lemon/capacity_scaling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Sun, 14 Feb 2010 19:06:07 +0100
changeset 848 e05b2b48515a
parent 813 25804ef35064
child 825 75e6020b19b1
child 830 75c97c3786d6
child 839 f3bc4e9b5f3a
child 1154 43647f48e971
permissions -rw-r--r--
Improve README and mainpage.dox (#342)
kpeter@805
     1
/* -*- C++ -*-
kpeter@805
     2
 *
kpeter@805
     3
 * This file is a part of LEMON, a generic C++ optimization library
kpeter@805
     4
 *
kpeter@805
     5
 * Copyright (C) 2003-2008
kpeter@805
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@805
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@805
     8
 *
kpeter@805
     9
 * Permission to use, modify and distribute this software is granted
kpeter@805
    10
 * provided that this copyright notice appears in all copies. For
kpeter@805
    11
 * precise terms see the accompanying LICENSE file.
kpeter@805
    12
 *
kpeter@805
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@805
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@805
    15
 * purpose.
kpeter@805
    16
 *
kpeter@805
    17
 */
kpeter@805
    18
kpeter@805
    19
#ifndef LEMON_CAPACITY_SCALING_H
kpeter@805
    20
#define LEMON_CAPACITY_SCALING_H
kpeter@805
    21
kpeter@806
    22
/// \ingroup min_cost_flow_algs
kpeter@805
    23
///
kpeter@805
    24
/// \file
kpeter@806
    25
/// \brief Capacity Scaling algorithm for finding a minimum cost flow.
kpeter@805
    26
kpeter@805
    27
#include <vector>
kpeter@806
    28
#include <limits>
kpeter@806
    29
#include <lemon/core.h>
kpeter@805
    30
#include <lemon/bin_heap.h>
kpeter@805
    31
kpeter@805
    32
namespace lemon {
kpeter@805
    33
kpeter@807
    34
  /// \brief Default traits class of CapacityScaling algorithm.
kpeter@807
    35
  ///
kpeter@807
    36
  /// Default traits class of CapacityScaling algorithm.
kpeter@807
    37
  /// \tparam GR Digraph type.
kpeter@812
    38
  /// \tparam V The number type used for flow amounts, capacity bounds
kpeter@807
    39
  /// and supply values. By default it is \c int.
kpeter@812
    40
  /// \tparam C The number type used for costs and potentials.
kpeter@807
    41
  /// By default it is the same as \c V.
kpeter@807
    42
  template <typename GR, typename V = int, typename C = V>
kpeter@807
    43
  struct CapacityScalingDefaultTraits
kpeter@807
    44
  {
kpeter@807
    45
    /// The type of the digraph
kpeter@807
    46
    typedef GR Digraph;
kpeter@807
    47
    /// The type of the flow amounts, capacity bounds and supply values
kpeter@807
    48
    typedef V Value;
kpeter@807
    49
    /// The type of the arc costs
kpeter@807
    50
    typedef C Cost;
kpeter@807
    51
kpeter@807
    52
    /// \brief The type of the heap used for internal Dijkstra computations.
kpeter@807
    53
    ///
kpeter@807
    54
    /// The type of the heap used for internal Dijkstra computations.
kpeter@807
    55
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
kpeter@807
    56
    /// its priority type must be \c Cost and its cross reference type
kpeter@807
    57
    /// must be \ref RangeMap "RangeMap<int>".
kpeter@807
    58
    typedef BinHeap<Cost, RangeMap<int> > Heap;
kpeter@807
    59
  };
kpeter@807
    60
kpeter@806
    61
  /// \addtogroup min_cost_flow_algs
kpeter@805
    62
  /// @{
kpeter@805
    63
kpeter@806
    64
  /// \brief Implementation of the Capacity Scaling algorithm for
kpeter@806
    65
  /// finding a \ref min_cost_flow "minimum cost flow".
kpeter@805
    66
  ///
kpeter@805
    67
  /// \ref CapacityScaling implements the capacity scaling version
kpeter@806
    68
  /// of the successive shortest path algorithm for finding a
kpeter@813
    69
  /// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows,
kpeter@813
    70
  /// \ref edmondskarp72theoretical. It is an efficient dual
kpeter@806
    71
  /// solution method.
