doc/groups.dox
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 25 Sep 2009 11:58:34 +0200
changeset 729 be48a648d28f
parent 663 8b0df68370a4
child 715 ece80147fb08
child 869 636dadefe1e6
permissions -rw-r--r--
Small improvements for NetworkSimplex (#298)
alpar@209
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@40
     2
 *
alpar@209
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@40
     4
 *
alpar@440
     5
 * Copyright (C) 2003-2009
alpar@40
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@40
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@40
     8
 *
alpar@40
     9
 * Permission to use, modify and distribute this software is granted
alpar@40
    10
 * provided that this copyright notice appears in all copies. For
alpar@40
    11
 * precise terms see the accompanying LICENSE file.
alpar@40
    12
 *
alpar@40
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@40
    14
 * express or implied, and with no claim as to its suitability for any
alpar@40
    15
 * purpose.
alpar@40
    16
 *
alpar@40
    17
 */
alpar@40
    18
kpeter@406
    19
namespace lemon {
kpeter@406
    20
alpar@40
    21
/**
alpar@40
    22
@defgroup datas Data Structures
kpeter@559
    23
This group contains the several data structures implemented in LEMON.
alpar@40
    24
*/
alpar@40
    25
alpar@40
    26
/**
alpar@40
    27
@defgroup graphs Graph Structures
alpar@40
    28
@ingroup datas
alpar@40
    29
\brief Graph structures implemented in LEMON.
alpar@40
    30
alpar@209
    31
The implementation of combinatorial algorithms heavily relies on
alpar@209
    32
efficient graph implementations. LEMON offers data structures which are
alpar@209
    33
planned to be easily used in an experimental phase of implementation studies,
alpar@209
    34
and thereafter the program code can be made efficient by small modifications.
alpar@40
    35
alpar@40
    36
The most efficient implementation of diverse applications require the
alpar@40
    37
usage of different physical graph implementations. These differences
alpar@40
    38
appear in the size of graph we require to handle, memory or time usage
alpar@40
    39
limitations or in the set of operations through which the graph can be
alpar@40
    40
accessed.  LEMON provides several physical graph structures to meet
alpar@40
    41
the diverging requirements of the possible users.  In order to save on
alpar@40
    42
running time or on memory usage, some structures may fail to provide
kpeter@83
    43
some graph features like arc/edge or node deletion.
alpar@40
    44
alpar@209
    45
Alteration of standard containers need a very limited number of
alpar@209
    46
operations, these together satisfy the everyday requirements.
alpar@209
    47
In the case of graph structures, different operations are needed which do
alpar@209
    48
not alter the physical graph, but gives another view. If some nodes or
kpeter@83
    49
arcs have to be hidden or the reverse oriented graph have to be used, then
alpar@209
    50
this is the case. It also may happen that in a flow implementation
alpar@209
    51
the residual graph can be accessed by another algorithm, or a node-set
alpar@209
    52
is to be shrunk for another algorithm.
alpar@209
    53
LEMON also provides a variety of graphs for these requirements called
alpar@209
    54
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only
alpar@209
    55
in conjunction with other graph representations.
alpar@40
    56
alpar@40
    57
You are free to use the graph structure that fit your requirements
alpar@40
    58
the best, most graph algorithms and auxiliary data structures can be used
kpeter@314
    59
with any graph structure.
kpeter@314
    60
kpeter@314
    61
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
alpar@40
    62
*/
alpar@40
    63
alpar@40
    64
/**
kpeter@451
    65
@defgroup graph_adaptors Adaptor Classes for Graphs
deba@416
    66
@ingroup graphs
kpeter@451
    67
\brief Adaptor classes for digraphs and graphs
kpeter@451
    68
kpeter@451
    69
This group contains several useful adaptor classes for digraphs and graphs.
deba@416
    70
deba@416
    71
The main parts of LEMON are the different graph structures, generic
kpeter@451
    72
graph algorithms, graph concepts, which couple them, and graph
deba@416
    73
adaptors. While the previous notions are more or less clear, the
deba@416
    74
latter one needs further explanation. Graph adaptors are graph classes
deba@416
    75
which serve for considering graph structures in different ways.
deba@416
    76
deba@416
    77
A short example makes this much clearer.  Suppose that we have an
kpeter@451
    78
instance \c g of a directed graph type, say ListDigraph and an algorithm
deba@416
    79
\code
deba@416
    80
template <typename Digraph>
deba@416
    81
int algorithm(const Digraph&);
deba@416
    82
\endcode
deba@416
    83
is needed to run on the reverse oriented graph.  It may be expensive
deba@416
    84
(in time or in memory usage) to copy \c g with the reversed
deba@416
    85
arcs.  In this case, an adaptor class is used, which (according
kpeter@451
    86
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph.
