deba@693
|
3204 |
}
|
deba@693
|
3205 |
|
deba@693
|
3206 |
virtual void erase(const std::vector<Key>& keys) {
|
deba@693
|
3207 |
for (int i = 0; i < int(keys.size()); ++i) {
|
deba@693
|
3208 |
unlace(keys[i]);
|
deba@693
|
3209 |
}
|
deba@693
|
3210 |
Parent::erase(keys);
|
deba@693
|
3211 |
}
|
deba@693
|
3212 |
|
deba@693
|
3213 |
virtual void build() {
|
deba@693
|
3214 |
Parent::build();
|
deba@693
|
3215 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
deba@693
|
3216 |
lace(it);
|
deba@693
|
3217 |
}
|
deba@693
|
3218 |
}
|
deba@693
|
3219 |
|
deba@693
|
3220 |
virtual void clear() {
|
deba@693
|
3221 |
_first.clear();
|
deba@693
|
3222 |
Parent::clear();
|
deba@693
|
3223 |
}
|
deba@693
|
3224 |
|
deba@693
|
3225 |
private:
|
deba@693
|
3226 |
std::map<Value, Key> _first;
|
deba@693
|
3227 |
};
|
deba@693
|
3228 |
|
kpeter@559
|
3229 |
/// \brief Map of the source nodes of arcs in a digraph.
|
deba@220
|
3230 |
///
|
kpeter@559
|
3231 |
/// SourceMap provides access for the source node of each arc in a digraph,
|
kpeter@559
|
3232 |
/// which is returned by the \c source() function of the digraph.
|
kpeter@559
|
3233 |
/// \tparam GR The digraph type.
|
deba@220
|
3234 |
/// \see TargetMap
|
kpeter@559
|
3235 |
template <typename GR>
|
deba@220
|
3236 |
class SourceMap {
|
deba@220
|
3237 |
public:
|
deba@220
|
3238 |
|
kpeter@559
|
3239 |
///\e
|
kpeter@559
|
3240 |
typedef typename GR::Arc Key;
|
kpeter@559
|
3241 |
///\e
|
kpeter@559
|
3242 |
typedef typename GR::Node Value;
|
deba@220
|
3243 |
|
deba@220
|
3244 |
/// \brief Constructor
|
deba@220
|
3245 |
///
|
kpeter@559
|
3246 |
/// Constructor.
|
kpeter@313
|
3247 |
/// \param digraph The digraph that the map belongs to.
|
kpeter@559
|
3248 |
explicit SourceMap(const GR& digraph) : _graph(digraph) {}
|
kpeter@559
|
3249 |
|
kpeter@559
|
3250 |
/// \brief Returns the source node of the given arc.
|
deba@220
|
3251 |
///
|
kpeter@559
|
3252 |
/// Returns the source node of the given arc.
|
deba@220
|
3253 |
Value operator[](const Key& arc) const {
|
kpeter@559
|
3254 |
return _graph.source(arc);
|
deba@220
|
3255 |
}
|
deba@220
|
3256 |
|
deba@220
|
3257 |
private:
|
kpeter@559
|
3258 |
const GR& _graph;
|
deba@220
|
3259 |
};
|
deba@220
|
3260 |
|
kpeter@301
|
3261 |
/// \brief Returns a \c SourceMap class.
|
deba@220
|
3262 |
///
|
kpeter@301
|
3263 |
/// This function just returns an \c SourceMap class.
|
deba@220
|
3264 |
/// \relates SourceMap
|
kpeter@559
|
3265 |
template <typename GR>
|
kpeter@559
|
3266 |
inline SourceMap<GR> sourceMap(const GR& graph) {
|
kpeter@559
|
3267 |
return SourceMap<GR>(graph);
|
deba@220
|
3268 |
}
|
deba@220
|
3269 |
|
kpeter@559
|
3270 |
/// \brief Map of the target nodes of arcs in a digraph.
|
deba@220
|
3271 |
///
|
kpeter@559
|
3272 |
/// TargetMap provides access for the target node of each arc in a digraph,
|
kpeter@559
|
3273 |
/// which is returned by the \c target() function of the digraph.
|
kpeter@559
|
3274 |
/// \tparam GR The digraph type.