kpeter@805
    72
  ///
kpeter@806
    73
  /// Most of the parameters of the problem (except for the digraph)
kpeter@806
    74
  /// can be given using separate functions, and the algorithm can be
kpeter@806
    75
  /// executed using the \ref run() function. If some parameters are not
kpeter@806
    76
  /// specified, then default values will be used.
kpeter@805
    77
  ///
kpeter@806
    78
  /// \tparam GR The digraph type the algorithm runs on.
kpeter@812
    79
  /// \tparam V The number type used for flow amounts, capacity bounds
kpeter@806
    80
  /// and supply values in the algorithm. By default it is \c int.
kpeter@812
    81
  /// \tparam C The number type used for costs and potentials in the
kpeter@806
    82
  /// algorithm. By default it is the same as \c V.
kpeter@805
    83
  ///
kpeter@812
    84
  /// \warning Both number types must be signed and all input data must
kpeter@806
    85
  /// be integer.
kpeter@806
    86
  /// \warning This algorithm does not support negative costs for such
kpeter@806
    87
  /// arcs that have infinite upper bound.
kpeter@807
    88
#ifdef DOXYGEN
kpeter@807
    89
  template <typename GR, typename V, typename C, typename TR>
kpeter@807
    90
#else
kpeter@807
    91
  template < typename GR, typename V = int, typename C = V,
kpeter@807
    92
             typename TR = CapacityScalingDefaultTraits<GR, V, C> >
kpeter@807
    93
#endif
kpeter@805
    94
  class CapacityScaling
kpeter@805
    95
  {
kpeter@806
    96
  public:
kpeter@805
    97
kpeter@807
    98
    /// The type of the digraph
kpeter@807
    99
    typedef typename TR::Digraph Digraph;
kpeter@806
   100
    /// The type of the flow amounts, capacity bounds and supply values
kpeter@807
   101
    typedef typename TR::Value Value;
kpeter@806
   102
    /// The type of the arc costs
kpeter@807
   103
    typedef typename TR::Cost Cost;
kpeter@807
   104
kpeter@807
   105
    /// The type of the heap used for internal Dijkstra computations
kpeter@807
   106
    typedef typename TR::Heap Heap;
kpeter@807
   107
kpeter@807
   108
    /// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm
kpeter@807
   109
    typedef TR Traits;
kpeter@805
   110
kpeter@805
   111
  public:
kpeter@805
   112
kpeter@806
   113
    /// \brief Problem type constants for the \c run() function.
kpeter@806
   114
    ///
kpeter@806
   115
    /// Enum type containing the problem type constants that can be
kpeter@806
   116
    /// returned by the \ref run() function of the algorithm.
kpeter@806
   117
    enum ProblemType {
kpeter@806
   118
      /// The problem has no feasible solution (flow).
kpeter@806
   119
      INFEASIBLE,
kpeter@806
   120
      /// The problem has optimal solution (i.e. it is feasible and
kpeter@806
   121
      /// bounded), and the algorithm has found optimal flow and node
kpeter@806
   122
      /// potentials (primal and dual solutions).
kpeter@806
   123
      OPTIMAL,
kpeter@806
   124
      /// The digraph contains an arc of negative cost and infinite
kpeter@806
   125
      /// upper bound. It means that the objective function is unbounded
kpeter@812
   126
      /// on that arc, however, note that it could actually be bounded
kpeter@806
   127
      /// over the feasible flows, but this algroithm cannot handle
kpeter@806
   128
      /// these cases.
