alpar@209
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
alpar@10
|
2 |
*
|
alpar@209
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
alpar@10
|
4 |
*
|
alpar@440
|
5 |
* Copyright (C) 2003-2009
|
alpar@10
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@10
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@10
|
8 |
*
|
alpar@10
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@10
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@10
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@10
|
12 |
*
|
alpar@10
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@10
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@10
|
15 |
* purpose.
|
alpar@10
|
16 |
*
|
alpar@10
|
17 |
*/
|
alpar@10
|
18 |
|
alpar@10
|
19 |
/*
|
alpar@10
|
20 |
* This file contains the reimplemented version of the Mersenne Twister
|
alpar@10
|
21 |
* Generator of Matsumoto and Nishimura.
|
alpar@10
|
22 |
*
|
alpar@10
|
23 |
* See the appropriate copyright notice below.
|
alpar@209
|
24 |
*
|
alpar@10
|
25 |
* Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
|
alpar@209
|
26 |
* All rights reserved.
|
alpar@10
|
27 |
*
|
alpar@10
|
28 |
* Redistribution and use in source and binary forms, with or without
|
alpar@10
|
29 |
* modification, are permitted provided that the following conditions
|
alpar@10
|
30 |
* are met:
|
alpar@10
|
31 |
*
|
alpar@10
|
32 |
* 1. Redistributions of source code must retain the above copyright
|
alpar@10
|
33 |
* notice, this list of conditions and the following disclaimer.
|
alpar@10
|
34 |
*
|
alpar@10
|
35 |
* 2. Redistributions in binary form must reproduce the above copyright
|
alpar@10
|
36 |
* notice, this list of conditions and the following disclaimer in the
|
alpar@10
|
37 |
* documentation and/or other materials provided with the distribution.
|
alpar@10
|
38 |
*
|
alpar@209
|
39 |
* 3. The names of its contributors may not be used to endorse or promote
|
alpar@209
|
40 |
* products derived from this software without specific prior written
|
alpar@10
|
41 |
* permission.
|
alpar@10
|
42 |
*
|
alpar@10
|
43 |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
alpar@10
|
44 |
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
alpar@10
|
45 |
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
alpar@10
|
46 |
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
alpar@10
|
47 |
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
alpar@10
|
48 |
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
alpar@10
|
49 |
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
alpar@10
|
50 |
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
alpar@10
|
51 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
alpar@10
|
52 |
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
alpar@10
|
53 |
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
alpar@10
|
54 |
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
alpar@10
|
55 |
*
|
alpar@10
|
56 |
*
|
alpar@10
|
57 |
* Any feedback is very welcome.
|
alpar@10
|
58 |
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
|
alpar@10
|
59 |
* email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
|
alpar@10
|
60 |
*/
|
alpar@10
|
61 |
|
alpar@10
|
62 |
#ifndef LEMON_RANDOM_H
|
alpar@10
|
63 |
#define LEMON_RANDOM_H
|
alpar@10
|
64 |
|
alpar@1143
|
65 |
#include <lemon/config.h>
|
alpar@1143
|
66 |
|
alpar@10
|
67 |
#include <algorithm>
|
alpar@10
|
68 |
#include <iterator>
|
alpar@10
|
69 |
#include <vector>
|
deba@110
|
70 |
#include <limits>
|
deba@177
|
71 |
#include <fstream>
|
alpar@10
|
72 |
|
alpar@68
|
73 |
#include <lemon/math.h>
|
alpar@10
|
74 |
#include <lemon/dim2.h>
|
alpar@68
|
75 |
|
alpar@1143
|
76 |
#ifndef LEMON_WIN32
|
deba@177
|
77 |
#include <sys/time.h>
|
deba@177
|
78 |
#include <ctime>
|
deba@177
|
79 |
#include <sys/types.h>
|
deba@177
|
80 |
#include <unistd.h>
|
deba@177
|
81 |
#else
|
alpar@482
|
82 |
#include <lemon/bits/windows.h>
|
deba@177
|
83 |
#endif
|
deba@177
|
84 |
|
alpar@10
|
85 |
///\ingroup misc
|
alpar@10
|
86 |
///\file
|
alpar@10
|
87 |
///\brief Mersenne Twister random number generator
|
alpar@10
|
88 |
|
alpar@10
|
89 |
namespace lemon {
|
alpar@10
|
90 |
|
alpar@10
|
91 |
namespace _random_bits {
|
alpar@209
|
92 |
|
alpar@10
|
93 |
template <typename _Word, int _bits = std::numeric_limits<_Word>::digits>
|
alpar@10
|
94 |
struct RandomTraits {};
|
alpar@10
|
95 |
|
alpar@10
|
96 |
template <typename _Word>
|
alpar@10
|
97 |
struct RandomTraits<_Word, 32> {
|
alpar@10
|
98 |
|
alpar@10
|
99 |
typedef _Word Word;
|
alpar@10
|
100 |
static const int bits = 32;
|
alpar@10
|
101 |
|
alpar@10
|
102 |
static const int length = 624;
|
alpar@10
|
103 |
static const int shift = 397;
|
alpar@209
|
104 |
|
alpar@10
|
105 |
static const Word mul = 0x6c078965u;
|
alpar@10
|
106 |
static const Word arrayInit = 0x012BD6AAu;
|
alpar@10
|
107 |
static const Word arrayMul1 = 0x0019660Du;
|
alpar@10
|
108 |
static const Word arrayMul2 = 0x5D588B65u;
|
alpar@10
|
109 |
|
alpar@10
|
110 |
static const Word mask = 0x9908B0DFu;
|
alpar@10
|
111 |
static const Word loMask = (1u << 31) - 1;
|
alpar@10
|
112 |
static const Word hiMask = ~loMask;
|
alpar@10
|
113 |
|
alpar@10
|
114 |
|
alpar@10
|
115 |
static Word tempering(Word rnd) {
|
alpar@10
|
116 |
rnd ^= (rnd >> 11);
|
alpar@10
|
117 |
rnd ^= (rnd << 7) & 0x9D2C5680u;
|
alpar@10
|
118 |
rnd ^= (rnd << 15) & 0xEFC60000u;
|
alpar@10
|
119 |
rnd ^= (rnd >> 18);
|
alpar@10
|
120 |
return rnd;
|
alpar@10
|
121 |
}
|
alpar@10
|
122 |
|
alpar@10
|
123 |
};
|
alpar@10
|
124 |
|
alpar@10
|
125 |
template <typename _Word>
|
alpar@10
|
126 |
struct RandomTraits<_Word, 64> {
|
alpar@10
|
127 |
|
alpar@10
|
128 |
typedef _Word Word;
|
alpar@10
|
129 |
static const int bits = 64;
|
alpar@10
|
130 |
|
alpar@10
|
131 |
static const int length = 312;
|
alpar@10
|