|
deba@220
|
3275 |
/// \see SourceMap
|
kpeter@559
|
3276 |
template <typename GR>
|
deba@220
|
3277 |
class TargetMap {
|
deba@220
|
3278 |
public:
|
deba@220
|
3279 |
|
kpeter@559
|
3280 |
///\e
|
kpeter@559
|
3281 |
typedef typename GR::Arc Key;
|
kpeter@559
|
3282 |
///\e
|
kpeter@559
|
3283 |
typedef typename GR::Node Value;
|
deba@220
|
3284 |
|
deba@220
|
3285 |
/// \brief Constructor
|
deba@220
|
3286 |
///
|
kpeter@559
|
3287 |
/// Constructor.
|
kpeter@313
|
3288 |
/// \param digraph The digraph that the map belongs to.
|
kpeter@559
|
3289 |
explicit TargetMap(const GR& digraph) : _graph(digraph) {}
|
kpeter@559
|
3290 |
|
kpeter@559
|
3291 |
/// \brief Returns the target node of the given arc.
|
deba@220
|
3292 |
///
|
kpeter@559
|
3293 |
/// Returns the target node of the given arc.
|
deba@220
|
3294 |
Value operator[](const Key& e) const {
|
kpeter@559
|
3295 |
return _graph.target(e);
|
deba@220
|
3296 |
}
|
deba@220
|
3297 |
|
deba@220
|
3298 |
private:
|
kpeter@559
|
3299 |
const GR& _graph;
|
deba@220
|
3300 |
};
|
deba@220
|
3301 |
|
kpeter@301
|
3302 |
/// \brief Returns a \c TargetMap class.
|
deba@220
|
3303 |
///
|
kpeter@301
|
3304 |
/// This function just returns a \c TargetMap class.
|
deba@220
|
3305 |
/// \relates TargetMap
|
kpeter@559
|
3306 |
template <typename GR>
|
kpeter@559
|
3307 |
inline TargetMap<GR> targetMap(const GR& graph) {
|
kpeter@559
|
3308 |
return TargetMap<GR>(graph);
|
deba@220
|
3309 |
}
|
deba@220
|
3310 |
|
kpeter@559
|
3311 |
/// \brief Map of the "forward" directed arc view of edges in a graph.
|
deba@220
|
3312 |
///
|
kpeter@559
|
3313 |
/// ForwardMap provides access for the "forward" directed arc view of
|
kpeter@559
|
3314 |
/// each edge in a graph, which is returned by the \c direct() function
|
kpeter@559
|
3315 |
/// of the graph with \c true parameter.
|
kpeter@559
|
3316 |
/// \tparam GR The graph type.
|
deba@220
|
3317 |
/// \see BackwardMap
|
kpeter@559
|
3318 |
template <typename GR>
|
deba@220
|
3319 |
class ForwardMap {
|
deba@220
|
3320 |
public:
|
deba@220
|
3321 |
|
kpeter@559
|
3322 |
typedef typename GR::Arc Value;
|
kpeter@559
|
3323 |
typedef typename GR::Edge Key;
|
deba@220
|
3324 |
|
deba@220
|
3325 |
/// \brief Constructor
|
deba@220
|
3326 |
///
|
kpeter@559
|
3327 |
/// Constructor.
|
kpeter@313
|
3328 |
/// \param graph The graph that the map belongs to.
|
kpeter@559
|
3329 |
explicit ForwardMap(const GR& graph) : _graph(graph) {}
|
kpeter@559
|
3330 |
|
kpeter@559
|
3331 |
/// \brief Returns the "forward" directed arc view of the given edge.
|
deba@220
|
3332 |
///
|
kpeter@559
|
3333 |
/// Returns the "forward" directed arc view of the given edge.
|
deba@220
|
3334 |
Value operator[](const Key& key) const {
|
deba@220
|
3335 |
return _graph.direct(key, true);
|
deba@220
|
3336 |
}
|
deba@220
|
3337 |
|
deba@220
|
3338 |
private:
|
kpeter@559
|
3339 |
const GR& _graph;
|
deba@220
|
3340 |
};
|
deba@220
|
3341 |
|
kpeter@301
|
3342 |
/// \brief Returns a \c ForwardMap class.
|
deba@220
|
3343 |
///
|
kpeter@301
|
3344 |
/// This function just returns an \c ForwardMap class.