kpeter@806
   129
      UNBOUNDED
kpeter@806
   130
    };
kpeter@806
   131
  
kpeter@806
   132
  private:
kpeter@806
   133
kpeter@806
   134
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@806
   135
kpeter@806
   136
    typedef std::vector<int> IntVector;
kpeter@811
   137
    typedef std::vector<char> BoolVector;
kpeter@806
   138
    typedef std::vector<Value> ValueVector;
kpeter@806
   139
    typedef std::vector<Cost> CostVector;
kpeter@805
   140
kpeter@805
   141
  private:
kpeter@805
   142
kpeter@806
   143
    // Data related to the underlying digraph
kpeter@806
   144
    const GR &_graph;
kpeter@806
   145
    int _node_num;
kpeter@806
   146
    int _arc_num;
kpeter@806
   147
    int _res_arc_num;
kpeter@806
   148
    int _root;
kpeter@806
   149
kpeter@806
   150
    // Parameters of the problem
kpeter@806
   151
    bool _have_lower;
kpeter@806
   152
    Value _sum_supply;
kpeter@806
   153
kpeter@806
   154
    // Data structures for storing the digraph
kpeter@806
   155
    IntNodeMap _node_id;
kpeter@806
   156
    IntArcMap _arc_idf;
kpeter@806
   157
    IntArcMap _arc_idb;
kpeter@806
   158
    IntVector _first_out;
kpeter@806
   159
    BoolVector _forward;
kpeter@806
   160
    IntVector _source;
kpeter@806
   161
    IntVector _target;
kpeter@806
   162
    IntVector _reverse;
kpeter@806
   163
kpeter@806
   164
    // Node and arc data
kpeter@806
   165
    ValueVector _lower;
kpeter@806
   166
    ValueVector _upper;
kpeter@806
   167
    CostVector _cost;
kpeter@806
   168
    ValueVector _supply;
kpeter@806
   169
kpeter@806
   170
    ValueVector _res_cap;
kpeter@806
   171
    CostVector _pi;
kpeter@806
   172
    ValueVector _excess;
kpeter@806
   173
    IntVector _excess_nodes;
kpeter@806
   174
    IntVector _deficit_nodes;
kpeter@806
   175
kpeter@806
   176
    Value _delta;
kpeter@810
   177
    int _factor;
kpeter@806
   178
    IntVector _pred;
kpeter@806
   179
kpeter@806
   180
  public:
kpeter@806
   181
  
kpeter@806
   182
    /// \brief Constant for infinite upper bounds (capacities).
kpeter@805
   183
    ///
kpeter@806
   184
    /// Constant for infinite upper bounds (capacities).
kpeter@806
   185
    /// It is \c std::numeric_limits<Value>::infinity() if available,
kpeter@806
   186
    /// \c std::numeric_limits<Value>::max() otherwise.
kpeter@806
   187
    const Value INF;
kpeter@806
   188
kpeter@806
   189
  private:
kpeter@806
   190
kpeter@806
   191
    // Special implementation of the Dijkstra algorithm for finding
kpeter@806
   192
    // shortest paths in the residual network of the digraph with
kpeter@806
   193
    // respect to the reduced arc costs and modifying the node
kpeter@806
   194
    // potentials according to the found distance labels.
kpeter@805
   195
    class ResidualDijkstra
kpeter@805
   196
    {
kpeter@805
   197
    private:
kpeter@805
   198
kpeter@806
   199
      int _node_num;
kpeter@811
   200
      bool _geq;
kpeter@806
   201
      const IntVector &_first_out;
kpeter@806
   202
      const IntVector &_target;
kpeter@806
   203
      const CostVector &_cost;
kpeter@806
   204
      const ValueVector &_res_cap;
kpeter@806
   205
      const ValueVector &_excess;
kpeter@806
   206
      CostVector &_pi;
kpeter@806
   207
      IntVector &_pred;
kpeter@806
   208
      
kpeter@806
   209
      IntVector _proc_nodes;
kpeter@806
   210
      CostVector _dist;
kpeter@806
   211
      
kpeter@805
   212
    public:
kpeter@805
   213
kpeter@806
   214
      ResidualDijkstra(CapacityScaling& cs) :
kpeter@811
   215
        _node_num(cs._node_num), _geq(cs._sum_supply < 0),
kpeter@811
   216
        _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
kpeter@811
   217
        _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
kpeter@811
   218
        _pred(cs._pred), _dist(cs._node_num)
kpeter@805
   219
      {}
kpeter@805
   220
kpeter@806
   221
      int run(int s, Value delta = 1) {
kpeter@807
   222
        RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
