lemon/preflow.h
author Peter Kovacs <kpeter@inf.elte.hu>
Thu, 09 Jul 2009 02:38:01 +0200
changeset 701 d1a9224f1e30
parent 611 85cb3aa71cce
child 688 1f08e846df29
child 713 4ac30454f1c1
permissions -rw-r--r--
Add fourary, k-ary, pairing and binomial heaps (#301)
These structures were implemented by Dorian Batha.
alpar@389
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@389
     2
 *
alpar@389
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@389
     4
 *
alpar@440
     5
 * Copyright (C) 2003-2009
alpar@389
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@389
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@389
     8
 *
alpar@389
     9
 * Permission to use, modify and distribute this software is granted
alpar@389
    10
 * provided that this copyright notice appears in all copies. For
alpar@389
    11
 * precise terms see the accompanying LICENSE file.
alpar@389
    12
 *
alpar@389
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@389
    14
 * express or implied, and with no claim as to its suitability for any
alpar@389
    15
 * purpose.
alpar@389
    16
 *
alpar@389
    17
 */
alpar@389
    18
alpar@389
    19
#ifndef LEMON_PREFLOW_H
alpar@389
    20
#define LEMON_PREFLOW_H
alpar@389
    21
alpar@389
    22
#include <lemon/tolerance.h>
alpar@389
    23
#include <lemon/elevator.h>
alpar@389
    24
alpar@389
    25
/// \file
alpar@389
    26
/// \ingroup max_flow
alpar@389
    27
/// \brief Implementation of the preflow algorithm.
alpar@389
    28
alpar@389
    29
namespace lemon {
alpar@389
    30
alpar@389
    31
  /// \brief Default traits class of Preflow class.
alpar@389
    32
  ///
alpar@389
    33
  /// Default traits class of Preflow class.
kpeter@492
    34
  /// \tparam GR Digraph type.
kpeter@559
    35
  /// \tparam CAP Capacity map type.
kpeter@559
    36
  template <typename GR, typename CAP>
alpar@389
    37
  struct PreflowDefaultTraits {
alpar@389
    38
kpeter@393
    39
    /// \brief The type of the digraph the algorithm runs on.
kpeter@492
    40
    typedef GR Digraph;
alpar@389
    41
alpar@389
    42
    /// \brief The type of the map that stores the arc capacities.
alpar@389
    43
    ///
alpar@389
    44
    /// The type of the map that stores the arc capacities.
alpar@389
    45
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
kpeter@559
    46
    typedef CAP CapacityMap;
alpar@389
    47
kpeter@393
    48
    /// \brief The type of the flow values.
kpeter@641
    49
    typedef typename CapacityMap::Value Value;
alpar@389
    50
kpeter@393
    51
    /// \brief The type of the map that stores the flow values.
alpar@389
    52
    ///
kpeter@393
    53
    /// The type of the map that stores the flow values.
alpar@389
    54
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
kpeter@641
    55
    typedef typename Digraph::template ArcMap<Value> FlowMap;
alpar@389
    56
alpar@389
    57
    /// \brief Instantiates a FlowMap.
alpar@389
    58
    ///
alpar@389
    59
    /// This function instantiates a \ref FlowMap.
kpeter@610
    60
    /// \param digraph The digraph for which we would like to define
alpar@389
    61
    /// the flow map.
alpar@389
    62
    static FlowMap* createFlowMap(const Digraph& digraph) {
alpar@389
    63
      return new FlowMap(digraph);
alpar@389
    64
    }
alpar@389
    65
kpeter@393
    66
    /// \brief The elevator type used by Preflow algorithm.
alpar@389
    67
    ///
alpar@389
    68
    /// The elevator type used by Preflow algorithm.
alpar@389
    69
    ///
alpar@389
    70
    /// \sa Elevator
alpar@389
    71
    /// \sa LinkedElevator
alpar@389
    72
    typedef LinkedElevator<Digraph, typename Digraph::Node> Elevator;
alpar@389
    73
alpar@389
    74
    /// \brief Instantiates an Elevator.
alpar@389
    75
    ///
kpeter@393
    76
    /// This function instantiates an \ref Elevator.
kpeter@610
    77
    /// \param digraph The digraph for which we would like to define
alpar@389
    78
    /// the elevator.
alpar@389
    79
    /// \param max_level The maximum level of the elevator.
alpar@389
    80
    static Elevator* createElevator(const Digraph& digraph, int max_level) {
alpar@389
    81
      return new Elevator(digraph, max_level);
alpar@389
    82
    }
alpar@389
    83
alpar@389
    84
    /// \brief The tolerance used by the algorithm
alpar@389
    85
    ///
alpar@389
    86
    /// The tolerance used by the algorithm to handle inexact computation.
kpeter@641
    87
    typedef lemon::Tolerance<Value> Tolerance;
alpar@389
    88
alpar@389
    89
  };
alpar@389
    90
alpar@389
    91
alpar@389
    92
  /// \ingroup max_flow
alpar@389
    93
  ///
kpeter@393
    94
  /// \brief %Preflow algorithm class.
alpar@389
    95
  ///
kpeter@393
    96
  /// This class provides an implementation of Goldberg-Tarjan's \e preflow
kpeter@559
    97
  /// \e push-relabel algorithm producing a \ref max_flow
kpeter@559
    98
  /// "flow of maximum value" in a digraph.
kpeter@559
    99
  /// The preflow algorithms are the fastest known maximum
alpar@389
   100
  /// flow algorithms. The current implementation use a mixture of the
alpar@389
   101
  /// \e "highest label" and the \e "bound decrease" heuristics.
alpar@389
   102
  /// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
alpar@389
   103
  ///
kpeter@393
   104
  /// The algorithm consists of two phases. After the first phase
kpeter@393
   105
  /// the maximum flow value and the minimum cut is obtained. The
kpeter@393
   106
  /// second phase constructs a feasible maximum flow on each arc.
alpar@389
   107
  ///
kpeter@492
   108
  /// \tparam GR The type of the digraph the algorithm runs on.