132 |
static const int shift = 156;
|
alpar@10
|
133 |
|
alpar@10
|
134 |
static const Word mul = Word(0x5851F42Du) << 32 | Word(0x4C957F2Du);
|
alpar@10
|
135 |
static const Word arrayInit = Word(0x00000000u) << 32 |Word(0x012BD6AAu);
|
alpar@10
|
136 |
static const Word arrayMul1 = Word(0x369DEA0Fu) << 32 |Word(0x31A53F85u);
|
alpar@10
|
137 |
static const Word arrayMul2 = Word(0x27BB2EE6u) << 32 |Word(0x87B0B0FDu);
|
alpar@10
|
138 |
|
alpar@10
|
139 |
static const Word mask = Word(0xB5026F5Au) << 32 | Word(0xA96619E9u);
|
alpar@10
|
140 |
static const Word loMask = (Word(1u) << 31) - 1;
|
alpar@10
|
141 |
static const Word hiMask = ~loMask;
|
alpar@10
|
142 |
|
alpar@10
|
143 |
static Word tempering(Word rnd) {
|
alpar@10
|
144 |
rnd ^= (rnd >> 29) & (Word(0x55555555u) << 32 | Word(0x55555555u));
|
alpar@10
|
145 |
rnd ^= (rnd << 17) & (Word(0x71D67FFFu) << 32 | Word(0xEDA60000u));
|
alpar@10
|
146 |
rnd ^= (rnd << 37) & (Word(0xFFF7EEE0u) << 32 | Word(0x00000000u));
|
alpar@10
|
147 |
rnd ^= (rnd >> 43);
|
alpar@10
|
148 |
return rnd;
|
alpar@10
|
149 |
}
|
alpar@10
|
150 |
|
alpar@10
|
151 |
};
|
alpar@10
|
152 |
|
alpar@10
|
153 |
template <typename _Word>
|
alpar@10
|
154 |
class RandomCore {
|
alpar@10
|
155 |
public:
|
alpar@10
|
156 |
|
alpar@10
|
157 |
typedef _Word Word;
|
alpar@10
|
158 |
|
alpar@10
|
159 |
private:
|
alpar@10
|
160 |
|
alpar@10
|
161 |
static const int bits = RandomTraits<Word>::bits;
|
alpar@10
|
162 |
|
alpar@10
|
163 |
static const int length = RandomTraits<Word>::length;
|
alpar@10
|
164 |
static const int shift = RandomTraits<Word>::shift;
|
alpar@10
|
165 |
|
alpar@10
|
166 |
public:
|
alpar@10
|
167 |
|
alpar@10
|
168 |
void initState() {
|
alpar@10
|
169 |
static const Word seedArray[4] = {
|
alpar@10
|
170 |
0x12345u, 0x23456u, 0x34567u, 0x45678u
|
alpar@10
|
171 |
};
|
alpar@209
|
172 |
|
alpar@10
|
173 |
initState(seedArray, seedArray + 4);
|
alpar@10
|
174 |
}
|
alpar@10
|
175 |
|
alpar@10
|
176 |
void initState(Word seed) {
|
alpar@10
|
177 |
|
alpar@10
|
178 |
static const Word mul = RandomTraits<Word>::mul;
|
alpar@10
|
179 |
|
alpar@209
|
180 |
current = state;
|
alpar@10
|
181 |
|
alpar@10
|
182 |
Word *curr = state + length - 1;
|
alpar@10
|
183 |
curr[0] = seed; --curr;
|
alpar@10
|
184 |
for (int i = 1; i < length; ++i) {
|
alpar@10
|
185 |
curr[0] = (mul * ( curr[1] ^ (curr[1] >> (bits - 2)) ) + i);
|
alpar@10
|
186 |
--curr;
|
alpar@10
|
187 |
}
|
alpar@10
|
188 |
}
|
alpar@10
|
189 |
|
alpar@10
|
190 |
template <typename Iterator>
|
alpar@10
|
191 |
void initState(Iterator begin, Iterator end) {
|
alpar@10
|
192 |
|
alpar@10
|
193 |
static const Word init = RandomTraits<Word>::arrayInit;
|
alpar@10
|
194 |
static const Word mul1 = RandomTraits<Word>::arrayMul1;
|
alpar@10
|
195 |
static const Word mul2 = RandomTraits<Word>::arrayMul2;
|
alpar@10
|
196 |
|
alpar@10
|
197 |
|
alpar@10
|
198 |
Word *curr = state + length - 1; --curr;
|
alpar@10
|
199 |
Iterator it = begin; int cnt = 0;
|
alpar@10
|
200 |
int num;
|
alpar@10
|
201 |
|
alpar@10
|
202 |
initState(init);
|
alpar@10
|
203 |
|
alpar@1139
|
204 |
num = static_cast<int>(length > end - begin ? length : end - begin);
|
alpar@10
|
205 |
while (num--) {
|
alpar@209
|
206 |
curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul1))
|
alpar@10
|
207 |
+ *it + cnt;
|
alpar@10
|
208 |
++it; ++cnt;
|
alpar@10
|
209 |
if (it == end) {
|
alpar@10
|
210 |
it = begin; cnt = 0;
|
alpar@10
|
211 |
}
|
alpar@10
|
212 |
if (curr == state) {
|
alpar@10
|
213 |
curr = state + length - 1; curr[0] = state[0];
|
alpar@10
|
214 |
}
|
alpar@10
|
215 |
--curr;
|
alpar@10
|
216 |
}
|
alpar@10
|
217 |
|
alpar@1139
|
218 |
num = length - 1; cnt = static_cast<int>(length - (curr - state) - 1);
|
alpar@10
|
219 |
while (num--) {
|
alpar@10
|
220 |
curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul2))
|
alpar@10
|
221 |
- cnt;
|
alpar@10
|
222 |
--curr; ++cnt;
|
alpar@10
|
223 |
if (curr == state) {
|
alpar@10
|
224 |
curr = state + length - 1; curr[0] = state[0]; --curr;
|
alpar@10
|
225 |
cnt = 1;
|
alpar@10
|
226 |
}
|
alpar@10
|
227 |
}
|
alpar@209
|
228 |
|
alpar@10
|
229 |
state[length - 1] = Word(1) << (bits - 1);
|
alpar@10
|
230 |
}
|
alpar@209
|
231 |
|
alpar@10
|
232 |
void copyState(const RandomCore& other) {
|
alpar@10
|
233 |
std::copy(other.state, other.state + length, state);
|
alpar@10
|
234 |
current = state + (other.current - other.state);
|
alpar@10
|
235 |
}
|
alpar@10
|
236 |
|
alpar@10
|
237 |
Word operator()() {
|
alpar@10
|
238 |
if (current == state) fillState();
|
alpar@10
|
239 |
--current;
|
alpar@10
|
240 |
Word rnd = *current;
|
alpar@10
|
241 |
return RandomTraits<Word>::tempering(rnd);
|
alpar@10
|
242 |
}
|
alpar@10
|
243 |
|
alpar@10
|
244 |
private:
|
alpar@10
|
245 |
|
alpar@209
|
246 |
|
alpar@10
|
247 |
void fillState() {
|
alpar@10
|
248 |
static const Word mask[2] = { 0x0ul, RandomTraits<Word>::mask };
|
alpar@10
|
249 |
static const Word loMask = RandomTraits<Word>::loMask;
|
alpar@10
|
250 |
static const Word hiMask = RandomTraits<Word>::hiMask;
|
alpar@10
|
251 |
|
alpar@209
|
252 |
current = state + length;
|
alpar@10
|
253 |
|
alpar@10
|
254 |
register Word *curr = state + length - 1;
|
alpar@10
|
255 |
register long num;
|
alpar@209
|
256 |
|
alpar@10
|
257 |
num = length - shift;
|
alpar@10
|
258 |
while (num--) {
|
alpar@10
|
259 |
curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^
|
alpar@10
|
260 |
curr[- shift] ^ mask[curr[-1] & 1ul];
|
alpar@10
|
261 |
--curr;
|
alpar@10
|
262 |
}
|
alpar@10
|
263 |
num = shift - 1;
|
alpar@10
|
264 |
while (num--) {
|
alpar@10
|
265 |
curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^
|
alpar@10
|
266 |
curr[length - shift] ^ mask[curr[-1] & 1ul];
|
alpar@10
|
267 |
--curr;
|
alpar@10
|
268 |
}
|
deba@62
|
269 |