|
deba@220
|
3345 |
/// \relates ForwardMap
|
kpeter@559
|
3346 |
template <typename GR>
|
kpeter@559
|
3347 |
inline ForwardMap<GR> forwardMap(const GR& graph) {
|
kpeter@559
|
3348 |
return ForwardMap<GR>(graph);
|
deba@220
|
3349 |
}
|
deba@220
|
3350 |
|
kpeter@559
|
3351 |
/// \brief Map of the "backward" directed arc view of edges in a graph.
|
deba@220
|
3352 |
///
|
kpeter@559
|
3353 |
/// BackwardMap provides access for the "backward" directed arc view of
|
kpeter@559
|
3354 |
/// each edge in a graph, which is returned by the \c direct() function
|
kpeter@559
|
3355 |
/// of the graph with \c false parameter.
|
kpeter@559
|
3356 |
/// \tparam GR The graph type.
|
deba@220
|
3357 |
/// \see ForwardMap
|
kpeter@559
|
3358 |
template <typename GR>
|
deba@220
|
3359 |
class BackwardMap {
|
deba@220
|
3360 |
public:
|
deba@220
|
3361 |
|
kpeter@559
|
3362 |
typedef typename GR::Arc Value;
|
kpeter@559
|
3363 |
typedef typename GR::Edge Key;
|
deba@220
|
3364 |
|
deba@220
|
3365 |
/// \brief Constructor
|
deba@220
|
3366 |
///
|
kpeter@559
|
3367 |
/// Constructor.
|
kpeter@313
|
3368 |
/// \param graph The graph that the map belongs to.
|
kpeter@559
|
3369 |
explicit BackwardMap(const GR& graph) : _graph(graph) {}
|
kpeter@559
|
3370 |
|
kpeter@559
|
3371 |
/// \brief Returns the "backward" directed arc view of the given edge.
|
deba@220
|
3372 |
///
|
kpeter@559
|
3373 |
/// Returns the "backward" directed arc view of the given edge.
|
deba@220
|
3374 |
Value operator[](const Key& key) const {
|
deba@220
|
3375 |
return _graph.direct(key, false);
|
deba@220
|
3376 |
}
|
deba@220
|
3377 |
|
deba@220
|
3378 |
private:
|
kpeter@559
|
3379 |
const GR& _graph;
|
deba@220
|
3380 |
};
|
deba@220
|
3381 |
|
kpeter@301
|
3382 |
/// \brief Returns a \c BackwardMap class
|
kpeter@301
|
3383 |
|
kpeter@301
|
3384 |
/// This function just returns a \c BackwardMap class.
|
deba@220
|
3385 |
/// \relates BackwardMap
|
kpeter@559
|
3386 |
template <typename GR>
|
kpeter@559
|
3387 |
inline BackwardMap<GR> backwardMap(const GR& graph) {
|
kpeter@559
|
3388 |
return BackwardMap<GR>(graph);
|
deba@220
|
3389 |
}
|
deba@220
|
3390 |
|
kpeter@559
|
3391 |
/// \brief Map of the in-degrees of nodes in a digraph.
|
deba@220
|
3392 |
///
|
deba@220
|
3393 |
/// This map returns the in-degree of a node. Once it is constructed,
|
kpeter@559
|
3394 |
/// the degrees are stored in a standard \c NodeMap, so each query is done
|
deba@220
|
3395 |
/// in constant time. On the other hand, the values are updated automatically
|
deba@220
|
3396 |
/// whenever the digraph changes.
|
deba@220
|
3397 |
///
|
deba@693
|
3398 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure
|
kpeter@559
|
3399 |
/// may provide alternative ways to modify the digraph.
|
kpeter@559
|
3400 |
/// The correct behavior of InDegMap is not guarantied if these additional
|
kpeter@559
|
3401 |
/// features are used. For example the functions
|
kpeter@559
|
3402 |
/// \ref ListDigraph::changeSource() "changeSource()",
|
deba@220
|
3403 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and
|
deba@220
|
3404 |
/// \ref ListDigraph::reverseArc() "reverseArc()"
|
deba@220
|
3405 |
/// of \ref ListDigraph will \e not update the degree values correctly.