kpeter@559
   109
  /// \tparam CAP The type of the capacity map. The default map
kpeter@492
   110
  /// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
alpar@389
   111
#ifdef DOXYGEN
kpeter@559
   112
  template <typename GR, typename CAP, typename TR>
alpar@389
   113
#else
kpeter@492
   114
  template <typename GR,
kpeter@559
   115
            typename CAP = typename GR::template ArcMap<int>,
kpeter@559
   116
            typename TR = PreflowDefaultTraits<GR, CAP> >
alpar@389
   117
#endif
alpar@389
   118
  class Preflow {
alpar@389
   119
  public:
alpar@389
   120
kpeter@393
   121
    ///The \ref PreflowDefaultTraits "traits class" of the algorithm.
kpeter@492
   122
    typedef TR Traits;
kpeter@393
   123
    ///The type of the digraph the algorithm runs on.
alpar@389
   124
    typedef typename Traits::Digraph Digraph;
kpeter@393
   125
    ///The type of the capacity map.
alpar@389
   126
    typedef typename Traits::CapacityMap CapacityMap;
kpeter@393
   127
    ///The type of the flow values.
kpeter@641
   128
    typedef typename Traits::Value Value;
alpar@389
   129
kpeter@393
   130
    ///The type of the flow map.
alpar@389
   131
    typedef typename Traits::FlowMap FlowMap;
kpeter@393
   132
    ///The type of the elevator.
alpar@389
   133
    typedef typename Traits::Elevator Elevator;
kpeter@393
   134
    ///The type of the tolerance.
alpar@389
   135
    typedef typename Traits::Tolerance Tolerance;
alpar@389
   136
alpar@389
   137
  private:
alpar@389
   138
alpar@389
   139
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
alpar@389
   140
alpar@389
   141
    const Digraph& _graph;
alpar@389
   142
    const CapacityMap* _capacity;
alpar@389
   143
alpar@389
   144
    int _node_num;
alpar@389
   145
alpar@389
   146
    Node _source, _target;
alpar@389
   147
alpar@389
   148
    FlowMap* _flow;
alpar@389
   149
    bool _local_flow;
alpar@389
   150
alpar@389
   151
    Elevator* _level;
alpar@389
   152
    bool _local_level;
alpar@389
   153
kpeter@641
   154
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
alpar@389
   155
    ExcessMap* _excess;
alpar@389
   156
alpar@389
   157
    Tolerance _tolerance;
alpar@389
   158
alpar@389
   159
    bool _phase;
alpar@389
   160
alpar@389
   161
alpar@389
   162
    void createStructures() {
alpar@389
   163
      _node_num = countNodes(_graph);
alpar@389
   164
alpar@389
   165
      if (!_flow) {
alpar@389
   166
        _flow = Traits::createFlowMap(_graph);
alpar@389
   167
        _local_flow = true;
alpar@389
   168
      }
alpar@389
   169
      if (!_level) {
alpar@389
   170
        _level = Traits::createElevator(_graph, _node_num);
alpar@389
   171
        _local_level = true;
alpar@389
   172
      }
alpar@389
   173
      if (!_excess) {
alpar@389
   174
        _excess = new ExcessMap(_graph);
alpar@389
   175
      }
alpar@389
   176
    }
alpar@389
   177
alpar@389
   178
    void destroyStructures() {
alpar@389
   179
      if (_local_flow) {
alpar@389
   180
        delete _flow;
alpar@389
   181
      }
alpar@389
   182
      if (_local_level) {
alpar@389
   183
        delete _level;
alpar@389
   184
      }
alpar@389
   185
      if (_excess) {
alpar@389
   186
        delete _excess;
alpar@389
   187
      }
alpar@389
   188
    }
alpar@389
   189
alpar@389
   190
  public:
alpar@389
   191
alpar@389
   192
    typedef Preflow Create;
alpar@389
   193
kpeter@393
   194
    ///\name Named Template Parameters
alpar@389
   195
alpar@389
   196
    ///@{
alpar@389
   197
kpeter@559
   198
    template <typename T>
alpar@391
   199
    struct SetFlowMapTraits : public Traits {
kpeter@559
   200
      typedef T FlowMap;
alpar@389
   201
      static FlowMap *createFlowMap(const Digraph&) {
alpar@390
   202
        LEMON_ASSERT(false, "FlowMap is not initialized");
alpar@390
   203
        return 0; // ignore warnings
alpar@389
   204
      }
alpar@389
   205
    };
alpar@389
   206
alpar@389
   207
    /// \brief \ref named-templ-param "Named parameter" for setting
alpar@389
   208
    /// FlowMap type
alpar@389
   209
    ///
alpar@389
   210
    /// \ref named-templ-param "Named parameter" for setting FlowMap
kpeter@393
   211
    /// type.
kpeter@559
   212
    template <typename T>
alpar@391
   213
    struct SetFlowMap
kpeter@559
   214
      : public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > {
alpar@389
   215
      typedef Preflow<Digraph, CapacityMap,
kpeter@559
   216
                      SetFlowMapTraits<T> > Create;
alpar@389
   217
    };
alpar@389
   218
kpeter@559
   219
    template <typename T>
alpar@391
   220
    struct SetElevatorTraits : public Traits {
kpeter@559
   221
      typedef T Elevator;
alpar@389
   222
      static Elevator *createElevator(const Digraph&, int) {
alpar@390
   223
        LEMON_ASSERT(false, "Elevator is not initialized");
alpar@390
   224
        return 0; // ignore warnings
alpar@389
   225
      }
alpar@389
   226
    };
alpar@389
   227
alpar@389
   228
    /// \brief \ref named-templ-param "Named parameter" for setting
alpar@389
   229
    /// Elevator type
alpar@389
   230
    ///
alpar@389
   231
    /// \ref named-templ-param "Named parameter" for setting Elevator
kpeter@393
   232
    /// type. If this named parameter is used, then an external
kpeter@393
   233
    /// elevator object must be passed to the algorithm using the
kpeter@393
   234
    /// \ref elevator(Elevator&) "elevator()" function before calling
kpeter@393
   235
    /// \ref run() or \ref init().