kpeter@805
   223
        Heap heap(heap_cross_ref);
kpeter@805
   224
        heap.push(s, 0);
kpeter@806
   225
        _pred[s] = -1;
kpeter@805
   226
        _proc_nodes.clear();
kpeter@805
   227
kpeter@806
   228
        // Process nodes
kpeter@805
   229
        while (!heap.empty() && _excess[heap.top()] > -delta) {
kpeter@806
   230
          int u = heap.top(), v;
kpeter@806
   231
          Cost d = heap.prio() + _pi[u], dn;
kpeter@805
   232
          _dist[u] = heap.prio();
kpeter@806
   233
          _proc_nodes.push_back(u);
kpeter@805
   234
          heap.pop();
kpeter@805
   235
kpeter@806
   236
          // Traverse outgoing residual arcs
kpeter@811
   237
          int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
kpeter@811
   238
          for (int a = _first_out[u]; a != last_out; ++a) {
kpeter@806
   239
            if (_res_cap[a] < delta) continue;
kpeter@806
   240
            v = _target[a];
kpeter@806
   241
            switch (heap.state(v)) {
kpeter@805
   242
              case Heap::PRE_HEAP:
kpeter@806
   243
                heap.push(v, d + _cost[a] - _pi[v]);
kpeter@806
   244
                _pred[v] = a;
kpeter@805
   245
                break;
kpeter@805
   246
              case Heap::IN_HEAP:
kpeter@806
   247
                dn = d + _cost[a] - _pi[v];
kpeter@806
   248
                if (dn < heap[v]) {
kpeter@806
   249
                  heap.decrease(v, dn);
kpeter@806
   250
                  _pred[v] = a;
kpeter@805
   251
                }
kpeter@805
   252
                break;
kpeter@805
   253
              case Heap::POST_HEAP:
kpeter@805
   254
                break;
kpeter@805
   255
            }
kpeter@805
   256
          }
kpeter@805
   257
        }
kpeter@806
   258
        if (heap.empty()) return -1;
kpeter@805
   259
kpeter@806
   260
        // Update potentials of processed nodes
kpeter@806
   261
        int t = heap.top();
kpeter@806
   262
        Cost dt = heap.prio();
kpeter@806
   263
        for (int i = 0; i < int(_proc_nodes.size()); ++i) {
kpeter@806
   264
          _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
kpeter@806
   265
        }
kpeter@805
   266
kpeter@805
   267
        return t;
kpeter@805
   268
      }
kpeter@805
   269
kpeter@805
   270
    }; //class ResidualDijkstra
kpeter@805
   271
kpeter@805
   272
  public:
kpeter@805
   273
kpeter@807
   274
    /// \name Named Template Parameters
kpeter@807
   275
    /// @{
kpeter@807
   276
kpeter@807
   277
    template <typename T>
kpeter@807
   278
    struct SetHeapTraits : public Traits {
kpeter@807
   279
      typedef T Heap;
kpeter@807
   280
    };
kpeter@807
   281
kpeter@807
   282
    /// \brief \ref named-templ-param "Named parameter" for setting
kpeter@807
   283
    /// \c Heap type.
kpeter@807
   284
    ///
kpeter@807
   285
    /// \ref named-templ-param "Named parameter" for setting \c Heap
kpeter@807
   286
    /// type, which is used for internal Dijkstra computations.
kpeter@807
   287
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
kpeter@807
   288
    /// its priority type must be \c Cost and its cross reference type
kpeter@807
   289
    /// must be \ref RangeMap "RangeMap<int>".
kpeter@807
   290
    template <typename T>
kpeter@807
   291
    struct SetHeap
kpeter@807
   292
      : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
kpeter@807
   293
      typedef  CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
kpeter@807
   294
    };
kpeter@807
   295
kpeter@807
   296
    /// @}
kpeter@807
   297
kpeter@807
   298
  public:
kpeter@807
   299
kpeter@806
   300
    /// \brief Constructor.
kpeter@805
   301
    ///
kpeter@806
   302
    /// The constructor of the class.
kpeter@805
   303
    ///
kpeter@806
   304
    /// \param graph The digraph the algorithm runs on.
kpeter@806
   305
    CapacityScaling(const GR& graph) :
kpeter@806
   306
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
kpeter@806
   307
      INF(std::numeric_limits<Value>::has_infinity ?