state[0] = (((state[0] & hiMask) | (curr[length - 1] & loMask)) >> 1) ^
|
alpar@10
|
270 |
curr[length - shift] ^ mask[curr[length - 1] & 1ul];
|
alpar@10
|
271 |
|
alpar@10
|
272 |
}
|
alpar@10
|
273 |
|
alpar@209
|
274 |
|
alpar@10
|
275 |
Word *current;
|
alpar@10
|
276 |
Word state[length];
|
alpar@209
|
277 |
|
alpar@10
|
278 |
};
|
alpar@10
|
279 |
|
alpar@10
|
280 |
|
alpar@209
|
281 |
template <typename Result,
|
alpar@10
|
282 |
int shift = (std::numeric_limits<Result>::digits + 1) / 2>
|
alpar@10
|
283 |
struct Masker {
|
alpar@10
|
284 |
static Result mask(const Result& result) {
|
alpar@10
|
285 |
return Masker<Result, (shift + 1) / 2>::
|
alpar@10
|
286 |
mask(static_cast<Result>(result | (result >> shift)));
|
alpar@10
|
287 |
}
|
alpar@10
|
288 |
};
|
alpar@209
|
289 |
|
alpar@10
|
290 |
template <typename Result>
|
alpar@10
|
291 |
struct Masker<Result, 1> {
|
alpar@10
|
292 |
static Result mask(const Result& result) {
|
alpar@10
|
293 |
return static_cast<Result>(result | (result >> 1));
|
alpar@10
|
294 |
}
|
alpar@10
|
295 |
};
|
alpar@10
|
296 |
|
alpar@209
|
297 |
template <typename Result, typename Word,
|
alpar@209
|
298 |
int rest = std::numeric_limits<Result>::digits, int shift = 0,
|
alpar@10
|
299 |
bool last = rest <= std::numeric_limits<Word>::digits>
|
alpar@10
|
300 |
struct IntConversion {
|
alpar@10
|
301 |
static const int bits = std::numeric_limits<Word>::digits;
|
alpar@209
|
302 |
|
alpar@10
|
303 |
static Result convert(RandomCore<Word>& rnd) {
|
alpar@10
|
304 |
return static_cast<Result>(rnd() >> (bits - rest)) << shift;
|
alpar@10
|
305 |
}
|
alpar@10
|
306 |
|
alpar@209
|
307 |
};
|
alpar@209
|
308 |
|
alpar@209
|
309 |
template <typename Result, typename Word, int rest, int shift>
|
alpar@10
|
310 |
struct IntConversion<Result, Word, rest, shift, false> {
|
alpar@10
|
311 |
static const int bits = std::numeric_limits<Word>::digits;
|
alpar@10
|
312 |
|
alpar@10
|
313 |
static Result convert(RandomCore<Word>& rnd) {
|
alpar@209
|
314 |
return (static_cast<Result>(rnd()) << shift) |
|
alpar@10
|
315 |
IntConversion<Result, Word, rest - bits, shift + bits>::convert(rnd);
|
alpar@10
|
316 |
}
|
alpar@10
|
317 |
};
|
alpar@10
|
318 |
|
alpar@10
|
319 |
|
alpar@10
|
320 |
template <typename Result, typename Word,
|
alpar@209
|
321 |
bool one_word = (std::numeric_limits<Word>::digits <
|
alpar@209
|
322 |
std::numeric_limits<Result>::digits) >
|
alpar@10
|
323 |
struct Mapping {
|
alpar@10
|
324 |
static Result map(RandomCore<Word>& rnd, const Result& bound) {
|
alpar@10
|
325 |
Word max = Word(bound - 1);
|
alpar@10
|
326 |
Result mask = Masker<Result>::mask(bound - 1);
|
alpar@10
|
327 |
Result num;
|
alpar@10
|
328 |
do {
|
alpar@209
|
329 |
num = IntConversion<Result, Word>::convert(rnd) & mask;
|
alpar@10
|
330 |
} while (num > max);
|
alpar@10
|
331 |
return num;
|
alpar@10
|
332 |
}
|
alpar@10
|
333 |
};
|
alpar@10
|
334 |
|
alpar@10
|
335 |
template <typename Result, typename Word>
|
alpar@10
|
336 |
struct Mapping<Result, Word, false> {
|
alpar@10
|
337 |
static Result map(RandomCore<Word>& rnd, const Result& bound) {
|
alpar@10
|
338 |
Word max = Word(bound - 1);
|
alpar@10
|
339 |
Word mask = Masker<Word, (std::numeric_limits<Result>::digits + 1) / 2>
|
alpar@10
|
340 |
::mask(max);
|
alpar@10
|
341 |
Word num;
|
alpar@10
|
342 |
do {
|
alpar@10
|
343 |
num = rnd() & mask;
|
alpar@10
|
344 |
} while (num > max);
|
alpar@1171
|
345 |
return static_cast<Result>(num);
|
alpar@10
|
346 |
}
|
alpar@10
|
347 |
};
|
alpar@10
|
348 |
|
kpeter@487
|
349 |
template <typename Result, int exp>
|
alpar@10
|
350 |
struct ShiftMultiplier {
|
alpar@10
|
351 |
static const Result multiplier() {
|
alpar@10
|
352 |
Result res = ShiftMultiplier<Result, exp / 2>::multiplier();
|
alpar@10
|
353 |
res *= res;
|
alpar@10
|
354 |
if ((exp & 1) == 1) res *= static_cast<Result>(0.5);
|
alpar@209
|
355 |
return res;
|
alpar@10
|
356 |
}
|
alpar@10
|
357 |
};
|
alpar@10
|
358 |
|
alpar@10
|
359 |
template <typename Result>
|
kpeter@487
|
360 |
struct ShiftMultiplier<Result, 0> {
|
alpar@10
|
361 |
static const Result multiplier() {
|
alpar@209
|
362 |
return static_cast<Result>(1.0);
|
alpar@10
|
363 |
}
|
alpar@10
|
364 |
};
|
alpar@10
|
365 |
|
alpar@10
|
366 |
template <typename Result>
|
kpeter@487
|
367 |
struct ShiftMultiplier<Result, 20> {
|
alpar@10
|
368 |
static const Result multiplier() {
|
alpar@209
|
369 |
return static_cast<Result>(1.0/1048576.0);
|
alpar@10
|
370 |
}
|
alpar@10
|
371 |
};
|
alpar@209
|
372 |
|
alpar@10
|
373 |
template <typename Result>
|
kpeter@487
|
374 |
struct ShiftMultiplier<Result, 32> {
|
alpar@10
|
375 |
static const Result multiplier() {
|
kpeter@487
|
376 |
return static_cast<Result>(1.0/4294967296.0);
|
alpar@10
|
377 |
}
|
alpar@10
|
378 |
};
|
alpar@10
|
379 |
|
alpar@10
|
380 |
template <typename Result>
|
kpeter@487
|
381 |
struct ShiftMultiplier<Result, 53> {
|
alpar@10
|
382 |
static const Result multiplier() {
|
alpar@209
|
383 |
return static_cast<Result>(1.0/9007199254740992.0);
|
alpar@10
|
384 |
}
|
alpar@10
|
385 |
};
|
alpar@10
|
386 |
|
alpar@10
|
387 |
template <typename Result>
|
kpeter@487
|
388 |
struct ShiftMultiplier<Result, 64> {
|
alpar@10
|
389 |
static const Result multiplier() {
|
alpar@209
|
390 |
return static_cast<Result>(1.0/18446744073709551616.0);
|
alpar@10
|
391 |
}
|
alpar@10
|
392 |
};
|
alpar@10
|
393 |
|
alpar@10
|
394 |
template <typename Result, int exp>
|
alpar@10
|
395 |
struct Shifting {
|
alpar@10
|
396 |
static Result shift(const Result& result) {
|
alpar@10
|
397 |
return result * ShiftMultiplier<Result, exp>::multiplier();
|
alpar@10
|
398 |
}
|
alpar@10
|
399 |
};
|
alpar@10
|
400 |
|
alpar@10
|
401 |
template <typename Result, typename Word,
|
alpar@209
|
402 |
int rest = std::numeric_limits<Result>::digits, int shift = 0,
|
alpar@10
|