kpeter@393
   236
    /// \sa SetStandardElevator
kpeter@559
   237
    template <typename T>
alpar@391
   238
    struct SetElevator
kpeter@559
   239
      : public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > {
alpar@389
   240
      typedef Preflow<Digraph, CapacityMap,
kpeter@559
   241
                      SetElevatorTraits<T> > Create;
alpar@389
   242
    };
alpar@389
   243
kpeter@559
   244
    template <typename T>
alpar@391
   245
    struct SetStandardElevatorTraits : public Traits {
kpeter@559
   246
      typedef T Elevator;
alpar@389
   247
      static Elevator *createElevator(const Digraph& digraph, int max_level) {
alpar@389
   248
        return new Elevator(digraph, max_level);
alpar@389
   249
      }
alpar@389
   250
    };
alpar@389
   251
alpar@389
   252
    /// \brief \ref named-templ-param "Named parameter" for setting
kpeter@393
   253
    /// Elevator type with automatic allocation
alpar@389
   254
    ///
alpar@389
   255
    /// \ref named-templ-param "Named parameter" for setting Elevator
kpeter@393
   256
    /// type with automatic allocation.
kpeter@393
   257
    /// The Elevator should have standard constructor interface to be
kpeter@393
   258
    /// able to automatically created by the algorithm (i.e. the
kpeter@393
   259
    /// digraph and the maximum level should be passed to it).
kpeter@393
   260
    /// However an external elevator object could also be passed to the
kpeter@393
   261
    /// algorithm with the \ref elevator(Elevator&) "elevator()" function
kpeter@393
   262
    /// before calling \ref run() or \ref init().
kpeter@393
   263
    /// \sa SetElevator
kpeter@559
   264
    template <typename T>
alpar@391
   265
    struct SetStandardElevator
alpar@389
   266
      : public Preflow<Digraph, CapacityMap,
kpeter@559
   267
                       SetStandardElevatorTraits<T> > {
alpar@389
   268
      typedef Preflow<Digraph, CapacityMap,
kpeter@559
   269
                      SetStandardElevatorTraits<T> > Create;
alpar@389
   270
    };
alpar@389
   271
alpar@389
   272
    /// @}
alpar@389
   273
alpar@389
   274
  protected:
alpar@389
   275
alpar@389
   276
    Preflow() {}
alpar@389
   277
alpar@389
   278
  public:
alpar@389
   279
alpar@389
   280
alpar@389
   281
    /// \brief The constructor of the class.
alpar@389
   282
    ///
alpar@389
   283
    /// The constructor of the class.
alpar@389
   284
    /// \param digraph The digraph the algorithm runs on.
alpar@389
   285
    /// \param capacity The capacity of the arcs.
alpar@389
   286
    /// \param source The source node.
alpar@389
   287
    /// \param target The target node.
alpar@389
   288
    Preflow(const Digraph& digraph, const CapacityMap& capacity,
kpeter@393
   289
            Node source, Node target)
alpar@389
   290
      : _graph(digraph), _capacity(&capacity),
alpar@389
   291
        _node_num(0), _source(source), _target(target),
alpar@389
   292
        _flow(0), _local_flow(false),
alpar@389
   293
        _level(0), _local_level(false),
alpar@389
   294
        _excess(0), _tolerance(), _phase() {}
alpar@389
   295
kpeter@393
   296
    /// \brief Destructor.
alpar@389
   297
    ///
alpar@389
   298
    /// Destructor.
alpar@389
   299
    ~Preflow() {
alpar@389
   300
      destroyStructures();
alpar@389
   301
    }
alpar@389
   302
alpar@389
   303
    /// \brief Sets the capacity map.
alpar@389
   304
    ///
alpar@389
   305
    /// Sets the capacity map.
kpeter@393
   306
    /// \return <tt>(*this)</tt>
alpar@389
   307
    Preflow& capacityMap(const CapacityMap& map) {
alpar@389
   308
      _capacity = &map;
alpar@389
   309
      return *this;
alpar@389
   310
    }
alpar@389
   311
alpar@389
   312
    /// \brief Sets the flow map.
alpar@389
   313
    ///
alpar@389
   314
    /// Sets the flow map.
kpeter@393
   315
    /// If you don't use this function before calling \ref run() or
kpeter@393
   316
    /// \ref init(), an instance will be allocated automatically.
kpeter@393
   317
    /// The destructor deallocates this automatically allocated map,
kpeter@393
   318
    /// of course.
kpeter@393
   319
    /// \return <tt>(*this)</tt>
alpar@389
   320
    Preflow& flowMap(FlowMap& map) {
alpar@389
   321
      if (_local_flow) {
alpar@389
   322
        delete _flow;
alpar@389
   323
        _local_flow = false;
alpar@389
   324
      }
alpar@389
   325
      _flow = &map;
alpar@389
   326
      return *this;
alpar@389
   327
    }
alpar@389
   328
kpeter@393
   329
    /// \brief Sets the source node.
alpar@389
   330
    ///
kpeter@393
   331
    /// Sets the source node.
kpeter@393
   332
    /// \return <tt>(*this)</tt>
kpeter@393
   333
    Preflow& source(const Node& node) {
kpeter@393
   334
      _source = node;
kpeter@393
   335
      return *this;
alpar@389
   336
    }
alpar@389
   337
kpeter@393
   338
    /// \brief Sets the target node.
alpar@389
   339
    ///
kpeter@393
   340
    /// Sets the target node.
kpeter@393
   341
    /// \return <tt>(*this)</tt>
kpeter@393
   342
    Preflow& target(const Node& node) {
kpeter@393
   343
      _target = node;
kpeter@393
   344
      return *this;
kpeter@393
   345
    }
kpeter@393
   346
kpeter@393
   347
    /// \brief Sets the elevator used by algorithm.
kpeter@393
   348
    ///
kpeter@393
   349
    /// Sets the elevator used by algorithm.
kpeter@393
   350
    /// If you don't use this function before calling \ref run() or
kpeter@393
   351
    /// \ref init(), an instance will be allocated automatically.
kpeter@393
   352
    /// The destructor deallocates this automatically allocated elevator,
kpeter@393
   353
    /// of course.