kpeter@806
   308
          std::numeric_limits<Value>::infinity() :
kpeter@806
   309
          std::numeric_limits<Value>::max())
kpeter@805
   310
    {
kpeter@812
   311
      // Check the number types
kpeter@806
   312
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
kpeter@806
   313
        "The flow type of CapacityScaling must be signed");
kpeter@806
   314
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
kpeter@806
   315
        "The cost type of CapacityScaling must be signed");
kpeter@806
   316
kpeter@806
   317
      // Resize vectors
kpeter@806
   318
      _node_num = countNodes(_graph);
kpeter@806
   319
      _arc_num = countArcs(_graph);
kpeter@806
   320
      _res_arc_num = 2 * (_arc_num + _node_num);
kpeter@806
   321
      _root = _node_num;
kpeter@806
   322
      ++_node_num;
kpeter@806
   323
kpeter@806
   324
      _first_out.resize(_node_num + 1);
kpeter@806
   325
      _forward.resize(_res_arc_num);
kpeter@806
   326
      _source.resize(_res_arc_num);
kpeter@806
   327
      _target.resize(_res_arc_num);
kpeter@806
   328
      _reverse.resize(_res_arc_num);
kpeter@806
   329
kpeter@806
   330
      _lower.resize(_res_arc_num);
kpeter@806
   331
      _upper.resize(_res_arc_num);
kpeter@806
   332
      _cost.resize(_res_arc_num);
kpeter@806
   333
      _supply.resize(_node_num);
kpeter@806
   334
      
kpeter@806
   335
      _res_cap.resize(_res_arc_num);
kpeter@806
   336
      _pi.resize(_node_num);
kpeter@806
   337
      _excess.resize(_node_num);
kpeter@806
   338
      _pred.resize(_node_num);
kpeter@806
   339
kpeter@806
   340
      // Copy the graph
kpeter@806
   341
      int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
kpeter@806
   342
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@806
   343
        _node_id[n] = i;
kpeter@805
   344
      }
kpeter@806
   345
      i = 0;
kpeter@806
   346
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@806
   347
        _first_out[i] = j;
kpeter@806
   348
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
kpeter@806
   349
          _arc_idf[a] = j;
kpeter@806
   350
          _forward[j] = true;
kpeter@806
   351
          _source[j] = i;
kpeter@806
   352
          _target[j] = _node_id[_graph.runningNode(a)];
kpeter@806
   353
        }
kpeter@806
   354
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
kpeter@806
   355
          _arc_idb[a] = j;
kpeter@806
   356
          _forward[j] = false;
kpeter@806
   357
          _source[j] = i;
kpeter@806
   358
          _target[j] = _node_id[_graph.runningNode(a)];
kpeter@806
   359
        }
kpeter@806
   360
        _forward[j] = false;
kpeter@806
   361
        _source[j] = i;
kpeter@806
   362
        _target[j] = _root;
kpeter@806
   363
        _reverse[j] = k;
kpeter@806
   364
        _forward[k] = true;
kpeter@806
   365
        _source[k] = _root;
kpeter@806
   366
        _target[k] = i;
kpeter@806
   367
        _reverse[k] = j;
kpeter@806
   368
        ++j; ++k;
kpeter@806
   369
      }
kpeter@806
   370
      _first_out[i] = j;
kpeter@806
   371
      _first_out[_node_num] = k;
kpeter@805
   372
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   373
        int fi = _arc_idf[a];
kpeter@806
   374
        int bi = _arc_idb[a];
kpeter@806
   375
        _reverse[fi] = bi;
kpeter@806
   376
        _reverse[bi] = fi;
kpeter@805
   377
      }
kpeter@806
   378
      
kpeter@806
   379
      // Reset parameters
kpeter@806
   380
      reset();
kpeter@805
   381
    }
kpeter@805
   382
kpeter@806
   383
    /// \name Parameters
kpeter@806
   384
    /// The parameters of the algorithm can be specified using these
kpeter@806
   385
    /// functions.
kpeter@806
   386
kpeter@806
   387
    /// @{
kpeter@806
   388
kpeter@806
   389
    /// \brief Set the lower bounds on the arcs.
kpeter@805
   390
    ///
kpeter@806
   391
    /// This function sets the lower bounds on the arcs.
kpeter@806
   392
    /// If it is not used before calling \ref run(), the lower bounds
kpeter@806
   393
    /// will be set to zero on all arcs.
kpeter@805
   394
    ///
kpeter@806
   395
    /// \param map An arc map storing the lower bounds.
kpeter@806
   396
    /// Its \c Value type must be convertible to the \c Value type
kpeter@806
   397
    /// of the algorithm.