403 |
bool last = rest <= std::numeric_limits<Word>::digits>
|
alpar@209
|
404 |
struct RealConversion{
|
alpar@10
|
405 |
static const int bits = std::numeric_limits<Word>::digits;
|
alpar@10
|
406 |
|
alpar@10
|
407 |
static Result convert(RandomCore<Word>& rnd) {
|
kpeter@487
|
408 |
return Shifting<Result, shift + rest>::
|
alpar@10
|
409 |
shift(static_cast<Result>(rnd() >> (bits - rest)));
|
alpar@10
|
410 |
}
|
alpar@10
|
411 |
};
|
alpar@10
|
412 |
|
alpar@10
|
413 |
template <typename Result, typename Word, int rest, int shift>
|
alpar@209
|
414 |
struct RealConversion<Result, Word, rest, shift, false> {
|
alpar@10
|
415 |
static const int bits = std::numeric_limits<Word>::digits;
|
alpar@10
|
416 |
|
alpar@10
|
417 |
static Result convert(RandomCore<Word>& rnd) {
|
kpeter@487
|
418 |
return Shifting<Result, shift + bits>::
|
alpar@10
|
419 |
shift(static_cast<Result>(rnd())) +
|
alpar@10
|
420 |
RealConversion<Result, Word, rest-bits, shift + bits>::
|
alpar@10
|
421 |
convert(rnd);
|
alpar@10
|
422 |
}
|
alpar@10
|
423 |
};
|
alpar@10
|
424 |
|
alpar@10
|
425 |
template <typename Result, typename Word>
|
alpar@10
|
426 |
struct Initializer {
|
alpar@10
|
427 |
|
alpar@10
|
428 |
template <typename Iterator>
|
alpar@10
|
429 |
static void init(RandomCore<Word>& rnd, Iterator begin, Iterator end) {
|
alpar@10
|
430 |
std::vector<Word> ws;
|
alpar@10
|
431 |
for (Iterator it = begin; it != end; ++it) {
|
alpar@10
|
432 |
ws.push_back(Word(*it));
|
alpar@10
|
433 |
}
|
alpar@10
|
434 |
rnd.initState(ws.begin(), ws.end());
|
alpar@10
|
435 |
}
|
alpar@10
|
436 |
|
alpar@10
|
437 |
static void init(RandomCore<Word>& rnd, Result seed) {
|
alpar@10
|
438 |
rnd.initState(seed);
|
alpar@10
|
439 |
}
|
alpar@10
|
440 |
};
|
alpar@10
|
441 |
|
alpar@10
|
442 |
template <typename Word>
|
alpar@10
|
443 |
struct BoolConversion {
|
alpar@10
|
444 |
static bool convert(RandomCore<Word>& rnd) {
|
alpar@10
|
445 |
return (rnd() & 1) == 1;
|
alpar@10
|
446 |
}
|
alpar@10
|
447 |
};
|
alpar@10
|
448 |
|
alpar@10
|
449 |
template <typename Word>
|
alpar@10
|
450 |
struct BoolProducer {
|
alpar@10
|
451 |
Word buffer;
|
alpar@10
|
452 |
int num;
|
alpar@209
|
453 |
|
alpar@10
|
454 |
BoolProducer() : num(0) {}
|
alpar@10
|
455 |
|
alpar@10
|
456 |
bool convert(RandomCore<Word>& rnd) {
|
alpar@10
|
457 |
if (num == 0) {
|
alpar@10
|
458 |
buffer = rnd();
|
alpar@10
|
459 |
num = RandomTraits<Word>::bits;
|
alpar@10
|
460 |
}
|
alpar@10
|
461 |
bool r = (buffer & 1);
|
alpar@10
|
462 |
buffer >>= 1;
|
alpar@10
|
463 |
--num;
|
alpar@10
|
464 |
return r;
|
alpar@10
|
465 |
}
|
alpar@10
|
466 |
};
|
alpar@10
|
467 |
|
alpar@10
|
468 |
}
|
alpar@10
|
469 |
|
alpar@10
|
470 |
/// \ingroup misc
|
alpar@10
|
471 |
///
|
alpar@10
|
472 |
/// \brief Mersenne Twister random number generator
|
alpar@10
|
473 |
///
|
alpar@10
|
474 |
/// The Mersenne Twister is a twisted generalized feedback
|
alpar@10
|
475 |
/// shift-register generator of Matsumoto and Nishimura. The period
|
alpar@10
|
476 |
/// of this generator is \f$ 2^{19937} - 1 \f$ and it is
|
alpar@10
|
477 |
/// equi-distributed in 623 dimensions for 32-bit numbers. The time
|
alpar@10
|
478 |
/// performance of this generator is comparable to the commonly used
|
alpar@10
|
479 |
/// generators.
|
alpar@10
|
480 |
///
|
alpar@10
|
481 |
/// This implementation is specialized for both 32-bit and 64-bit
|
alpar@10
|
482 |
/// architectures. The generators differ sligthly in the
|
alpar@10
|
483 |
/// initialization and generation phase so they produce two
|
alpar@10
|
484 |
/// completly different sequences.
|
alpar@10
|
485 |
///
|
alpar@10
|
486 |
/// The generator gives back random numbers of serveral types. To
|
alpar@10
|
487 |
/// get a random number from a range of a floating point type you
|
alpar@10
|
488 |
/// can use one form of the \c operator() or the \c real() member
|
alpar@10
|
489 |
/// function. If you want to get random number from the {0, 1, ...,
|
alpar@10
|
490 |
/// n-1} integer range use the \c operator[] or the \c integer()
|
alpar@10
|
491 |
/// method. And to get random number from the whole range of an
|
alpar@10
|
492 |
/// integer type you can use the argumentless \c integer() or \c
|
alpar@10
|
493 |
/// uinteger() functions. After all you can get random bool with
|
alpar@10
|
494 |
/// equal chance of true and false or given probability of true
|
alpar@10
|
495 |
/// result with the \c boolean() member functions.
|
alpar@10
|
496 |
///
|
alpar@10
|
497 |
///\code
|
alpar@10
|
498 |
/// // The commented code is identical to the other
|
alpar@10
|
499 |
/// double a = rnd(); // [0.0, 1.0)
|
alpar@10
|
500 |
/// // double a = rnd.real(); // [0.0, 1.0)
|
alpar@10
|
501 |
/// double b = rnd(100.0); // [0.0, 100.0)
|
alpar@10
|
502 |
/// // double b = rnd.real(100.0); // [0.0, 100.0)
|
alpar@10
|
503 |
/// double c = rnd(1.0, 2.0); // [1.0, 2.0)
|
alpar@10
|
504 |
/// // double c = rnd.real(1.0, 2.0); // [1.0, 2.0)
|
alpar@10
|
505 |
/// int d = rnd[100000]; // 0..99999
|
alpar@10
|
506 |
/// // int d = rnd.integer(100000); // 0..99999
|
alpar@10
|
507 |
/// int e = rnd[6] + 1; // 1..6
|
alpar@10
|
508 |
/// // int e = rnd.integer(1, 1 + 6); // 1..6
|
alpar@10
|
509 |
/// int b = rnd.uinteger<int>(); // 0 .. 2^31 - 1
|
alpar@10
|
510 |
/// int c = rnd.integer<int>(); // - 2^31 .. 2^31 - 1
|
alpar@10
|
511 |
/// bool g = rnd.boolean(); // P(g = true) = 0.5
|
alpar@10
|
512 |
/// bool h = rnd.boolean(0.8); // P(h = true) = 0.8
|
alpar@10
|
513 |
///\endcode
|
alpar@10
|
514 |
///
|
kpeter@49
|
515 |
/// LEMON provides a global instance of the random number
|
alpar@10
|
516 |
/// generator which name is \ref lemon::rnd "rnd". Usually it is a
|
alpar@10
|
517 |
/// good programming convenience to use this global generator to get
|
alpar@10
|
518 |
/// random numbers.