kpeter@393
   354
    /// \return <tt>(*this)</tt>
alpar@389
   355
    Preflow& elevator(Elevator& elevator) {
alpar@389
   356
      if (_local_level) {
alpar@389
   357
        delete _level;
alpar@389
   358
        _local_level = false;
alpar@389
   359
      }
alpar@389
   360
      _level = &elevator;
alpar@389
   361
      return *this;
alpar@389
   362
    }
alpar@389
   363
kpeter@393
   364
    /// \brief Returns a const reference to the elevator.
alpar@389
   365
    ///
kpeter@393
   366
    /// Returns a const reference to the elevator.
kpeter@393
   367
    ///
kpeter@393
   368
    /// \pre Either \ref run() or \ref init() must be called before
kpeter@393
   369
    /// using this function.
kpeter@420
   370
    const Elevator& elevator() const {
alpar@389
   371
      return *_level;
alpar@389
   372
    }
alpar@389
   373
alpar@389
   374
    /// \brief Sets the tolerance used by algorithm.
alpar@389
   375
    ///
alpar@389
   376
    /// Sets the tolerance used by algorithm.
alpar@389
   377
    Preflow& tolerance(const Tolerance& tolerance) const {
alpar@389
   378
      _tolerance = tolerance;
alpar@389
   379
      return *this;
alpar@389
   380
    }
alpar@389
   381
kpeter@393
   382
    /// \brief Returns a const reference to the tolerance.
alpar@389
   383
    ///
kpeter@393
   384
    /// Returns a const reference to the tolerance.
alpar@389
   385
    const Tolerance& tolerance() const {
alpar@389
   386
      return tolerance;
alpar@389
   387
    }
alpar@389
   388
kpeter@393
   389
    /// \name Execution Control
kpeter@393
   390
    /// The simplest way to execute the preflow algorithm is to use
kpeter@393
   391
    /// \ref run() or \ref runMinCut().\n
kpeter@393
   392
    /// If you need more control on the initial solution or the execution,
kpeter@393
   393
    /// first you have to call one of the \ref init() functions, then
kpeter@393
   394
    /// \ref startFirstPhase() and if you need it \ref startSecondPhase().
alpar@389
   395
alpar@389
   396
    ///@{
alpar@389
   397
alpar@389
   398
    /// \brief Initializes the internal data structures.
alpar@389
   399
    ///
kpeter@393
   400
    /// Initializes the internal data structures and sets the initial
kpeter@393
   401
    /// flow to zero on each arc.
alpar@389
   402
    void init() {
alpar@389
   403
      createStructures();
alpar@389
   404
alpar@389
   405
      _phase = true;
alpar@389
   406
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@581
   407
        (*_excess)[n] = 0;
alpar@389
   408
      }
alpar@389
   409
alpar@389
   410
      for (ArcIt e(_graph); e != INVALID; ++e) {
alpar@389
   411
        _flow->set(e, 0);
alpar@389
   412
      }
alpar@389
   413
alpar@389
   414
      typename Digraph::template NodeMap<bool> reached(_graph, false);
alpar@389
   415
alpar@389
   416
      _level->initStart();
alpar@389
   417
      _level->initAddItem(_target);
alpar@389
   418
alpar@389
   419
      std::vector<Node> queue;
kpeter@581
   420
      reached[_source] = true;
alpar@389
   421
alpar@389
   422
      queue.push_back(_target);
kpeter@581
   423
      reached[_target] = true;
alpar@389
   424
      while (!queue.empty()) {
alpar@389
   425
        _level->initNewLevel();
alpar@389
   426
        std::vector<Node> nqueue;
alpar@389
   427
        for (int i = 0; i < int(queue.size()); ++i) {
alpar@389
   428
          Node n = queue[i];
alpar@389
   429
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
alpar@389
   430
            Node u = _graph.source(e);
alpar@389
   431
            if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
kpeter@581
   432
              reached[u] = true;
alpar@389
   433
              _level->initAddItem(u);
alpar@389
   434
              nqueue.push_back(u);
alpar@389
   435
            }
alpar@389
   436
          }
alpar@389
   437
        }
alpar@389
   438
        queue.swap(nqueue);
alpar@389
   439
      }
alpar@389
   440
      _level->initFinish();
alpar@389
   441
alpar@389
   442
      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
alpar@389
   443
        if (_tolerance.positive((*_capacity)[e])) {
alpar@389
   444
          Node u = _graph.target(e);
alpar@389
   445
          if ((*_level)[u] == _level->maxLevel()) continue;
alpar@389
   446
          _flow->set(e, (*_capacity)[e]);
kpeter@581
   447
          (*_excess)[u] += (*_capacity)[e];
alpar@389
   448
          if (u != _target && !_level->active(u)) {
alpar@389
   449
            _level->activate(u);
alpar@389
   450
          }
alpar@389
   451
        }
alpar@389
   452
      }
alpar@389
   453
    }
alpar@389
   454
kpeter@393
   455
    /// \brief Initializes the internal data structures using the
kpeter@393
   456
    /// given flow map.
alpar@389
   457
    ///
alpar@389
   458
    /// Initializes the internal data structures and sets the initial
alpar@389
   459
    /// flow to the given \c flowMap. The \c flowMap should contain a
kpeter@393
   460
    /// flow or at least a preflow, i.e. at each node excluding the
kpeter@393
   461
    /// source node the incoming flow should greater or equal to the
alpar@389
   462
    /// outgoing flow.
kpeter@393
   463
    /// \return \c false if the given \c flowMap is not a preflow.