|
deba@220
|
3406 |
///
|
deba@220
|
3407 |
/// \sa OutDegMap
|
kpeter@559
|
3408 |
template <typename GR>
|
deba@220
|
3409 |
class InDegMap
|
kpeter@559
|
3410 |
: protected ItemSetTraits<GR, typename GR::Arc>
|
deba@220
|
3411 |
::ItemNotifier::ObserverBase {
|
deba@220
|
3412 |
|
deba@220
|
3413 |
public:
|
deba@693
|
3414 |
|
kpeter@617
|
3415 |
/// The graph type of InDegMap
|
kpeter@617
|
3416 |
typedef GR Graph;
|
kpeter@559
|
3417 |
typedef GR Digraph;
|
kpeter@559
|
3418 |
/// The key type
|
kpeter@559
|
3419 |
typedef typename Digraph::Node Key;
|
kpeter@559
|
3420 |
/// The value type
|
deba@220
|
3421 |
typedef int Value;
|
deba@220
|
3422 |
|
deba@220
|
3423 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
|
deba@220
|
3424 |
::ItemNotifier::ObserverBase Parent;
|
deba@220
|
3425 |
|
deba@220
|
3426 |
private:
|
deba@220
|
3427 |
|
deba@220
|
3428 |
class AutoNodeMap
|
deba@220
|
3429 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
|
deba@220
|
3430 |
public:
|
deba@220
|
3431 |
|
deba@220
|
3432 |
typedef typename ItemSetTraits<Digraph, Key>::
|
deba@220
|
3433 |
template Map<int>::Type Parent;
|
deba@220
|
3434 |
|
deba@220
|
3435 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
|
deba@220
|
3436 |
|
deba@220
|
3437 |
virtual void add(const Key& key) {
|
deba@220
|
3438 |
Parent::add(key);
|
deba@220
|
3439 |
Parent::set(key, 0);
|
deba@220
|
3440 |
}
|
deba@220
|
3441 |
|
deba@220
|
3442 |
virtual void add(const std::vector<Key>& keys) {
|
deba@220
|
3443 |
Parent::add(keys);
|
deba@220
|
3444 |
for (int i = 0; i < int(keys.size()); ++i) {
|
deba@220
|
3445 |
Parent::set(keys[i], 0);
|
deba@220
|
3446 |
}
|
deba@220
|
3447 |
}
|
deba@220
|
3448 |
|
deba@220
|
3449 |
virtual void build() {
|
deba@220
|
3450 |
Parent::build();
|
deba@220
|
3451 |
Key it;
|
deba@220
|
3452 |
typename Parent::Notifier* nf = Parent::notifier();
|
deba@220
|
3453 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
deba@220
|
3454 |
Parent::set(it, 0);
|
deba@220
|
3455 |
}
|
deba@220
|
3456 |
}
|
deba@220
|
3457 |
};
|
deba@220
|
3458 |
|
deba@220
|
3459 |
public:
|
deba@220
|
3460 |
|
deba@220
|
3461 |
/// \brief Constructor.
|
deba@220
|
3462 |
///
|
kpeter@559
|
3463 |
/// Constructor for creating an in-degree map.
|
kpeter@559
|
3464 |
explicit InDegMap(const Digraph& graph)
|
kpeter@559
|
3465 |
: _digraph(graph), _deg(graph) {
|
deba@220
|
3466 |
Parent::attach(_digraph.notifier(typename Digraph::Arc()));
|
deba@220
|
3467 |
|
deba@220
|
3468 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
deba@220
|
3469 |
_deg[it] = countInArcs(_digraph, it);
|
deba@220
|
3470 |
}
|
deba@220
|
3471 |
}
|
deba@220
|
3472 |
|
kpeter@559
|
3473 |
/// \brief Gives back the in-degree of a Node.
|
kpeter@559
|
3474 |
///
|
deba@220
|
3475 |
/// Gives back the in-degree of a Node.