kpeter@451
    87
The adaptor uses the original digraph structure and digraph operations when
kpeter@451
    88
methods of the reversed oriented graph are called.  This means that the adaptor
kpeter@451
    89
have minor memory usage, and do not perform sophisticated algorithmic
deba@416
    90
actions.  The purpose of it is to give a tool for the cases when a
deba@416
    91
graph have to be used in a specific alteration.  If this alteration is
kpeter@451
    92
obtained by a usual construction like filtering the node or the arc set or
deba@416
    93
considering a new orientation, then an adaptor is worthwhile to use.
deba@416
    94
To come back to the reverse oriented graph, in this situation
deba@416
    95
\code
deba@416
    96
template<typename Digraph> class ReverseDigraph;
deba@416
    97
\endcode
deba@416
    98
template class can be used. The code looks as follows
deba@416
    99
\code
deba@416
   100
ListDigraph g;
kpeter@451
   101
ReverseDigraph<ListDigraph> rg(g);
deba@416
   102
int result = algorithm(rg);
deba@416
   103
\endcode
kpeter@451
   104
During running the algorithm, the original digraph \c g is untouched.
kpeter@451
   105
This techniques give rise to an elegant code, and based on stable
deba@416
   106
graph adaptors, complex algorithms can be implemented easily.
deba@416
   107
kpeter@451
   108
In flow, circulation and matching problems, the residual
deba@416
   109
graph is of particular importance. Combining an adaptor implementing
kpeter@451
   110
this with shortest path algorithms or minimum mean cycle algorithms,
deba@416
   111
a range of weighted and cardinality optimization algorithms can be
deba@416
   112
obtained. For other examples, the interested user is referred to the
deba@416
   113
detailed documentation of particular adaptors.
deba@416
   114
deba@416
   115
The behavior of graph adaptors can be very different. Some of them keep
deba@416
   116
capabilities of the original graph while in other cases this would be
kpeter@451
   117
meaningless. This means that the concepts that they meet depend
kpeter@451
   118
on the graph adaptor, and the wrapped graph.
kpeter@451
   119
For example, if an arc of a reversed digraph is deleted, this is carried
kpeter@451
   120
out by deleting the corresponding arc of the original digraph, thus the
kpeter@451
   121
adaptor modifies the original digraph.
kpeter@451
   122
However in case of a residual digraph, this operation has no sense.
deba@416
   123
deba@416
   124
Let us stand one more example here to simplify your work.
kpeter@451
   125
ReverseDigraph has constructor
deba@416
   126
\code
deba@416
   127
ReverseDigraph(Digraph& digraph);
deba@416
   128
\endcode
kpeter@451
   129
This means that in a situation, when a <tt>const %ListDigraph&</tt>
deba@416
   130
reference to a graph is given, then it have to be instantiated with
kpeter@451
   131
<tt>Digraph=const %ListDigraph</tt>.
deba@416
   132
\code
deba@416
   133
int algorithm1(const ListDigraph& g) {
kpeter@451
   134
  ReverseDigraph<const ListDigraph> rg(g);
deba@416
   135
  return algorithm2(rg);
deba@416
   136
}
deba@416
   137
\endcode
deba@416
   138
*/
deba@416
   139
deba@416
   140
/**
alpar@209
   141
@defgroup maps Maps
alpar@40
   142
@ingroup datas
kpeter@50
   143
\brief Map structures implemented in LEMON.
alpar@40
   144
kpeter@559
   145
This group contains the map structures implemented in LEMON.
kpeter@50
   146
kpeter@314
   147
LEMON provides several special purpose maps and map adaptors that e.g. combine
alpar@40
   148
new maps from existing ones.
kpeter@314
   149
kpeter@314
   150
<b>See also:</b> \ref map_concepts "Map Concepts".
alpar@40
   151
*/
alpar@40
   152
alpar@40
   153
/**
alpar@209
   154
@defgroup graph_maps Graph Maps
alpar@40
   155
@ingroup maps
kpeter@83
   156
\brief Special graph-related maps.
alpar@40
   157
kpeter@559
   158
This group contains maps that are specifically designed to assign
kpeter@406
   159
values to the nodes and arcs/edges of graphs.
kpeter@406
   160
kpeter@406
   161
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap,
kpeter@406
   162
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts".