|
alpar@10
|
519 |
class Random {
|
alpar@10
|
520 |
private:
|
alpar@10
|
521 |
|
kpeter@16
|
522 |
// Architecture word
|
alpar@10
|
523 |
typedef unsigned long Word;
|
alpar@209
|
524 |
|
alpar@10
|
525 |
_random_bits::RandomCore<Word> core;
|
alpar@10
|
526 |
_random_bits::BoolProducer<Word> bool_producer;
|
alpar@209
|
527 |
|
alpar@10
|
528 |
|
alpar@10
|
529 |
public:
|
alpar@10
|
530 |
|
deba@177
|
531 |
///\name Initialization
|
deba@177
|
532 |
///
|
deba@177
|
533 |
/// @{
|
deba@177
|
534 |
|
kpeter@49
|
535 |
/// \brief Default constructor
|
alpar@10
|
536 |
///
|
alpar@10
|
537 |
/// Constructor with constant seeding.
|
alpar@10
|
538 |
Random() { core.initState(); }
|
alpar@10
|
539 |
|
kpeter@49
|
540 |
/// \brief Constructor with seed
|
alpar@10
|
541 |
///
|
alpar@10
|
542 |
/// Constructor with seed. The current number type will be converted
|
alpar@10
|
543 |
/// to the architecture word type.
|
alpar@10
|
544 |
template <typename Number>
|
alpar@209
|
545 |
Random(Number seed) {
|
alpar@10
|
546 |
_random_bits::Initializer<Number, Word>::init(core, seed);
|
alpar@10
|
547 |
}
|
alpar@10
|
548 |
|
kpeter@49
|
549 |
/// \brief Constructor with array seeding
|
alpar@10
|
550 |
///
|
alpar@10
|
551 |
/// Constructor with array seeding. The given range should contain
|
alpar@10
|
552 |
/// any number type and the numbers will be converted to the
|
alpar@10
|
553 |
/// architecture word type.
|
alpar@10
|
554 |
template <typename Iterator>
|
alpar@209
|
555 |
Random(Iterator begin, Iterator end) {
|
alpar@10
|
556 |
typedef typename std::iterator_traits<Iterator>::value_type Number;
|
alpar@10
|
557 |
_random_bits::Initializer<Number, Word>::init(core, begin, end);
|
alpar@10
|
558 |
}
|
alpar@10
|
559 |
|
alpar@10
|
560 |
/// \brief Copy constructor
|
alpar@10
|
561 |
///
|
alpar@10
|
562 |
/// Copy constructor. The generated sequence will be identical to
|
alpar@10
|
563 |
/// the other sequence. It can be used to save the current state
|
alpar@10
|
564 |
/// of the generator and later use it to generate the same
|
alpar@10
|
565 |
/// sequence.
|
alpar@10
|
566 |
Random(const Random& other) {
|
alpar@10
|
567 |
core.copyState(other.core);
|
alpar@10
|
568 |
}
|
alpar@10
|
569 |
|
alpar@10
|
570 |
/// \brief Assign operator
|
alpar@10
|
571 |
///
|
alpar@10
|
572 |
/// Assign operator. The generated sequence will be identical to
|
alpar@10
|
573 |
/// the other sequence. It can be used to save the current state
|
alpar@10
|
574 |
/// of the generator and later use it to generate the same
|
alpar@10
|
575 |
/// sequence.
|
alpar@10
|
576 |
Random& operator=(const Random& other) {
|
alpar@10
|
577 |
if (&other != this) {
|
alpar@10
|
578 |
core.copyState(other.core);
|
alpar@10
|
579 |
}
|
alpar@10
|
580 |
return *this;
|
alpar@10
|
581 |
}
|
alpar@10
|
582 |
|
deba@102
|
583 |
/// \brief Seeding random sequence
|
deba@102
|
584 |
///
|
deba@102
|
585 |
/// Seeding the random sequence. The current number type will be
|
deba@102
|
586 |
/// converted to the architecture word type.
|
deba@102
|
587 |
template <typename Number>
|
alpar@209
|
588 |
void seed(Number seed) {
|
deba@102
|
589 |
_random_bits::Initializer<Number, Word>::init(core, seed);
|
deba@102
|
590 |
}
|
deba@102
|
591 |
|
deba@102
|
592 |
/// \brief Seeding random sequence
|
deba@102
|
593 |
///
|
deba@102
|
594 |
/// Seeding the random sequence. The given range should contain
|
deba@102
|
595 |
/// any number type and the numbers will be converted to the
|
deba@102
|
596 |
/// architecture word type.
|
deba@102
|
597 |
template <typename Iterator>
|
alpar@209
|
598 |
void seed(Iterator begin, Iterator end) {
|
deba@102
|
599 |
typedef typename std::iterator_traits<Iterator>::value_type Number;
|
deba@102
|
600 |
_random_bits::Initializer<Number, Word>::init(core, begin, end);
|
deba@102
|
601 |
}
|
deba@102
|
602 |
|
deba@177
|
603 |
/// \brief Seeding from file or from process id and time
|
deba@177
|
604 |
///
|
deba@177
|
605 |
/// By default, this function calls the \c seedFromFile() member
|
alpar@178
|
606 |
/// function with the <tt>/dev/urandom</tt> file. If it does not success,
|
deba@177
|
607 |
/// it uses the \c seedFromTime().
|
kpeter@559
|
608 |
/// \return Currently always \c true.
|
deba@177
|
609 |
bool seed() {
|
alpar@1143
|
610 |
#ifndef LEMON_WIN32
|
deba@177
|
611 |
if (seedFromFile("/dev/urandom", 0)) return true;
|
deba@177
|
612 |
#endif
|
deba@177
|
613 |
if (seedFromTime()) return true;
|
deba@177
|
614 |
return false;
|
deba@177
|
615 |
}
|
alpar@209
|
616 |
|
deba@177
|
617 |
/// \brief Seeding from file
|
deba@177
|
618 |
///
|
deba@177
|
619 |
/// Seeding the random sequence from file. The linux kernel has two
|
deba@177
|
620 |
/// devices, <tt>/dev/random</tt> and <tt>/dev/urandom</tt> which
|
deba@177
|
621 |
/// could give good seed values for pseudo random generators (The
|
deba@177
|
622 |
/// difference between two devices is that the <tt>random</tt> may
|
deba@177
|
623 |
/// block the reading operation while the kernel can give good
|
deba@177
|
624 |
/// source of randomness, while the <tt>urandom</tt> does not
|
deba@177
|
625 |
/// block the input, but it could give back bytes with worse
|
deba@177
|
626 |
/// entropy).
|
deba@177
|
627 |
/// \param file The source file
|
deba@177
|
628 |
/// \param offset The offset, from the file read.
|
kpeter@559
|
629 |
/// \return \c true when the seeding successes.