alpar@389
   464
    template <typename FlowMap>
kpeter@392
   465
    bool init(const FlowMap& flowMap) {
alpar@389
   466
      createStructures();
alpar@389
   467
alpar@389
   468
      for (ArcIt e(_graph); e != INVALID; ++e) {
alpar@389
   469
        _flow->set(e, flowMap[e]);
alpar@389
   470
      }
alpar@389
   471
alpar@389
   472
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@641
   473
        Value excess = 0;
alpar@389
   474
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
alpar@389
   475
          excess += (*_flow)[e];
alpar@389
   476
        }
alpar@389
   477
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
alpar@389
   478
          excess -= (*_flow)[e];
alpar@389
   479
        }
alpar@389
   480
        if (excess < 0 && n != _source) return false;
kpeter@581
   481
        (*_excess)[n] = excess;
alpar@389
   482
      }
alpar@389
   483
alpar@389
   484
      typename Digraph::template NodeMap<bool> reached(_graph, false);
alpar@389
   485
alpar@389
   486
      _level->initStart();
alpar@389
   487
      _level->initAddItem(_target);
alpar@389
   488
alpar@389
   489
      std::vector<Node> queue;
kpeter@581
   490
      reached[_source] = true;
alpar@389
   491
alpar@389
   492
      queue.push_back(_target);
kpeter@581
   493
      reached[_target] = true;
alpar@389
   494
      while (!queue.empty()) {
alpar@389
   495
        _level->initNewLevel();
alpar@389
   496
        std::vector<Node> nqueue;
alpar@389
   497
        for (int i = 0; i < int(queue.size()); ++i) {
alpar@389
   498
          Node n = queue[i];
alpar@389
   499
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
alpar@389
   500
            Node u = _graph.source(e);
alpar@389
   501
            if (!reached[u] &&
alpar@389
   502
                _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
kpeter@581
   503
              reached[u] = true;
alpar@389
   504
              _level->initAddItem(u);
alpar@389
   505
              nqueue.push_back(u);
alpar@389
   506
            }
alpar@389
   507
          }
alpar@389
   508
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
alpar@389
   509
            Node v = _graph.target(e);
alpar@389
   510
            if (!reached[v] && _tolerance.positive((*_flow)[e])) {
kpeter@581
   511
              reached[v] = true;
alpar@389
   512
              _level->initAddItem(v);
alpar@389
   513
              nqueue.push_back(v);
alpar@389
   514
            }
alpar@389
   515
          }
alpar@389
   516
        }
alpar@389
   517
        queue.swap(nqueue);
alpar@389
   518
      }
alpar@389
   519
      _level->initFinish();
alpar@389
   520
alpar@389
   521
      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
kpeter@641
   522
        Value rem = (*_capacity)[e] - (*_flow)[e];
alpar@389
   523
        if (_tolerance.positive(rem)) {
alpar@389
   524
          Node u = _graph.target(e);
alpar@389
   525
          if ((*_level)[u] == _level->maxLevel()) continue;
alpar@389
   526
          _flow->set(e, (*_capacity)[e]);
kpeter@581
   527
          (*_excess)[u] += rem;
alpar@389
   528
          if (u != _target && !_level->active(u)) {
alpar@389
   529
            _level->activate(u);
alpar@389
   530
          }
alpar@389
   531
        }
alpar@389
   532
      }
alpar@389
   533
      for (InArcIt e(_graph, _source); e != INVALID; ++e) {
kpeter@641
   534
        Value rem = (*_flow)[e];
alpar@389
   535
        if (_tolerance.positive(rem)) {
alpar@389
   536
          Node v = _graph.source(e);
alpar@389
   537
          if ((*_level)[v] == _level->maxLevel()) continue;
alpar@389
   538
          _flow->set(e, 0);
kpeter@581
   539
          (*_excess)[v] += rem;
alpar@389
   540
          if (v != _target && !_level->active(v)) {
alpar@389
   541
            _level->activate(v);
alpar@389
   542
          }
alpar@389
   543
        }
alpar@389
   544
      }
alpar@389
   545
      return true;
alpar@389
   546
    }
alpar@389
   547
alpar@389
   548
    /// \brief Starts the first phase of the preflow algorithm.
alpar@389
   549
    ///
alpar@389
   550
    /// The preflow algorithm consists of two phases, this method runs
alpar@389
   551
    /// the first phase. After the first phase the maximum flow value
alpar@389
   552
    /// and a minimum value cut can already be computed, although a
alpar@389
   553
    /// maximum flow is not yet obtained. So after calling this method
alpar@389
   554
    /// \ref flowValue() returns the value of a maximum flow and \ref
alpar@389
   555
    /// minCut() returns a minimum cut.
kpeter@393
   556
    /// \pre One of the \ref init() functions must be called before
kpeter@393
   557
    /// using this function.
alpar@389
   558
    void startFirstPhase() {
alpar@389
   559
      _phase = true;
alpar@389
   560
alpar@389
   561
      Node n = _level->highestActive();
alpar@389
   562
      int level = _level->highestActiveLevel();
alpar@389
   563
      while (n != INVALID) {
alpar@389
   564
        int num = _node_num;
alpar@389
   565
alpar@389
   566
        while (num > 0 && n != INVALID) {
kpeter@641
   567
          Value excess = (*_excess)[n];
alpar@389
   568
          int new_level = _level->maxLevel();
alpar@389
   569
alpar@389
   570
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
kpeter@641
   571
            Value rem = (*_capacity)[e] - (*_flow)[e];
alpar@389
   572
            if (!_tolerance.positive(rem)) continue;
alpar@389
   573
            Node v = _graph.target(e);
alpar@389
   574
            if ((*_level)[v] < level) {
alpar@389
   575
              if (!_level->active(v) && v != _target) {
alpar@389
   576
                _level->activate(v);
alpar@389
   577
              }
alpar@389
   578
              if (!_tolerance.less(rem, excess)) {
alpar@389
   579
                _flow->set(e, (*_flow)[e] + excess);
kpeter@581
   580
                (*_excess)[v] += excess;
alpar@389
   581
                excess = 0;
alpar@389
   582
                goto no_more_push_1;
alpar@389
   583
              } else {
alpar@389
   584
                excess -= rem;
kpeter@581
   585
                (*_excess)[v] += rem;
alpar@389
   586
                _flow->set(e, (*_capacity)[e]);
alpar@389
   587
              }
alpar@389
   588
            } else if (new_level > (*_level)[v]) {
alpar@389
   589
              new_level = (*_level)[v];
alpar@389
   590
            }
alpar@389
   591
          }
alpar@389
   592
alpar@389
   593
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
kpeter@641
   594
            Value rem = (*_flow)[e];
alpar@389
   595