kpeter@806
   398
    ///
kpeter@806
   399
    /// \return <tt>(*this)</tt>
kpeter@806
   400
    template <typename LowerMap>
kpeter@806
   401
    CapacityScaling& lowerMap(const LowerMap& map) {
kpeter@806
   402
      _have_lower = true;
kpeter@806
   403
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   404
        _lower[_arc_idf[a]] = map[a];
kpeter@806
   405
        _lower[_arc_idb[a]] = map[a];
kpeter@805
   406
      }
kpeter@805
   407
      return *this;
kpeter@805
   408
    }
kpeter@805
   409
kpeter@806
   410
    /// \brief Set the upper bounds (capacities) on the arcs.
kpeter@805
   411
    ///
kpeter@806
   412
    /// This function sets the upper bounds (capacities) on the arcs.
kpeter@806
   413
    /// If it is not used before calling \ref run(), the upper bounds
kpeter@806
   414
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
kpeter@812
   415
    /// unbounded from above).
kpeter@805
   416
    ///
kpeter@806
   417
    /// \param map An arc map storing the upper bounds.
kpeter@806
   418
    /// Its \c Value type must be convertible to the \c Value type
kpeter@806
   419
    /// of the algorithm.
kpeter@806
   420
    ///
kpeter@806
   421
    /// \return <tt>(*this)</tt>
kpeter@806
   422
    template<typename UpperMap>
kpeter@806
   423
    CapacityScaling& upperMap(const UpperMap& map) {
kpeter@806
   424
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   425
        _upper[_arc_idf[a]] = map[a];
kpeter@805
   426
      }
kpeter@805
   427
      return *this;
kpeter@805
   428
    }
kpeter@805
   429
kpeter@806
   430
    /// \brief Set the costs of the arcs.
kpeter@806
   431
    ///
kpeter@806
   432
    /// This function sets the costs of the arcs.
kpeter@806
   433
    /// If it is not used before calling \ref run(), the costs
kpeter@806
   434
    /// will be set to \c 1 on all arcs.
kpeter@806
   435
    ///
kpeter@806
   436
    /// \param map An arc map storing the costs.
kpeter@806
   437
    /// Its \c Value type must be convertible to the \c Cost type
kpeter@806
   438
    /// of the algorithm.
kpeter@806
   439
    ///
kpeter@806
   440
    /// \return <tt>(*this)</tt>
kpeter@806
   441
    template<typename CostMap>
kpeter@806
   442
    CapacityScaling& costMap(const CostMap& map) {
kpeter@806
   443
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   444
        _cost[_arc_idf[a]] =  map[a];
kpeter@806
   445
        _cost[_arc_idb[a]] = -map[a];
kpeter@806
   446
      }
kpeter@806
   447
      return *this;
kpeter@806
   448
    }
kpeter@806
   449
kpeter@806
   450
    /// \brief Set the supply values of the nodes.
kpeter@806
   451
    ///
kpeter@806
   452
    /// This function sets the supply values of the nodes.
kpeter@806
   453
    /// If neither this function nor \ref stSupply() is used before
kpeter@806
   454
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@806
   455
    ///
kpeter@806
   456
    /// \param map A node map storing the supply values.
kpeter@806
   457
    /// Its \c Value type must be convertible to the \c Value type
kpeter@806
   458
    /// of the algorithm.
kpeter@806
   459
    ///
kpeter@806
   460
    /// \return <tt>(*this)</tt>
kpeter@806
   461
    template<typename SupplyMap>
kpeter@806
   462
    CapacityScaling& supplyMap(const SupplyMap& map) {
kpeter@806
   463
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@806
   464
        _supply[_node_id[n]] = map[n];
kpeter@806
   465
      }
kpeter@806
   466
      return *this;
kpeter@806
   467
    }
kpeter@806
   468
kpeter@806
   469
    /// \brief Set single source and target nodes and a supply value.
kpeter@806
   470
    ///
kpeter@806
   471
    /// This function sets a single source node and a single target node
kpeter@806
   472
    /// and the required flow value.
kpeter@806
   473
    /// If neither this function nor \ref supplyMap() is used before
kpeter@806
   474
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@806
   475
    ///
kpeter@806
   476
    /// Using this function has the same effect as using \ref supplyMap()
kpeter@806
   477
    /// with such a map in which \c k is assigned to \c s, \c -k is
kpeter@806
   478
    /// assigned to \c t and all other nodes have zero supply value.