|
alpar@1143
|
630 |
#ifndef LEMON_WIN32
|
alpar@209
|
631 |
bool seedFromFile(const std::string& file = "/dev/urandom", int offset = 0)
|
deba@177
|
632 |
#else
|
alpar@209
|
633 |
bool seedFromFile(const std::string& file = "", int offset = 0)
|
deba@177
|
634 |
#endif
|
deba@177
|
635 |
{
|
deba@177
|
636 |
std::ifstream rs(file.c_str());
|
deba@177
|
637 |
const int size = 4;
|
deba@177
|
638 |
Word buf[size];
|
deba@177
|
639 |
if (offset != 0 && !rs.seekg(offset)) return false;
|
deba@177
|
640 |
if (!rs.read(reinterpret_cast<char*>(buf), sizeof(buf))) return false;
|
deba@177
|
641 |
seed(buf, buf + size);
|
deba@177
|
642 |
return true;
|
deba@177
|
643 |
}
|
deba@177
|
644 |
|
deba@177
|
645 |
/// \brief Seding from process id and time
|
deba@177
|
646 |
///
|
deba@177
|
647 |
/// Seding from process id and time. This function uses the
|
deba@177
|
648 |
/// current process id and the current time for initialize the
|
deba@177
|
649 |
/// random sequence.
|
kpeter@559
|
650 |
/// \return Currently always \c true.
|
alpar@209
|
651 |
bool seedFromTime() {
|
alpar@1143
|
652 |
#ifndef LEMON_WIN32
|
deba@177
|
653 |
timeval tv;
|
deba@177
|
654 |
gettimeofday(&tv, 0);
|
deba@177
|
655 |
seed(getpid() + tv.tv_sec + tv.tv_usec);
|
deba@177
|
656 |
#else
|
alpar@482
|
657 |
seed(bits::getWinRndSeed());
|
deba@177
|
658 |
#endif
|
deba@177
|
659 |
return true;
|
deba@177
|
660 |
}
|
deba@177
|
661 |
|
deba@177
|
662 |
/// @}
|
deba@177
|
663 |
|
kpeter@584
|
664 |
///\name Uniform Distributions
|
deba@177
|
665 |
///
|
deba@177
|
666 |
/// @{
|
deba@177
|
667 |
|
alpar@10
|
668 |
/// \brief Returns a random real number from the range [0, 1)
|
alpar@10
|
669 |
///
|
alpar@10
|
670 |
/// It returns a random real number from the range [0, 1). The
|
kpeter@49
|
671 |
/// default Number type is \c double.
|
alpar@10
|
672 |
template <typename Number>
|
alpar@10
|
673 |
Number real() {
|
alpar@10
|
674 |
return _random_bits::RealConversion<Number, Word>::convert(core);
|
alpar@10
|
675 |
}
|
alpar@10
|
676 |
|
alpar@10
|
677 |
double real() {
|
alpar@10
|
678 |
return real<double>();
|
alpar@10
|
679 |
}
|
alpar@10
|
680 |
|
alpar@10
|
681 |
/// \brief Returns a random real number from the range [0, 1)
|
alpar@10
|
682 |
///
|
alpar@10
|
683 |
/// It returns a random double from the range [0, 1).
|
alpar@10
|
684 |
double operator()() {
|
alpar@10
|
685 |
return real<double>();
|
alpar@10
|
686 |
}
|
alpar@10
|
687 |
|
alpar@10
|
688 |
/// \brief Returns a random real number from the range [0, b)
|
alpar@10
|
689 |
///
|
alpar@10
|
690 |
/// It returns a random real number from the range [0, b).
|
alpar@377
|
691 |
double operator()(double b) {
|
alpar@377
|
692 |
return real<double>() * b;
|
alpar@10
|
693 |
}
|
alpar@10
|
694 |
|
alpar@10
|
695 |
/// \brief Returns a random real number from the range [a, b)
|
alpar@10
|
696 |
///
|
alpar@10
|
697 |
/// It returns a random real number from the range [a, b).
|
alpar@377
|
698 |
double operator()(double a, double b) {
|
alpar@377
|
699 |
return real<double>() * (b - a) + a;
|
alpar@10
|
700 |
}
|
alpar@10
|
701 |
|
alpar@10
|
702 |
/// \brief Returns a random integer from a range
|
alpar@10
|
703 |
///
|
alpar@10
|
704 |
/// It returns a random integer from the range {0, 1, ..., b - 1}.
|
alpar@10
|
705 |
template <typename Number>
|
alpar@10
|
706 |
Number integer(Number b) {
|
alpar@10
|
707 |
return _random_bits::Mapping<Number, Word>::map(core, b);
|
alpar@10
|
708 |
}
|
alpar@10
|
709 |
|
alpar@10
|
710 |
/// \brief Returns a random integer from a range
|
alpar@10
|
711 |
///
|
alpar@10
|
712 |
/// It returns a random integer from the range {a, a + 1, ..., b - 1}.
|
alpar@10
|
713 |
template <typename Number>
|
alpar@10
|
714 |
Number integer(Number a, Number b) {
|
alpar@10
|
715 |
return _random_bits::Mapping<Number, Word>::map(core, b - a) + a;
|
alpar@10
|
716 |
}
|
alpar@10
|
717 |
|
alpar@10
|
718 |
/// \brief Returns a random integer from a range
|
alpar@10
|
719 |
///
|
alpar@10
|
720 |
/// It returns a random integer from the range {0, 1, ..., b - 1}.
|
alpar@10
|
721 |
template <typename Number>
|
alpar@10
|
722 |
Number operator[](Number b) {
|
alpar@10
|
723 |
return _random_bits::Mapping<Number, Word>::map(core, b);
|
alpar@10
|
724 |
}
|
alpar@10
|
725 |
|
alpar@10
|
726 |
/// \brief Returns a random non-negative integer
|
alpar@10
|
727 |
///
|
alpar@10
|
728 |
/// It returns a random non-negative integer uniformly from the
|
kpeter@49
|
729 |
/// whole range of the current \c Number type. The default result
|
kpeter@49
|
730 |
/// type of this function is <tt>unsigned int</tt>.
|
alpar@10
|
731 |
template <typename Number>
|
alpar@10
|
732 |
Number uinteger() {
|
alpar@10
|
733 |
return _random_bits::IntConversion<Number, Word>::convert(core);
|
alpar@10
|
734 |
}
|
alpar@10
|
735 |
|
alpar@10
|
736 |
unsigned int uinteger() {
|
alpar@10
|
737 |
return uinteger<unsigned int>();
|
alpar@10
|
738 |
}
|
alpar@10
|
739 |
|
alpar@10
|
740 |
/// \brief Returns a random integer
|
alpar@10
|
741 |
///
|
alpar@10
|
742 |
/// It returns a random integer uniformly from the whole range of
|
alpar@10
|
743 |
/// the current \c Number type. The default result type of this
|
kpeter@49
|
744 |
/// function is \c int.
|
alpar@10
|
745 |
template <typename Number>
|
alpar@10
|
746 |
Number integer() {
|
alpar@209
|
747 |
static const int nb = std::numeric_limits<Number>::digits +
|
alpar@10
|
748 |
(std::numeric_limits<Number>::is_signed ? 1 : 0);
|
alpar@10
|
749 |
return _random_bits::IntConversion<Number, Word, nb>::convert(core);
|
alpar@10
|
750 |
}
|
alpar@10
|
751 |
|
alpar@10
|
752 |
int integer() {
|
alpar@10
|
753 |
return integer<int>();
|
alpar@10
|
754 |
}
|
alpar@209
|
755 |
|
alpar@10
|
756 |
/// \brief Returns a random bool
|
alpar@10
|
757 |
///
|
alpar@10
|
758 |
/// It returns a random bool. The generator holds a buffer for
|
alpar@10
|
759 |
/// random bits. Every time when it become empty the generator makes
|
alpar@10
|
760 |
/// a new random word and fill the buffer up.