            if (!_tolerance.positive(rem)) continue;
alpar@389
   596
            Node v = _graph.source(e);
alpar@389
   597
            if ((*_level)[v] < level) {
alpar@389
   598
              if (!_level->active(v) && v != _target) {
alpar@389
   599
                _level->activate(v);
alpar@389
   600
              }
alpar@389
   601
              if (!_tolerance.less(rem, excess)) {
alpar@389
   602
                _flow->set(e, (*_flow)[e] - excess);
kpeter@581
   603
                (*_excess)[v] += excess;
alpar@389
   604
                excess = 0;
alpar@389
   605
                goto no_more_push_1;
alpar@389
   606
              } else {
alpar@389
   607
                excess -= rem;
kpeter@581
   608
                (*_excess)[v] += rem;
alpar@389
   609
                _flow->set(e, 0);
alpar@389
   610
              }
alpar@389
   611
            } else if (new_level > (*_level)[v]) {
alpar@389
   612
              new_level = (*_level)[v];
alpar@389
   613
            }
alpar@389
   614
          }
alpar@389
   615
alpar@389
   616
        no_more_push_1:
alpar@389
   617
kpeter@581
   618
          (*_excess)[n] = excess;
alpar@389
   619
alpar@389
   620
          if (excess != 0) {
alpar@389
   621
            if (new_level + 1 < _level->maxLevel()) {
alpar@389
   622
              _level->liftHighestActive(new_level + 1);
alpar@389
   623
            } else {
alpar@389
   624
              _level->liftHighestActiveToTop();
alpar@389
   625
            }
alpar@389
   626
            if (_level->emptyLevel(level)) {
alpar@389
   627
              _level->liftToTop(level);
alpar@389
   628
            }
alpar@389
   629
          } else {
alpar@389
   630
            _level->deactivate(n);
alpar@389
   631
          }
alpar@389
   632
alpar@389
   633
          n = _level->highestActive();
alpar@389
   634
          level = _level->highestActiveLevel();
alpar@389
   635
          --num;
alpar@389
   636
        }
alpar@389
   637
alpar@389
   638
        num = _node_num * 20;
alpar@389
   639
        while (num > 0 && n != INVALID) {
kpeter@641
   640
          Value excess = (*_excess)[n];
alpar@389
   641
          int new_level = _level->maxLevel();
alpar@389
   642
alpar@389
   643
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
kpeter@641
   644
            Value rem = (*_capacity)[e] - (*_flow)[e];
alpar@389
   645
            if (!_tolerance.positive(rem)) continue;
alpar@389
   646
            Node v = _graph.target(e);
alpar@389
   647
            if ((*_level)[v] < level) {
alpar@389
   648
              if (!_level->active(v) && v != _target) {
alpar@389
   649
                _level->activate(v);
alpar@389
   650
              }
alpar@389
   651
              if (!_tolerance.less(rem, excess)) {
alpar@389
   652
                _flow->set(e, (*_flow)[e] + excess);
kpeter@581
   653
                (*_excess)[v] += excess;
alpar@389
   654
                excess = 0;
alpar@389
   655
                goto no_more_push_2;
alpar@389
   656
              } else {
alpar@389
   657
                excess -= rem;
kpeter@581
   658
                (*_excess)[v] += rem;
alpar@389
   659
                _flow->set(e, (*_capacity)[e]);
alpar@389
   660
              }
alpar@389
   661
            } else if (new_level > (*_level)[v]) {
alpar@389
   662
              new_level = (*_level)[v];
alpar@389
   663
            }
alpar@389
   664
          }
alpar@389
   665
alpar@389
   666
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
kpeter@641
   667
            Value rem = (*_flow)[e];
alpar@389
   668
            if (!_tolerance.positive(rem)) continue;
alpar@389
   669
            Node v = _graph.source(e);
alpar@389
   670
            if ((*_level)[v] < level) {
alpar@389
   671
              if (!_level->active(v) && v != _target) {
alpar@389
   672
                _level->activate(v);
alpar@389
   673
              }
alpar@389
   674
              if (!_tolerance.less(rem, excess)) {
alpar@389
   675
                _flow->set(e, (*_flow)[e] - excess);
kpeter@581
   676
                (*_excess)[v] += excess;
alpar@389
   677
                excess = 0;
alpar@389
   678
                goto no_more_push_2;
alpar@389
   679
              } else {
alpar@389
   680
                excess -= rem;
kpeter@581
   681
                (*_excess)[v] += rem;
alpar@389
   682
                _flow->set(e, 0);
alpar@389
   683
              }
alpar@389
   684
            } else if (new_level > (*_level)[v]) {
alpar@389
   685
              new_level = (*_level)[v];
alpar@389
   686
            }
alpar@389
   687
          }
alpar@389
   688
alpar@389
   689
        no_more_push_2:
alpar@389
   690
kpeter@581
   691
          (*_excess)[n] = excess;
alpar@389
   692
alpar@389
   693
          if (excess != 0) {
alpar@389
   694
            if (new_level + 1 < _level->maxLevel()) {
alpar@389
   695
              _level->liftActiveOn(level, new_level + 1);
alpar@389
   696
            } else {
alpar@389
   697
              _level->liftActiveToTop(level);
alpar@389
   698
            }
alpar@389
   699
            if (_level->emptyLevel(level)) {
alpar@389
   700
              _level->liftToTop(level);
alpar@389
   701
            }
alpar@389
   702
          } else {
alpar@389
   703
            _level->deactivate(n);
alpar@389
   704
          }
alpar@389
   705
alpar@389
   706
          while (level >= 0 && _level->activeFree(level)) {
alpar@389
   707
            --level;
alpar@389
   708
          }
alpar@389
   709
          if (level == -1) {
alpar@389
   710
            n = _level->highestActive();
alpar@389
   711
            level = _level->highestActiveLevel();
alpar@389
   712
          } else {
alpar@389
   713
            n = _level->activeOn(level);
alpar@389
   714
          }
alpar@389
   715
          --num;
alpar@389
   716
        }
alpar@389
   717
      }
alpar@389
   718
    }
alpar@389
   719
alpar@389
   720
    /// \brief Starts the second phase of the preflow algorithm.
alpar@389
   721
    ///
alpar@389
   722
    /// The preflow algorithm consists of two phases, this method runs
kpeter@393
   723
    /// the second phase. After calling one of the \ref init() functions
kpeter@393
   724
    /// and \ref startFirstPhase() and then \ref startSecondPhase(),
kpeter@393
   725
    /// \ref flowMap() returns a maximum flow, \ref flowValue() returns the
alpar@389
   726
    /// value of a maximum flow, \ref minCut() returns a minimum cut
kpeter@393
   727
    /// \pre One of the \ref init() functions and \ref startFirstPhase()
kpeter@393
   728
    /// must be called before using this function.