alpar@40
   163
*/
alpar@40
   164
alpar@40
   165
/**
alpar@40
   166
\defgroup map_adaptors Map Adaptors
alpar@40
   167
\ingroup maps
alpar@40
   168
\brief Tools to create new maps from existing ones
alpar@40
   169
kpeter@559
   170
This group contains map adaptors that are used to create "implicit"
kpeter@50
   171
maps from other maps.
alpar@40
   172
kpeter@406
   173
Most of them are \ref concepts::ReadMap "read-only maps".
kpeter@83
   174
They can make arithmetic and logical operations between one or two maps
kpeter@83
   175
(negation, shifting, addition, multiplication, logical 'and', 'or',
kpeter@83
   176
'not' etc.) or e.g. convert a map to another one of different Value type.
alpar@40
   177
kpeter@50
   178
The typical usage of this classes is passing implicit maps to
alpar@40
   179
algorithms.  If a function type algorithm is called then the function
alpar@40
   180
type map adaptors can be used comfortable. For example let's see the
kpeter@314
   181
usage of map adaptors with the \c graphToEps() function.
alpar@40
   182
\code
alpar@40
   183
  Color nodeColor(int deg) {
alpar@40
   184
    if (deg >= 2) {
alpar@40
   185
      return Color(0.5, 0.0, 0.5);
alpar@40
   186
    } else if (deg == 1) {
alpar@40
   187
      return Color(1.0, 0.5, 1.0);
alpar@40
   188
    } else {
alpar@40
   189
      return Color(0.0, 0.0, 0.0);
alpar@40
   190
    }
alpar@40
   191
  }
alpar@209
   192
kpeter@83
   193
  Digraph::NodeMap<int> degree_map(graph);
alpar@209
   194
kpeter@314
   195
  graphToEps(graph, "graph.eps")
alpar@40
   196
    .coords(coords).scaleToA4().undirected()
kpeter@83
   197
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
alpar@40
   198
    .run();
alpar@209
   199
\endcode
kpeter@83
   200
The \c functorToMap() function makes an \c int to \c Color map from the
kpeter@314
   201
\c nodeColor() function. The \c composeMap() compose the \c degree_map
kpeter@83
   202
and the previously created map. The composed map is a proper function to
kpeter@83
   203
get the color of each node.
alpar@40
   204
alpar@40
   205
The usage with class type algorithms is little bit harder. In this
alpar@40
   206
case the function type map adaptors can not be used, because the
kpeter@50
   207
function map adaptors give back temporary objects.
alpar@40
   208
\code
kpeter@83
   209
  Digraph graph;
kpeter@83
   210
kpeter@83
   211
  typedef Digraph::ArcMap<double> DoubleArcMap;
kpeter@83
   212
  DoubleArcMap length(graph);
kpeter@83
   213
  DoubleArcMap speed(graph);
kpeter@83
   214
kpeter@83
   215
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
alpar@40
   216
  TimeMap time(length, speed);
alpar@209
   217
kpeter@83
   218
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
alpar@40
   219
  dijkstra.run(source, target);
alpar@40
   220
\endcode
kpeter@83
   221
We have a length map and a maximum speed map on the arcs of a digraph.
kpeter@83
   222
The minimum time to pass the arc can be calculated as the division of
kpeter@83
   223
the two maps which can be done implicitly with the \c DivMap template
alpar@40
   224
class. We use the implicit minimum time map as the length map of the
alpar@40
   225
\c Dijkstra algorithm.
alpar@40
   226
*/
alpar@40
   227
alpar@40
   228
/**
alpar@40
   229
@defgroup paths Path Structures
alpar@40
   230
@ingroup datas
kpeter@318
   231
\brief %Path structures implemented in LEMON.
alpar@40
   232
kpeter@559
   233
This group contains the path structures implemented in LEMON.
alpar@40
   234
kpeter@50
   235
LEMON provides flexible data structures to work with paths.
kpeter@50
   236
All of them have similar interfaces and they can be copied easily with
kpeter@50
   237
assignment operators and copy constructors. This makes it easy and
alpar@40
   238
efficient to have e.g. the Dijkstra algorithm to store its result in
alpar@40
   239
any kind of path structure.
alpar@40
   240
kpeter@710
   241
\sa \ref concepts::Path "Path concept"
kpeter@710
   242
*/
kpeter@710
   243
kpeter@710
   244
/**
kpeter@710
   245
@defgroup heaps Heap Structures
kpeter@710
   246
@ingroup datas
kpeter@710
   247
\brief %Heap structures implemented in LEMON.