|
deba@220
|
3476 |
int operator[](const Key& key) const {
|
deba@220
|
3477 |
return _deg[key];
|
deba@220
|
3478 |
}
|
deba@220
|
3479 |
|
deba@220
|
3480 |
protected:
|
deba@220
|
3481 |
|
deba@220
|
3482 |
typedef typename Digraph::Arc Arc;
|
deba@220
|
3483 |
|
deba@220
|
3484 |
virtual void add(const Arc& arc) {
|
deba@220
|
3485 |
++_deg[_digraph.target(arc)];
|
deba@220
|
3486 |
}
|
deba@220
|
3487 |
|
deba@220
|
3488 |
virtual void add(const std::vector<Arc>& arcs) {
|
deba@220
|
3489 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
deba@220
|
3490 |
++_deg[_digraph.target(arcs[i])];
|
deba@220
|
3491 |
}
|
deba@220
|
3492 |
}
|
deba@220
|
3493 |
|
deba@220
|
3494 |
virtual void erase(const Arc& arc) {
|
deba@220
|
3495 |
--_deg[_digraph.target(arc)];
|
deba@220
|
3496 |
}
|
deba@220
|
3497 |
|
deba@220
|
3498 |
virtual void erase(const std::vector<Arc>& arcs) {
|
deba@220
|
3499 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
deba@220
|
3500 |
--_deg[_digraph.target(arcs[i])];
|
deba@220
|
3501 |
}
|
deba@220
|
3502 |
}
|
deba@220
|
3503 |
|
deba@220
|
3504 |
virtual void build() {
|
deba@220
|
3505 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
deba@220
|
3506 |
_deg[it] = countInArcs(_digraph, it);
|
deba@220
|
3507 |
}
|
deba@220
|
3508 |
}
|
deba@220
|
3509 |
|
deba@220
|
3510 |
virtual void clear() {
|
deba@220
|
3511 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
deba@220
|
3512 |
_deg[it] = 0;
|
deba@220
|
3513 |
}
|
deba@220
|
3514 |
}
|
deba@220
|
3515 |
private:
|
deba@220
|
3516 |
|
deba@220
|
3517 |
const Digraph& _digraph;
|
deba@220
|
3518 |
AutoNodeMap _deg;
|
deba@220
|
3519 |
};
|
deba@220
|
3520 |
|
kpeter@559
|
3521 |
/// \brief Map of the out-degrees of nodes in a digraph.
|
deba@220
|
3522 |
///
|
deba@220
|
3523 |
/// This map returns the out-degree of a node. Once it is constructed,
|
kpeter@559
|
3524 |
/// the degrees are stored in a standard \c NodeMap, so each query is done
|
deba@220
|
3525 |
/// in constant time. On the other hand, the values are updated automatically
|
deba@220
|
3526 |
/// whenever the digraph changes.
|
deba@220
|
3527 |
///
|
deba@693
|
3528 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure
|
kpeter@559
|
3529 |
/// may provide alternative ways to modify the digraph.
|
kpeter@559
|
3530 |
/// The correct behavior of OutDegMap is not guarantied if these additional
|
kpeter@559
|
3531 |
/// features are used. For example the functions
|
kpeter@559
|
3532 |
/// \ref ListDigraph::changeSource() "changeSource()",
|
deba@220
|
3533 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and
|
deba@220
|
3534 |
/// \ref ListDigraph::reverseArc() "reverseArc()"
|
deba@220
|
3535 |
/// of \ref ListDigraph will \e not update the degree values correctly.
|
deba@220
|
3536 |
///
|
deba@220
|
3537 |
/// \sa InDegMap
|
kpeter@559
|
3538 |
template <typename GR>
|
deba@220
|
3539 |
class OutDegMap
|
kpeter@559
|
3540 |
: protected ItemSetTraits<GR, typename GR::Arc>
|
deba@220
|
3541 |
::ItemNotifier::ObserverBase {
|
deba@220
|
3542 |
|
deba@220
|
3543 |
public:
|
deba@220
|
3544 |
|
kpeter@617
|
3545 |
/// The graph type of OutDegMap
|
kpeter@617
|
3546 |
typedef GR Graph;
|
kpeter@559
|
3547 |
typedef GR Digraph;
|
kpeter@559
|
3548 |
/// The key type
|
kpeter@559
|
3549 |
typedef typename Digraph::Node Key;
|
kpeter@559
|
3550 |
/// The value type
|
deba@220
|
3551 |
typedef int Value;
|
deba@220
|
3552 |
|
deba@220
|
3553 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
|
deba@220
|
3554 |
::ItemNotifier::ObserverBase Parent;
|
deba@220
|
3555 |
|
deba@220
|
3556 |
private:
|
deba@220
|
3557 |
|
deba@220
|
3558 |
class AutoNodeMap
|
deba@220
|
3559 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
|
deba@220
|
3560 |
public:
|
deba@220
|
3561 |
|
deba@220
|
3562 |