alpar@389
   729
    void startSecondPhase() {
alpar@389
   730
      _phase = false;
alpar@389
   731
alpar@389
   732
      typename Digraph::template NodeMap<bool> reached(_graph);
alpar@389
   733
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@581
   734
        reached[n] = (*_level)[n] < _level->maxLevel();
alpar@389
   735
      }
alpar@389
   736
alpar@389
   737
      _level->initStart();
alpar@389
   738
      _level->initAddItem(_source);
alpar@389
   739
alpar@389
   740
      std::vector<Node> queue;
alpar@389
   741
      queue.push_back(_source);
kpeter@581
   742
      reached[_source] = true;
alpar@389
   743
alpar@389
   744
      while (!queue.empty()) {
alpar@389
   745
        _level->initNewLevel();
alpar@389
   746
        std::vector<Node> nqueue;
alpar@389
   747
        for (int i = 0; i < int(queue.size()); ++i) {
alpar@389
   748
          Node n = queue[i];
alpar@389
   749
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
alpar@389
   750
            Node v = _graph.target(e);
alpar@389
   751
            if (!reached[v] && _tolerance.positive((*_flow)[e])) {
kpeter@581
   752
              reached[v] = true;
alpar@389
   753
              _level->initAddItem(v);
alpar@389
   754
              nqueue.push_back(v);
alpar@389
   755
            }
alpar@389
   756
          }
alpar@389
   757
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
alpar@389
   758
            Node u = _graph.source(e);
alpar@389
   759
            if (!reached[u] &&
alpar@389
   760
                _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
kpeter@581
   761
              reached[u] = true;
alpar@389
   762
              _level->initAddItem(u);
alpar@389
   763
              nqueue.push_back(u);
alpar@389
   764
            }
alpar@389
   765
          }
alpar@389
   766
        }
alpar@389
   767
        queue.swap(nqueue);
alpar@389
   768
      }
alpar@389
   769
      _level->initFinish();
alpar@389
   770
alpar@389
   771
      for (NodeIt n(_graph); n != INVALID; ++n) {
alpar@389
   772
        if (!reached[n]) {
alpar@389
   773
          _level->dirtyTopButOne(n);
alpar@389
   774
        } else if ((*_excess)[n] > 0 && _target != n) {
alpar@389
   775
          _level->activate(n);
alpar@389
   776
        }
alpar@389
   777
      }
alpar@389
   778
alpar@389
   779
      Node n;
alpar@389
   780
      while ((n = _level->highestActive()) != INVALID) {
kpeter@641
   781
        Value excess = (*_excess)[n];
alpar@389
   782
        int level = _level->highestActiveLevel();
alpar@389
   783
        int new_level = _level->maxLevel();
alpar@389
   784
alpar@389
   785
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
kpeter@641
   786
          Value rem = (*_capacity)[e] - (*_flow)[e];
alpar@389
   787
          if (!_tolerance.positive(rem)) continue;
alpar@389
   788
          Node v = _graph.target(e);
alpar@389
   789
          if ((*_level)[v] < level) {
alpar@389
   790
            if (!_level->active(v) && v != _source) {
alpar@389
   791
              _level->activate(v);
alpar@389
   792
            }
alpar@389
   793
            if (!_tolerance.less(rem, excess)) {
alpar@389
   794
              _flow->set(e, (*_flow)[e] + excess);
kpeter@581
   795
              (*_excess)[v] += excess;
alpar@389
   796
              excess = 0;
alpar@389
   797
              goto no_more_push;
alpar@389
   798
            } else {
alpar@389
   799
              excess -= rem;
kpeter@581
   800
              (*_excess)[v] += rem;
alpar@389
   801
              _flow->set(e, (*_capacity)[e]);
alpar@389
   802
            }
alpar@389
   803
          } else if (new_level > (*_level)[v]) {
alpar@389
   804
            new_level = (*_level)[v];
alpar@389
   805
          }
alpar@389
   806
        }
alpar@389
   807
alpar@389
   808
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
kpeter@641
   809
          Value rem = (*_flow)[e];
alpar@389
   810
          if (!_tolerance.positive(rem)) continue;
alpar@389
   811
          Node v = _graph.source(e);
alpar@389
   812
          if ((*_level)[v] < level) {
alpar@389
   813
            if (!_level->active(v) && v != _source) {
alpar@389
   814
              _level->activate(v);
alpar@389
   815
            }
alpar@389
   816
            if (!_tolerance.less(rem, excess)) {
alpar@389
   817
              _flow->set(e, (*_flow)[e] - excess);
kpeter@581
   818
              (*_excess)[v] += excess;
alpar@389
   819
              excess = 0;
alpar@389
   820
              goto no_more_push;
alpar@389
   821
            } else {
alpar@389
   822
              excess -= rem;
kpeter@581
   823
              (*_excess)[v] += rem;
alpar@389
   824
              _flow->set(e, 0);
alpar@389
   825
            }
alpar@389
   826
          } else if (new_level > (*_level)[v]) {
alpar@389
   827
            new_level = (*_level)[v];
alpar@389
   828
          }
alpar@389
   829
        }
alpar@389
   830
alpar@389
   831
      no_more_push:
alpar@389
   832
kpeter@581
   833
        (*_excess)[n] = excess;
alpar@389
   834
alpar@389
   835
        if (excess != 0) {
alpar@389
   836
          if (new_level + 1 < _level->maxLevel()) {
alpar@389
   837
            _level->liftHighestActive(new_level + 1);
alpar@389
   838
          } else {
alpar@389
   839
            // Calculation error
alpar@389
   840
            _level->liftHighestActiveToTop();
alpar@389
   841
          }
alpar@389
   842
          if (_level->emptyLevel(level)) {
alpar@389
   843
            // Calculation error
alpar@389
   844
            _level->liftToTop(level);
alpar@389
   845
          }
alpar@389
   846
        } else {
alpar@389
   847
          _level->deactivate(n);
alpar@389
   848
        }
alpar@389
   849
alpar@389
   850
      }
alpar@389
   851
    }
alpar@389
   852
alpar@389
   853
    /// \brief Runs the preflow algorithm.