kpeter@710
   248
kpeter@710
   249
This group contains the heap structures implemented in LEMON.
kpeter@710
   250
kpeter@710
   251
LEMON provides several heap classes. They are efficient implementations
kpeter@710
   252
of the abstract data type \e priority \e queue. They store items with
kpeter@710
   253
specified values called \e priorities in such a way that finding and
kpeter@710
   254
removing the item with minimum priority are efficient.
kpeter@710
   255
The basic operations are adding and erasing items, changing the priority
kpeter@710
   256
of an item, etc.
kpeter@710
   257
kpeter@710
   258
Heaps are crucial in several algorithms, such as Dijkstra and Prim.
kpeter@710
   259
The heap implementations have the same interface, thus any of them can be
kpeter@710
   260
used easily in such algorithms.
kpeter@710
   261
kpeter@710
   262
\sa \ref concepts::Heap "Heap concept"
kpeter@710
   263
*/
kpeter@710
   264
kpeter@710
   265
/**
kpeter@710
   266
@defgroup matrices Matrices
kpeter@710
   267
@ingroup datas
kpeter@710
   268
\brief Two dimensional data storages implemented in LEMON.
kpeter@710
   269
kpeter@710
   270
This group contains two dimensional data storages implemented in LEMON.
alpar@40
   271
*/
alpar@40
   272
alpar@40
   273
/**
alpar@40
   274
@defgroup auxdat Auxiliary Data Structures
alpar@40
   275
@ingroup datas
kpeter@50
   276
\brief Auxiliary data structures implemented in LEMON.
alpar@40
   277
kpeter@559
   278
This group contains some data structures implemented in LEMON in
alpar@40
   279
order to make it easier to implement combinatorial algorithms.
alpar@40
   280
*/
alpar@40
   281
alpar@40
   282
/**
alpar@40
   283
@defgroup algs Algorithms
kpeter@559
   284
\brief This group contains the several algorithms
alpar@40
   285
implemented in LEMON.
alpar@40
   286
kpeter@559
   287
This group contains the several algorithms
alpar@40
   288
implemented in LEMON.
alpar@40
   289
*/
alpar@40
   290
alpar@40
   291
/**
alpar@40
   292
@defgroup search Graph Search
alpar@40
   293
@ingroup algs
kpeter@50
   294
\brief Common graph search algorithms.
alpar@40
   295
kpeter@559
   296
This group contains the common graph search algorithms, namely
kpeter@406
   297
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS).
alpar@40
   298
*/
alpar@40
   299
alpar@40
   300
/**
kpeter@314
   301
@defgroup shortest_path Shortest Path Algorithms
alpar@40
   302
@ingroup algs
kpeter@50
   303
\brief Algorithms for finding shortest paths.
alpar@40
   304
kpeter@559
   305
This group contains the algorithms for finding shortest paths in digraphs.
kpeter@406
   306
kpeter@406
   307
 - \ref Dijkstra algorithm for finding shortest paths from a source node
kpeter@406
   308
   when all arc lengths are non-negative.
kpeter@406
   309
 - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths
kpeter@406
   310
   from a source node when arc lenghts can be either positive or negative,
kpeter@406
   311
   but the digraph should not contain directed cycles with negative total
kpeter@406
   312
   length.
kpeter@406
   313
 - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms
kpeter@406
   314
   for solving the \e all-pairs \e shortest \e paths \e problem when arc
kpeter@406
   315
   lenghts can be either positive or negative, but the digraph should
kpeter@406
   316
   not contain directed cycles with negative total length.
kpeter@406
   317
 - \ref Suurballe A successive shortest path algorithm for finding
kpeter@406
   318
   arc-disjoint paths between two nodes having minimum total length.
alpar@40
   319
*/
alpar@40
   320
alpar@209
   321
/**
kpeter@314
   322
@defgroup max_flow Maximum Flow Algorithms
alpar@209
   323
@ingroup algs
kpeter@50
   324
\brief Algorithms for finding maximum flows.
alpar@40
   325
kpeter@559
   326
This group contains the algorithms for finding maximum flows and
alpar@40
   327
feasible circulations.
alpar@40
   328
kpeter@406
   329
The \e maximum \e flow \e problem is to find a flow of maximum value between
kpeter@406
   330
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
kpeter@609
   331
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
kpeter@406
   332
\f$s, t \in V\f$ source and target nodes.
kpeter@609
   333
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
kpeter@406
   334
following optimization problem.