|
alpar@10
|
761 |
bool boolean() {
|
alpar@10
|
762 |
return bool_producer.convert(core);
|
alpar@10
|
763 |
}
|
alpar@10
|
764 |
|
deba@177
|
765 |
/// @}
|
deba@177
|
766 |
|
kpeter@584
|
767 |
///\name Non-uniform Distributions
|
alpar@10
|
768 |
///
|
alpar@10
|
769 |
///@{
|
alpar@209
|
770 |
|
kpeter@340
|
771 |
/// \brief Returns a random bool with given probability of true result.
|
alpar@10
|
772 |
///
|
kpeter@23
|
773 |
/// It returns a random bool with given probability of true result.
|
alpar@10
|
774 |
bool boolean(double p) {
|
alpar@10
|
775 |
return operator()() < p;
|
alpar@10
|
776 |
}
|
alpar@10
|
777 |
|
kpeter@340
|
778 |
/// Standard normal (Gauss) distribution
|
alpar@10
|
779 |
|
kpeter@340
|
780 |
/// Standard normal (Gauss) distribution.
|
alpar@10
|
781 |
/// \note The Cartesian form of the Box-Muller
|
alpar@10
|
782 |
/// transformation is used to generate a random normal distribution.
|
alpar@209
|
783 |
double gauss()
|
alpar@10
|
784 |
{
|
alpar@10
|
785 |
double V1,V2,S;
|
alpar@10
|
786 |
do {
|
alpar@209
|
787 |
V1=2*real<double>()-1;
|
alpar@209
|
788 |
V2=2*real<double>()-1;
|
alpar@209
|
789 |
S=V1*V1+V2*V2;
|
alpar@10
|
790 |
} while(S>=1);
|
alpar@10
|
791 |
return std::sqrt(-2*std::log(S)/S)*V1;
|
alpar@10
|
792 |
}
|
kpeter@340
|
793 |
/// Normal (Gauss) distribution with given mean and standard deviation
|
alpar@10
|
794 |
|
kpeter@340
|
795 |
/// Normal (Gauss) distribution with given mean and standard deviation.
|
alpar@10
|
796 |
/// \sa gauss()
|
alpar@10
|
797 |
double gauss(double mean,double std_dev)
|
alpar@10
|
798 |
{
|
alpar@10
|
799 |
return gauss()*std_dev+mean;
|
alpar@10
|
800 |
}
|
alpar@10
|
801 |
|
alpar@339
|
802 |
/// Lognormal distribution
|
alpar@339
|
803 |
|
alpar@339
|
804 |
/// Lognormal distribution. The parameters are the mean and the standard
|
alpar@339
|
805 |
/// deviation of <tt>exp(X)</tt>.
|
alpar@339
|
806 |
///
|
alpar@339
|
807 |
double lognormal(double n_mean,double n_std_dev)
|
alpar@339
|
808 |
{
|
alpar@339
|
809 |
return std::exp(gauss(n_mean,n_std_dev));
|
alpar@339
|
810 |
}
|
alpar@339
|
811 |
/// Lognormal distribution
|
alpar@339
|
812 |
|
alpar@339
|
813 |
/// Lognormal distribution. The parameter is an <tt>std::pair</tt> of
|
alpar@339
|
814 |
/// the mean and the standard deviation of <tt>exp(X)</tt>.
|
alpar@339
|
815 |
///
|
alpar@339
|
816 |
double lognormal(const std::pair<double,double> ¶ms)
|
alpar@339
|
817 |
{
|
alpar@339
|
818 |
return std::exp(gauss(params.first,params.second));
|
alpar@339
|
819 |
}
|
alpar@339
|
820 |
/// Compute the lognormal parameters from mean and standard deviation
|
alpar@339
|
821 |
|
alpar@339
|
822 |
/// This function computes the lognormal parameters from mean and
|
alpar@339
|
823 |
/// standard deviation. The return value can direcly be passed to
|
alpar@339
|
824 |
/// lognormal().
|
alpar@339
|
825 |
std::pair<double,double> lognormalParamsFromMD(double mean,
|
kpeter@340
|
826 |
double std_dev)
|
alpar@339
|
827 |
{
|
alpar@339
|
828 |
double fr=std_dev/mean;
|
alpar@339
|
829 |
fr*=fr;
|
alpar@339
|
830 |
double lg=std::log(1+fr);
|
alpar@339
|
831 |
return std::pair<double,double>(std::log(mean)-lg/2.0,std::sqrt(lg));
|
alpar@339
|
832 |
}
|
alpar@339
|
833 |
/// Lognormal distribution with given mean and standard deviation
|
kpeter@340
|
834 |
|
alpar@339
|
835 |
/// Lognormal distribution with given mean and standard deviation.
|
alpar@339
|
836 |
///
|
alpar@339
|
837 |
double lognormalMD(double mean,double std_dev)
|
alpar@339
|
838 |
{
|
alpar@339
|
839 |
return lognormal(lognormalParamsFromMD(mean,std_dev));
|
alpar@339
|
840 |
}
|
kpeter@340
|
841 |
|
alpar@10
|
842 |
/// Exponential distribution with given mean
|
alpar@10
|
843 |
|
alpar@10
|
844 |
/// This function generates an exponential distribution random number
|
alpar@10
|
845 |
/// with mean <tt>1/lambda</tt>.
|
alpar@10
|
846 |
///
|
alpar@10
|
847 |
double exponential(double lambda=1.0)
|
alpar@10
|
848 |
{
|
alpar@11
|
849 |
return -std::log(1.0-real<double>())/lambda;
|
alpar@10
|
850 |
}
|
alpar@10
|
851 |
|
alpar@10
|
852 |
/// Gamma distribution with given integer shape
|
alpar@10
|
853 |
|
alpar@10
|
854 |
/// This function generates a gamma distribution random number.
|
alpar@209
|
855 |
///
|
alpar@10
|
856 |
///\param k shape parameter (<tt>k>0</tt> integer)
|
alpar@209
|
857 |
double gamma(int k)
|
alpar@10
|
858 |
{
|
alpar@10
|
859 |
double s = 0;
|
alpar@10
|
860 |
for(int i=0;i<k;i++) s-=std::log(1.0-real<double>());
|
alpar@10
|
861 |
return s;
|
alpar@10
|
862 |
}
|
alpar@209
|
863 |
|
alpar@10
|
864 |
/// Gamma distribution with given shape and scale parameter
|
alpar@10
|
865 |
|
alpar@10
|
866 |
/// This function generates a gamma distribution random number.