typedef typename ItemSetTraits<Digraph, Key>::
|
deba@220
|
3563 |
template Map<int>::Type Parent;
|
deba@220
|
3564 |
|
deba@220
|
3565 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
|
deba@220
|
3566 |
|
deba@220
|
3567 |
virtual void add(const Key& key) {
|
deba@220
|
3568 |
Parent::add(key);
|
deba@220
|
3569 |
Parent::set(key, 0);
|
deba@220
|
3570 |
}
|
deba@220
|
3571 |
virtual void add(const std::vector<Key>& keys) {
|
deba@220
|
3572 |
Parent::add(keys);
|
deba@220
|
3573 |
for (int i = 0; i < int(keys.size()); ++i) {
|
deba@220
|
3574 |
Parent::set(keys[i], 0);
|
deba@220
|
3575 |
}
|
deba@220
|
3576 |
}
|
deba@220
|
3577 |
virtual void build() {
|
deba@220
|
3578 |
Parent::build();
|
deba@220
|
3579 |
Key it;
|
deba@220
|
3580 |
typename Parent::Notifier* nf = Parent::notifier();
|
deba@220
|
3581 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
deba@220
|
3582 |
Parent::set(it, 0);
|
deba@220
|
3583 |
}
|
deba@220
|
3584 |
}
|
deba@220
|
3585 |
};
|
deba@220
|
3586 |
|
deba@220
|
3587 |
public:
|
deba@220
|
3588 |
|
deba@220
|
3589 |
/// \brief Constructor.
|
deba@220
|
3590 |
///
|
kpeter@559
|
3591 |
/// Constructor for creating an out-degree map.
|
kpeter@559
|
3592 |
explicit OutDegMap(const Digraph& graph)
|
kpeter@559
|
3593 |
: _digraph(graph), _deg(graph) {
|
deba@220
|
3594 |
Parent::attach(_digraph.notifier(typename Digraph::Arc()));
|
deba@220
|
3595 |
|
deba@220
|
3596 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
deba@220
|
3597 |
_deg[it] = countOutArcs(_digraph, it);
|
deba@220
|
3598 |
}
|
deba@220
|
3599 |
}
|
deba@220
|
3600 |
|
kpeter@559
|
3601 |
/// \brief Gives back the out-degree of a Node.
|
kpeter@559
|
3602 |
///
|
deba@220
|
3603 |
/// Gives back the out-degree of a Node.
|
deba@220
|
3604 |
int operator[](const Key& key) const {
|
deba@220
|
3605 |
return _deg[key];
|
deba@220
|
3606 |
}
|
deba@220
|
3607 |
|
deba@220
|
3608 |
protected:
|
deba@220
|
3609 |
|
deba@220
|
3610 |
typedef typename Digraph::Arc Arc;
|
deba@220
|
3611 |
|
deba@220
|
3612 |
virtual void add(const Arc& arc) {
|
deba@220
|
3613 |
++_deg[_digraph.source(arc)];
|
deba@220
|
3614 |
}
|
deba@220
|
3615 |
|
deba@220
|
3616 |
virtual void add(const std::vector<Arc>& arcs) {
|
deba@220
|
3617 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
deba@220
|
3618 |
++_deg[_digraph.source(arcs[i])];
|
deba@220
|
3619 |
}
|
deba@220
|
3620 |
}
|
deba@220
|
3621 |
|
deba@220
|
3622 |
virtual void erase(const Arc& arc) {
|
deba@220
|
3623 |
--_deg[_digraph.source(arc)];
|
deba@220
|
3624 |
}
|
deba@220
|
3625 |
|
deba@220
|
3626 |
virtual void erase(const std::vector<Arc>& arcs) {
|
deba@220
|
3627 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
deba@220
|
3628 |
--_deg[_digraph.source(arcs[i])];
|
deba@220
|
3629 |
}
|
deba@220
|
3630 |
}
|
deba@220
|
3631 |
|
deba@220
|
3632 |
virtual void build() {
|
deba@220
|
3633 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
deba@220
|
3634 |
_deg[it] = countOutArcs(_digraph, it);
|
deba@220
|
3635 |
}
|
deba@220
|
3636 |
}
|
deba@220
|
3637 |
|
deba@220
|
3638 |
virtual void clear() {
|
deba@220
|
3639 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
deba@220
|
3640 |
_deg[it] = 0;
|
deba@220
|
3641 |
}
|
deba@220
|
3642 |
}
|
deba@220
|
3643 |
private:
|
deba@220
|
3644 |
|
deba@220
|
3645 |
const Digraph& _digraph;
|
deba@220
|
3646 |
AutoNodeMap _deg;
|
deba@220
|
3647 |
};
|
deba@220
|
3648 |
|
kpeter@559
|
3649 |
/// \brief Potential difference map
|
kpeter@559
|
3650 |
///
|
kpeter@584
|
3651 |
/// PotentialDifferenceMap returns the difference between the potentials of
|
kpeter@584
|
3652 |
/// the source and target nodes of each arc in a digraph, i.e. it returns
|
kpeter@559
|
3653 |
/// \code
|
kpeter@559
|
3654 |
/// potential[gr.target(arc)] - potential[gr.source(arc)].