alpar@40
   335
kpeter@609
   336
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
kpeter@609
   337
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
kpeter@609
   338
    \quad \forall u\in V\setminus\{s,t\} \f]
kpeter@609
   339
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f]
alpar@40
   340
kpeter@50
   341
LEMON contains several algorithms for solving maximum flow problems:
kpeter@406
   342
- \ref EdmondsKarp Edmonds-Karp algorithm.
kpeter@406
   343
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm.
kpeter@406
   344
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees.
kpeter@406
   345
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees.
alpar@40
   346
kpeter@406
   347
In most cases the \ref Preflow "Preflow" algorithm provides the
kpeter@406
   348
fastest method for computing a maximum flow. All implementations
kpeter@651
   349
also provide functions to query the minimum cut, which is the dual
kpeter@651
   350
problem of maximum flow.
kpeter@651
   351
kpeter@651
   352
\ref Circulation is a preflow push-relabel algorithm implemented directly 
kpeter@651
   353
for finding feasible circulations, which is a somewhat different problem,
kpeter@651
   354
but it is strongly related to maximum flow.
kpeter@651
   355
For more information, see \ref Circulation.
alpar@40
   356
*/
alpar@40
   357
alpar@40
   358
/**
kpeter@663
   359
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms
alpar@40
   360
@ingroup algs
alpar@40
   361
kpeter@50
   362
\brief Algorithms for finding minimum cost flows and circulations.
alpar@40
   363
kpeter@609
   364
This group contains the algorithms for finding minimum cost flows and
kpeter@663
   365
circulations. For more information about this problem and its dual
kpeter@663
   366
solution see \ref min_cost_flow "Minimum Cost Flow Problem".
kpeter@406
   367
kpeter@663
   368
LEMON contains several algorithms for this problem.
kpeter@609
   369
 - \ref NetworkSimplex Primal Network Simplex algorithm with various
kpeter@609
   370
   pivot strategies.
kpeter@609
   371
 - \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on
kpeter@609
   372
   cost scaling.
kpeter@609
   373
 - \ref CapacityScaling Successive Shortest %Path algorithm with optional
kpeter@406
   374
   capacity scaling.
kpeter@609
   375
 - \ref CancelAndTighten The Cancel and Tighten algorithm.
kpeter@609
   376
 - \ref CycleCanceling Cycle-Canceling algorithms.
kpeter@609
   377
kpeter@609
   378
In general NetworkSimplex is the most efficient implementation,
kpeter@609
   379
but in special cases other algorithms could be faster.
kpeter@609
   380
For example, if the total supply and/or capacities are rather small,
kpeter@609
   381
CapacityScaling is usually the fastest algorithm (without effective scaling).
alpar@40
   382
*/
alpar@40
   383
alpar@40
   384
/**
kpeter@314
   385
@defgroup min_cut Minimum Cut Algorithms
alpar@209
   386
@ingroup algs
alpar@40
   387
kpeter@50
   388
\brief Algorithms for finding minimum cut in graphs.
alpar@40
   389
kpeter@559
   390
This group contains the algorithms for finding minimum cut in graphs.
alpar@40
   391
kpeter@406
   392
The \e minimum \e cut \e problem is to find a non-empty and non-complete
kpeter@406
   393
\f$X\f$ subset of the nodes with minimum overall capacity on
kpeter@406
   394
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
kpeter@406
   395
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
kpeter@50
   396
cut is the \f$X\f$ solution of the next optimization problem:
alpar@40
   397
alpar@210
   398
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
kpeter@406
   399
    \sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
alpar@40
   400
kpeter@50
   401
LEMON contains several algorithms related to minimum cut problems:
alpar@40
   402
kpeter@406
   403
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
kpeter@406
   404
  in directed graphs.
kpeter@406
   405
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
kpeter@406
   406
  calculating minimum cut in undirected graphs.
kpeter@559
   407
- \ref GomoryHu "Gomory-Hu tree computation" for calculating
kpeter@406
   408
  all-pairs minimum cut in undirected graphs.
alpar@40
   409
alpar@40
   410
If you want to find minimum cut just between two distinict nodes,
kpeter@406
   411
see the \ref max_flow "maximum flow problem".
alpar@40
   412
*/
alpar@40
   413
alpar@40
   414
/**
kpeter@586
   415
@defgroup graph_properties Connectivity and Other Graph Properties
alpar@40
   416
@ingroup algs
kpeter@50
   417
\brief Algorithms for discovering the graph properties
alpar@40
   418
kpeter@559
   419
This group contains the algorithms for discovering the graph properties
kpeter@50
   420
like connectivity, bipartiteness, euler property, simplicity etc.