|
alpar@209
|
867 |
///
|
alpar@10
|
868 |
///\param k shape parameter (<tt>k>0</tt>)
|
alpar@10
|
869 |
///\param theta scale parameter
|
alpar@10
|
870 |
///
|
alpar@10
|
871 |
double gamma(double k,double theta=1.0)
|
alpar@10
|
872 |
{
|
alpar@10
|
873 |
double xi,nu;
|
alpar@10
|
874 |
const double delta = k-std::floor(k);
|
alpar@68
|
875 |
const double v0=E/(E-delta);
|
alpar@10
|
876 |
do {
|
alpar@209
|
877 |
double V0=1.0-real<double>();
|
alpar@209
|
878 |
double V1=1.0-real<double>();
|
alpar@209
|
879 |
double V2=1.0-real<double>();
|
alpar@209
|
880 |
if(V2<=v0)
|
alpar@209
|
881 |
{
|
alpar@209
|
882 |
xi=std::pow(V1,1.0/delta);
|
alpar@209
|
883 |
nu=V0*std::pow(xi,delta-1.0);
|
alpar@209
|
884 |
}
|
alpar@209
|
885 |
else
|
alpar@209
|
886 |
{
|
alpar@209
|
887 |
xi=1.0-std::log(V1);
|
alpar@209
|
888 |
nu=V0*std::exp(-xi);
|
alpar@209
|
889 |
}
|
alpar@10
|
890 |
} while(nu>std::pow(xi,delta-1.0)*std::exp(-xi));
|
alpar@116
|
891 |
return theta*(xi+gamma(int(std::floor(k))));
|
alpar@10
|
892 |
}
|
alpar@209
|
893 |
|
alpar@11
|
894 |
/// Weibull distribution
|
alpar@11
|
895 |
|
alpar@11
|
896 |
/// This function generates a Weibull distribution random number.
|
alpar@209
|
897 |
///
|
alpar@11
|
898 |
///\param k shape parameter (<tt>k>0</tt>)
|
alpar@11
|
899 |
///\param lambda scale parameter (<tt>lambda>0</tt>)
|
alpar@11
|
900 |
///
|
alpar@11
|
901 |
double weibull(double k,double lambda)
|
alpar@11
|
902 |
{
|
alpar@11
|
903 |
return lambda*pow(-std::log(1.0-real<double>()),1.0/k);
|
alpar@209
|
904 |
}
|
alpar@209
|
905 |
|
alpar@11
|
906 |
/// Pareto distribution
|
alpar@11
|
907 |
|
alpar@11
|
908 |
/// This function generates a Pareto distribution random number.
|
alpar@209
|
909 |
///
|
alpar@12
|
910 |
///\param k shape parameter (<tt>k>0</tt>)
|
alpar@11
|
911 |
///\param x_min location parameter (<tt>x_min>0</tt>)
|
alpar@11
|
912 |
///
|
alpar@12
|
913 |
double pareto(double k,double x_min)
|
alpar@11
|
914 |
{
|
alpar@116
|
915 |
return exponential(gamma(k,1.0/x_min))+x_min;
|
alpar@209
|
916 |
}
|
alpar@209
|
917 |
|
alpar@92
|
918 |
/// Poisson distribution
|
alpar@92
|
919 |
|
alpar@92
|
920 |
/// This function generates a Poisson distribution random number with
|
alpar@92
|
921 |
/// parameter \c lambda.
|
alpar@209
|
922 |
///
|
alpar@92
|
923 |
/// The probability mass function of this distribusion is
|
alpar@92
|
924 |
/// \f[ \frac{e^{-\lambda}\lambda^k}{k!} \f]
|
alpar@92
|
925 |
/// \note The algorithm is taken from the book of Donald E. Knuth titled
|
alpar@92
|
926 |
/// ''Seminumerical Algorithms'' (1969). Its running time is linear in the
|
alpar@92
|
927 |
/// return value.
|
alpar@209
|
928 |
|
alpar@92
|
929 |
int poisson(double lambda)
|
alpar@92
|
930 |
{
|
alpar@92
|
931 |
const double l = std::exp(-lambda);
|
alpar@92
|
932 |
int k=0;
|
alpar@92
|
933 |
double p = 1.0;
|
alpar@92
|
934 |
do {
|
alpar@209
|
935 |
k++;
|
alpar@209
|
936 |
p*=real<double>();
|
alpar@92
|
937 |
} while (p>=l);
|
alpar@92
|
938 |
return k-1;
|
alpar@209
|
939 |
}
|
alpar@209
|
940 |
|
alpar@10
|
941 |
///@}
|
alpar@209
|
942 |
|
kpeter@584
|
943 |
///\name Two Dimensional Distributions
|
alpar@10
|
944 |
///
|
alpar@10
|
945 |
///@{
|
alpar@209
|
946 |
|
kpeter@23
|
947 |
/// Uniform distribution on the full unit circle
|
kpeter@16
|
948 |
|
kpeter@16
|
949 |
/// Uniform distribution on the full unit circle.
|
kpeter@16
|
950 |
///
|
alpar@209
|
951 |
dim2::Point<double> disc()
|
alpar@10
|
952 |
{
|
alpar@10
|
953 |
double V1,V2;
|
alpar@10
|
954 |
do {
|
alpar@209
|
955 |
V1=2*real<double>()-1;
|
alpar@209
|
956 |
V2=2*real<double>()-1;
|
alpar@209
|
957 |
|
alpar@10
|
958 |
} while(V1*V1+V2*V2>=1);
|
alpar@10
|
959 |
return dim2::Point<double>(V1,V2);
|
alpar@10
|
960 |
}
|
kpeter@340
|
961 |
/// A kind of two dimensional normal (Gauss) distribution
|
alpar@10
|
962 |
|
alpar@10
|
963 |
/// This function provides a turning symmetric two-dimensional distribution.
|
alpar@10
|
964 |
/// Both coordinates are of standard normal distribution, but they are not
|
alpar@10
|
965 |
/// independent.
|
alpar@10
|
966 |
///
|
alpar@10
|
967 |
/// \note The coordinates are the two random variables provided by
|
alpar@10
|
968 |
/// the Box-Muller method.
|
alpar@10
|
969 |
dim2::Point<double> gauss2()
|
alpar@10
|
970 |
{
|
alpar@10
|
971 |
double V1,V2,S;
|
alpar@10
|
972 |
do {
|
alpar@209
|
973 |
V1=2*real<double>()-1;
|
alpar@209
|
974 |
V2=2*real<double>()-1;
|
alpar@209
|
975 |
S=V1*V1+V2*V2;
|
alpar@10
|
976 |
} while(S>=1);
|
alpar@10
|
977 |
double W=std::sqrt(-2*std::log(S)/S);
|
alpar@10
|
978 |
return dim2::Point<double>(W*V1,W*V2);
|
alpar@10
|
979 |
}
|
alpar@10
|
980 |
/// A kind of two dimensional exponential distribution
|
alpar@10
|
981 |
|
alpar@10
|
982 |
/// This function provides a turning symmetric two-dimensional distribution.
|
alpar@10
|
983 |
/// The x-coordinate is of conditionally exponential distribution
|
alpar@209
|
984 |
/// with the condition that x is positive and y=0. If x is negative and
|
alpar@10
|
985 |
/// y=0 then, -x is of exponential distribution. The same is true for the
|
alpar@10
|
986 |
/// y-coordinate.
|
alpar@209
|
987 |
dim2::Point<double> exponential2()
|
alpar@10
|
988 |
{
|
alpar@10
|
989 |
double V1,V2,S;
|
alpar@10
|
990 |
do {
|
alpar@209
|
991 |
V1=2*real<double>()-1;
|
alpar@209
|
992 |
V2=2*real<double>()-1;
|
alpar@209
|
993 |
S=V1*V1+V2*V2;
|
alpar@10
|
994 |
} while(S>=1);
|
alpar@10
|
995 |
double W=-std::log(S)/S;
|
alpar@10
|
996 |
return dim2::Point<double>(W*V1,W*V2);
|
alpar@10
|
997 |
}
|
alpar@10
|
998 |
|
alpar@209
|
999 |
///@}
|
alpar@10
|
1000 |
};
|
alpar@10
|
1001 |
|
alpar@10
|
1002 |
|
alpar@10
|
1003 |
extern Random rnd;
|
alpar@10
|
1004 |
|
alpar@10
|
1005 |
}
|
alpar@10
|
1006 |
|
alpar@10
|
1007 |
#endif
|