|
kpeter@559
|
3655 |
/// \endcode
|
kpeter@559
|
3656 |
/// \tparam GR The digraph type.
|
kpeter@559
|
3657 |
/// \tparam POT A node map storing the potentials.
|
kpeter@559
|
3658 |
template <typename GR, typename POT>
|
kpeter@559
|
3659 |
class PotentialDifferenceMap {
|
kpeter@559
|
3660 |
public:
|
kpeter@559
|
3661 |
/// Key type
|
kpeter@559
|
3662 |
typedef typename GR::Arc Key;
|
kpeter@559
|
3663 |
/// Value type
|
kpeter@559
|
3664 |
typedef typename POT::Value Value;
|
kpeter@559
|
3665 |
|
kpeter@559
|
3666 |
/// \brief Constructor
|
kpeter@559
|
3667 |
///
|
kpeter@559
|
3668 |
/// Contructor of the map.
|
kpeter@559
|
3669 |
explicit PotentialDifferenceMap(const GR& gr,
|
kpeter@559
|
3670 |
const POT& potential)
|
kpeter@559
|
3671 |
: _digraph(gr), _potential(potential) {}
|
kpeter@559
|
3672 |
|
kpeter@559
|
3673 |
/// \brief Returns the potential difference for the given arc.
|
kpeter@559
|
3674 |
///
|
kpeter@559
|
3675 |
/// Returns the potential difference for the given arc, i.e.
|
kpeter@559
|
3676 |
/// \code
|
kpeter@559
|
3677 |
/// potential[gr.target(arc)] - potential[gr.source(arc)].
|
kpeter@559
|
3678 |
/// \endcode
|
kpeter@559
|
3679 |
Value operator[](const Key& arc) const {
|
kpeter@559
|
3680 |
return _potential[_digraph.target(arc)] -
|
kpeter@559
|
3681 |
_potential[_digraph.source(arc)];
|
kpeter@559
|
3682 |
}
|
kpeter@559
|
3683 |
|
kpeter@559
|
3684 |
private:
|
kpeter@559
|
3685 |
const GR& _digraph;
|
kpeter@559
|
3686 |
const POT& _potential;
|
kpeter@559
|
3687 |
};
|
kpeter@559
|
3688 |
|
kpeter@559
|
3689 |
/// \brief Returns a PotentialDifferenceMap.
|
kpeter@559
|
3690 |
///
|
kpeter@559
|
3691 |
/// This function just returns a PotentialDifferenceMap.
|
kpeter@559
|
3692 |
/// \relates PotentialDifferenceMap
|
kpeter@559
|
3693 |
template <typename GR, typename POT>
|
kpeter@559
|
3694 |
PotentialDifferenceMap<GR, POT>
|
kpeter@559
|
3695 |
potentialDifferenceMap(const GR& gr, const POT& potential) {
|
kpeter@559
|
3696 |
return PotentialDifferenceMap<GR, POT>(gr, potential);
|
kpeter@559
|
3697 |
}
|
kpeter@559
|
3698 |
|
alpar@25
|
3699 |
/// @}
|
alpar@25
|
3700 |
}
|
alpar@25
|
3701 |
|
alpar@25
|
3702 |
#endif // LEMON_MAPS_H
|