alpar@40
   421
alpar@40
   422
\image html edge_biconnected_components.png
alpar@40
   423
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
alpar@40
   424
*/
alpar@40
   425
alpar@40
   426
/**
kpeter@314
   427
@defgroup planar Planarity Embedding and Drawing
alpar@40
   428
@ingroup algs
kpeter@50
   429
\brief Algorithms for planarity checking, embedding and drawing
alpar@40
   430
kpeter@559
   431
This group contains the algorithms for planarity checking,
alpar@210
   432
embedding and drawing.
alpar@40
   433
alpar@40
   434
\image html planar.png
alpar@40
   435
\image latex planar.eps "Plane graph" width=\textwidth
alpar@40
   436
*/
alpar@40
   437
alpar@40
   438
/**
kpeter@314
   439
@defgroup matching Matching Algorithms
alpar@40
   440
@ingroup algs
kpeter@50
   441
\brief Algorithms for finding matchings in graphs and bipartite graphs.
alpar@40
   442
kpeter@590
   443
This group contains the algorithms for calculating
alpar@40
   444
matchings in graphs and bipartite graphs. The general matching problem is
kpeter@590
   445
finding a subset of the edges for which each node has at most one incident
kpeter@590
   446
edge.
alpar@209
   447
alpar@40
   448
There are several different algorithms for calculate matchings in
alpar@40
   449
graphs.  The matching problems in bipartite graphs are generally
alpar@40
   450
easier than in general graphs. The goal of the matching optimization
kpeter@406
   451
can be finding maximum cardinality, maximum weight or minimum cost
alpar@40
   452
matching. The search can be constrained to find perfect or
alpar@40
   453
maximum cardinality matching.
alpar@40
   454
kpeter@406
   455
The matching algorithms implemented in LEMON:
kpeter@406
   456
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
kpeter@406
   457
  for calculating maximum cardinality matching in bipartite graphs.
kpeter@406
   458
- \ref PrBipartiteMatching Push-relabel algorithm
kpeter@406
   459
  for calculating maximum cardinality matching in bipartite graphs.
kpeter@406
   460
- \ref MaxWeightedBipartiteMatching
kpeter@406
   461
  Successive shortest path algorithm for calculating maximum weighted
kpeter@406
   462
  matching and maximum weighted bipartite matching in bipartite graphs.
kpeter@406
   463
- \ref MinCostMaxBipartiteMatching
kpeter@406
   464
  Successive shortest path algorithm for calculating minimum cost maximum
kpeter@406
   465
  matching in bipartite graphs.
kpeter@406
   466
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
kpeter@406
   467
  maximum cardinality matching in general graphs.
kpeter@406
   468
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
kpeter@406
   469
  maximum weighted matching in general graphs.
kpeter@406
   470
- \ref MaxWeightedPerfectMatching
kpeter@406
   471
  Edmond's blossom shrinking algorithm for calculating maximum weighted
kpeter@406
   472
  perfect matching in general graphs.
alpar@40
   473
alpar@40
   474
\image html bipartite_matching.png
alpar@40
   475
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
alpar@40
   476
*/
alpar@40
   477
alpar@40
   478
/**
kpeter@314
   479
@defgroup spantree Minimum Spanning Tree Algorithms
alpar@40
   480
@ingroup algs
kpeter@651
   481
\brief Algorithms for finding minimum cost spanning trees and arborescences.
alpar@40
   482
kpeter@651
   483
This group contains the algorithms for finding minimum cost spanning
kpeter@651
   484
trees and arborescences.
alpar@40
   485
*/
alpar@40
   486
alpar@40
   487
/**
kpeter@314
   488
@defgroup auxalg Auxiliary Algorithms
alpar@40
   489
@ingroup algs
kpeter@50
   490
\brief Auxiliary algorithms implemented in LEMON.
alpar@40
   491
kpeter@559
   492
This group contains some algorithms implemented in LEMON
kpeter@50
   493
in order to make it easier to implement complex algorithms.
alpar@40
   494
*/
alpar@40
   495
alpar@40
   496
/**
kpeter@314
   497
@defgroup approx Approximation Algorithms
kpeter@314
   498
@ingroup algs
kpeter@50
   499
\brief Approximation algorithms.
alpar@40
   500
kpeter@559
   501
This group contains the approximation and heuristic algorithms
kpeter@50
   502
implemented in LEMON.