alpar@389
   854
    ///
alpar@389
   855
    /// Runs the preflow algorithm.
alpar@389
   856
    /// \note pf.run() is just a shortcut of the following code.
alpar@389
   857
    /// \code
alpar@389
   858
    ///   pf.init();
alpar@389
   859
    ///   pf.startFirstPhase();
alpar@389
   860
    ///   pf.startSecondPhase();
alpar@389
   861
    /// \endcode
alpar@389
   862
    void run() {
alpar@389
   863
      init();
alpar@389
   864
      startFirstPhase();
alpar@389
   865
      startSecondPhase();
alpar@389
   866
    }
alpar@389
   867
alpar@389
   868
    /// \brief Runs the preflow algorithm to compute the minimum cut.
alpar@389
   869
    ///
alpar@389
   870
    /// Runs the preflow algorithm to compute the minimum cut.
alpar@389
   871
    /// \note pf.runMinCut() is just a shortcut of the following code.
alpar@389
   872
    /// \code
alpar@389
   873
    ///   pf.init();
alpar@389
   874
    ///   pf.startFirstPhase();
alpar@389
   875
    /// \endcode
alpar@389
   876
    void runMinCut() {
alpar@389
   877
      init();
alpar@389
   878
      startFirstPhase();
alpar@389
   879
    }
alpar@389
   880
alpar@389
   881
    /// @}
alpar@389
   882
alpar@389
   883
    /// \name Query Functions
kpeter@393
   884
    /// The results of the preflow algorithm can be obtained using these
alpar@389
   885
    /// functions.\n
kpeter@393
   886
    /// Either one of the \ref run() "run*()" functions or one of the
kpeter@393
   887
    /// \ref startFirstPhase() "start*()" functions should be called
kpeter@393
   888
    /// before using them.
alpar@389
   889
alpar@389
   890
    ///@{
alpar@389
   891
alpar@389
   892
    /// \brief Returns the value of the maximum flow.
alpar@389
   893
    ///
alpar@389
   894
    /// Returns the value of the maximum flow by returning the excess
kpeter@393
   895
    /// of the target node. This value equals to the value of
kpeter@393
   896
    /// the maximum flow already after the first phase of the algorithm.
kpeter@393
   897
    ///
kpeter@393
   898
    /// \pre Either \ref run() or \ref init() must be called before
kpeter@393
   899
    /// using this function.
kpeter@641
   900
    Value flowValue() const {
alpar@389
   901
      return (*_excess)[_target];
alpar@389
   902
    }
alpar@389
   903
kpeter@641
   904
    /// \brief Returns the flow value on the given arc.
alpar@389
   905
    ///
kpeter@641
   906
    /// Returns the flow value on the given arc. This method can
kpeter@393
   907
    /// be called after the second phase of the algorithm.
kpeter@393
   908
    ///
kpeter@393
   909
    /// \pre Either \ref run() or \ref init() must be called before
kpeter@393
   910
    /// using this function.
kpeter@641
   911
    Value flow(const Arc& arc) const {
kpeter@393
   912
      return (*_flow)[arc];
kpeter@393
   913
    }
kpeter@393
   914
kpeter@393
   915
    /// \brief Returns a const reference to the flow map.
kpeter@393
   916
    ///
kpeter@393
   917
    /// Returns a const reference to the arc map storing the found flow.
kpeter@393
   918
    /// This method can be called after the second phase of the algorithm.
kpeter@393
   919
    ///
kpeter@393
   920
    /// \pre Either \ref run() or \ref init() must be called before
kpeter@393
   921
    /// using this function.
kpeter@420
   922
    const FlowMap& flowMap() const {
kpeter@393
   923
      return *_flow;
kpeter@393
   924
    }
kpeter@393
   925
kpeter@393
   926
    /// \brief Returns \c true when the node is on the source side of the
kpeter@393
   927
    /// minimum cut.
kpeter@393
   928
    ///
kpeter@393
   929
    /// Returns true when the node is on the source side of the found
kpeter@393
   930
    /// minimum cut. This method can be called both after running \ref
alpar@389
   931
    /// startFirstPhase() and \ref startSecondPhase().
kpeter@393
   932
    ///
kpeter@393
   933
    /// \pre Either \ref run() or \ref init() must be called before
kpeter@393
   934
    /// using this function.
alpar@389
   935
    bool minCut(const Node& node) const {
alpar@389
   936
      return ((*_level)[node] == _level->maxLevel()) == _phase;
alpar@389
   937
    }
alpar@389
   938
kpeter@393
   939
    /// \brief Gives back a minimum value cut.
alpar@389
   940
    ///
kpeter@393
   941
    /// Sets \c cutMap to the characteristic vector of a minimum value
kpeter@393
   942
    /// cut. \c cutMap should be a \ref concepts::WriteMap "writable"
kpeter@393
   943
    /// node map with \c bool (or convertible) value type.
kpeter@393
   944
    ///
kpeter@393
   945
    /// This method can be called both after running \ref startFirstPhase()
kpeter@393
   946
    /// and \ref startSecondPhase(). The result after the second phase
kpeter@393
   947
    /// could be slightly different if inexact computation is used.
kpeter@393
   948
    ///
kpeter@393
   949
    /// \note This function calls \ref minCut() for each node, so it runs in
kpeter@559
   950
    /// O(n) time.
kpeter@393
   951
    ///
kpeter@393
   952
    /// \pre Either \ref run() or \ref init() must be called before
kpeter@393
   953
    /// using this function.
alpar@389
   954
    template <typename CutMap>
alpar@389
   955
    void minCutMap(CutMap& cutMap) const {
alpar@389
   956
      for (NodeIt n(_graph); n != INVALID; ++n) {
alpar@389
   957
        cutMap.set(n, minCut(n));
alpar@389
   958
      }
alpar@389
   959
    }
alpar@389
   960
alpar@389
   961
    /// @}
alpar@389
   962
  };
alpar@389
   963
}
alpar@389
   964
alpar@389
   965
#endif