alpar@40
   503
*/
alpar@40
   504
alpar@40
   505
/**
alpar@40
   506
@defgroup gen_opt_group General Optimization Tools
kpeter@559
   507
\brief This group contains some general optimization frameworks
alpar@40
   508
implemented in LEMON.
alpar@40
   509
kpeter@559
   510
This group contains some general optimization frameworks
alpar@40
   511
implemented in LEMON.
alpar@40
   512
*/
alpar@40
   513
alpar@40
   514
/**
kpeter@314
   515
@defgroup lp_group Lp and Mip Solvers
alpar@40
   516
@ingroup gen_opt_group
alpar@40
   517
\brief Lp and Mip solver interfaces for LEMON.
alpar@40
   518
kpeter@559
   519
This group contains Lp and Mip solver interfaces for LEMON. The
alpar@40
   520
various LP solvers could be used in the same manner with this
alpar@40
   521
interface.
alpar@40
   522
*/
alpar@40
   523
alpar@209
   524
/**
kpeter@314
   525
@defgroup lp_utils Tools for Lp and Mip Solvers
alpar@40
   526
@ingroup lp_group
kpeter@50
   527
\brief Helper tools to the Lp and Mip solvers.
alpar@40
   528
alpar@40
   529
This group adds some helper tools to general optimization framework
alpar@40
   530
implemented in LEMON.
alpar@40
   531
*/
alpar@40
   532
alpar@40
   533
/**
alpar@40
   534
@defgroup metah Metaheuristics
alpar@40
   535
@ingroup gen_opt_group
alpar@40
   536
\brief Metaheuristics for LEMON library.
alpar@40
   537
kpeter@559
   538
This group contains some metaheuristic optimization tools.
alpar@40
   539
*/
alpar@40
   540
alpar@40
   541
/**
alpar@209
   542
@defgroup utils Tools and Utilities
kpeter@50
   543
\brief Tools and utilities for programming in LEMON
alpar@40
   544
kpeter@50
   545
Tools and utilities for programming in LEMON.
alpar@40
   546
*/
alpar@40
   547
alpar@40
   548
/**
alpar@40
   549
@defgroup gutils Basic Graph Utilities
alpar@40
   550
@ingroup utils
kpeter@50
   551
\brief Simple basic graph utilities.
alpar@40
   552
kpeter@559
   553
This group contains some simple basic graph utilities.
alpar@40
   554
*/
alpar@40
   555
alpar@40
   556
/**
alpar@40
   557
@defgroup misc Miscellaneous Tools
alpar@40
   558
@ingroup utils
kpeter@50
   559
\brief Tools for development, debugging and testing.
kpeter@50
   560
kpeter@559
   561
This group contains several useful tools for development,
alpar@40
   562
debugging and testing.
alpar@40
   563
*/
alpar@40
   564
alpar@40
   565
/**
kpeter@314
   566
@defgroup timecount Time Measuring and Counting
alpar@40
   567
@ingroup misc
kpeter@50
   568
\brief Simple tools for measuring the performance of algorithms.
kpeter@50
   569
kpeter@559
   570
This group contains simple tools for measuring the performance
alpar@40
   571
of algorithms.
alpar@40
   572
*/
alpar@40
   573
alpar@40
   574
/**
alpar@40
   575
@defgroup exceptions Exceptions
alpar@40
   576
@ingroup utils
kpeter@50
   577
\brief Exceptions defined in LEMON.
kpeter@50
   578
kpeter@559
   579
This group contains the exceptions defined in LEMON.
alpar@40
   580
*/
alpar@40
   581
alpar@40
   582
/**
alpar@40
   583
@defgroup io_group Input-Output
kpeter@50
   584
\brief Graph Input-Output methods
alpar@40
   585
kpeter@559
   586
This group contains the tools for importing and exporting graphs
kpeter@314
   587
and graph related data. Now it supports the \ref lgf-format
kpeter@314
   588
"LEMON Graph Format", the \c DIMACS format and the encapsulated
kpeter@314
   589
postscript (EPS) format.
alpar@40
   590
*/
alpar@40
   591
alpar@40
   592
/**
kpeter@351
   593
@defgroup lemon_io LEMON Graph Format
alpar@40
   594
@ingroup io_group
kpeter@314
   595
\brief Reading and writing LEMON Graph Format.
alpar@40
   596
kpeter@559
   597
This group contains methods for reading and writing
ladanyi@236
   598
\ref lgf-format "LEMON Graph Format".
alpar@40
   599
*/
alpar@40
   600
alpar@40
   601
/**
kpeter@314
   602
@defgroup eps_io Postscript Exporting
alpar@40
   603
@ingroup io_group
alpar@40
   604
\brief General \c EPS drawer and graph exporter
alpar@40
   605
kpeter@559
   606
This group contains general \c EPS drawing methods and special
alpar@209
   607
graph exporting tools.
alpar@40
   608
*/
alpar@40
   609
alpar@40
   610
/**
kpeter@388
   611
@defgroup dimacs_group DIMACS format
kpeter@388
   612
@ingroup io_group
kpeter@388
   613
\brief Read and write files in DIMACS format
kpeter@388
   614
kpeter@388
   615
Tools to read a digraph from or write it to a file in DIMACS format data.
kpeter@388
   616
*/
kpeter@388
   617
kpeter@388
   618
/**
kpeter@351
   619
@defgroup nauty_group NAUTY Format
kpeter@351
   620
@ingroup io_group
kpeter@351
   621
\brief Read \e Nauty format
kpeter@388
   622
kpeter@351
   623
Tool to read graphs from \e Nauty format data.
kpeter@351
   624
*/
kpeter@351
   625
kpeter@351
   626
/**
alpar@40
   627
@defgroup concept Concepts
alpar@40
   628
\brief Skeleton classes and concept checking classes
alpar@40
   629
kpeter@559
   630
This group contains the data/algorithm skeletons and concept checking
alpar@40
   631
classes implemented in LEMON.
alpar@40
   632
alpar@40
   633
The purpose of the classes in this group is fourfold.
alpar@209
   634
kpeter@318
   635
- These classes contain the documentations of the %concepts. In order
alpar@40
   636
  to avoid document multiplications, an implementation of a concept
alpar@40
   637
  simply refers to the corresponding concept class.
alpar@40
   638
alpar@40
   639
- These classes declare every functions, <tt>typedef</tt>s etc. an
kpeter@318
   640
  implementation of the %concepts should provide, however completely
alpar@40
   641
  without implementations and real data structures behind the
alpar@40
   642
  interface. On the other hand they should provide nothing else. All
alpar@40
   643
  the algorithms working on a data structure meeting a certain concept
alpar@40
   644
  should compile with these classes. (Though it will not run properly,
alpar@40
   645
  of course.) In this way it is easily to check if an algorithm
alpar@40
   646
  doesn't use any extra feature of a certain implementation.
alpar@40
   647
alpar@40
   648
- The concept descriptor classes also provide a <em>checker class</em>
kpeter@50
   649
  that makes it possible to check whether a certain implementation of a
alpar@40
   650
  concept indeed provides all the required features.
alpar@40
   651
alpar@40
   652
- Finally, They can serve as a skeleton of a new implementation of a concept.
alpar@40
   653
*/
alpar@40
   654
alpar@40
   655
/**
alpar@40
   656
@defgroup graph_concepts Graph Structure Concepts
alpar@40
   657
@ingroup concept
alpar@40
   658
\brief Skeleton and concept checking classes for graph structures
alpar@40
   659
kpeter@559
   660
This group contains the skeletons and concept checking classes of LEMON's
alpar@40
   661
graph structures and helper classes used to implement these.
alpar@40
   662
*/
alpar@40
   663
kpeter@314
   664
/**
kpeter@314
   665
@defgroup map_concepts Map Concepts
kpeter@314
   666
@ingroup concept
kpeter@314
   667
\brief Skeleton and concept checking classes for maps
kpeter@314
   668
kpeter@559
   669
This group contains the skeletons and concept checking classes of maps.
alpar@40
   670
*/
alpar@40
   671
alpar@40
   672
/**
alpar@40
   673
\anchor demoprograms
alpar@40
   674
kpeter@406
   675
@defgroup demos Demo Programs
alpar@40
   676
alpar@40
   677
Some demo programs are listed here. Their full source codes can be found in
alpar@40
   678
the \c demo subdirectory of the source tree.
alpar@40
   679
ladanyi@564
   680
In order to compile them, use the <tt>make demo</tt> or the
ladanyi@564
   681
<tt>make check</tt> commands.
alpar@40
   682
*/
alpar@40
   683
alpar@40
   684
/**
kpeter@406
   685
@defgroup tools Standalone Utility Applications
alpar@40
   686
alpar@209
   687
Some utility applications are listed here.
alpar@40
   688
alpar@40
   689
The standard compilation procedure (<tt>./configure;make</tt>) will compile
alpar@209
   690
them, as well.
alpar@40
   691
*/
alpar@40
   692
kpeter@406
   693
}