kpeter@806
   479
    ///
kpeter@806
   480
    /// \param s The source node.
kpeter@806
   481
    /// \param t The target node.
kpeter@806
   482
    /// \param k The required amount of flow from node \c s to node \c t
kpeter@806
   483
    /// (i.e. the supply of \c s and the demand of \c t).
kpeter@806
   484
    ///
kpeter@806
   485
    /// \return <tt>(*this)</tt>
kpeter@806
   486
    CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
kpeter@806
   487
      for (int i = 0; i != _node_num; ++i) {
kpeter@806
   488
        _supply[i] = 0;
kpeter@806
   489
      }
kpeter@806
   490
      _supply[_node_id[s]] =  k;
kpeter@806
   491
      _supply[_node_id[t]] = -k;
kpeter@806
   492
      return *this;
kpeter@806
   493
    }
kpeter@806
   494
    
kpeter@806
   495
    /// @}
kpeter@806
   496
kpeter@805
   497
    /// \name Execution control
kpeter@807
   498
    /// The algorithm can be executed using \ref run().
kpeter@805
   499
kpeter@805
   500
    /// @{
kpeter@805
   501
kpeter@805
   502
    /// \brief Run the algorithm.
kpeter@805
   503
    ///
kpeter@805
   504
    /// This function runs the algorithm.
kpeter@806
   505
    /// The paramters can be specified using functions \ref lowerMap(),
kpeter@806
   506
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
kpeter@806
   507
    /// For example,
kpeter@806
   508
    /// \code
kpeter@806
   509
    ///   CapacityScaling<ListDigraph> cs(graph);
kpeter@806
   510
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@806
   511
    ///     .supplyMap(sup).run();
kpeter@806
   512
    /// \endcode
kpeter@806
   513
    ///
kpeter@806
   514
    /// This function can be called more than once. All the parameters
kpeter@806
   515
    /// that have been given are kept for the next call, unless
kpeter@806
   516
    /// \ref reset() is called, thus only the modified parameters
kpeter@806
   517
    /// have to be set again. See \ref reset() for examples.
kpeter@812
   518
    /// However, the underlying digraph must not be modified after this
kpeter@810
   519
    /// class have been constructed, since it copies and extends the graph.
kpeter@805
   520
    ///
kpeter@810
   521
    /// \param factor The capacity scaling factor. It must be larger than
kpeter@810
   522
    /// one to use scaling. If it is less or equal to one, then scaling
kpeter@810
   523
    /// will be disabled.
kpeter@805
   524
    ///
kpeter@806
   525
    /// \return \c INFEASIBLE if no feasible flow exists,
kpeter@806
   526
    /// \n \c OPTIMAL if the problem has optimal solution
kpeter@806
   527
    /// (i.e. it is feasible and bounded), and the algorithm has found
kpeter@806
   528
    /// optimal flow and node potentials (primal and dual solutions),
kpeter@806
   529
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
kpeter@806
   530
    /// and infinite upper bound. It means that the objective function
kpeter@812
   531
    /// is unbounded on that arc, however, note that it could actually be
kpeter@806
   532
    /// bounded over the feasible flows, but this algroithm cannot handle
kpeter@806
   533
    /// these cases.
kpeter@806
   534
    ///
kpeter@806
   535
    /// \see ProblemType
kpeter@810
   536
    ProblemType run(int factor = 4) {
kpeter@810
   537
      _factor = factor;
kpeter@810
   538
      ProblemType pt = init();
kpeter@806
   539
      if (pt != OPTIMAL) return pt;
kpeter@806
   540
      return start();
kpeter@806
   541
    }
kpeter@806
   542
kpeter@806
   543
    /// \brief Reset all the parameters that have been given before.
kpeter@806
   544
    ///
kpeter@806
   545
    /// This function resets all the paramaters that have been given
kpeter@806
   546
    /// before using functions \ref lowerMap(), \ref upperMap(),
kpeter@806
   547
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
kpeter@806
   548
    ///
kpeter@806
   549
    /// It is useful for multiple run() calls. If this function is not
kpeter@806
   550
    /// used, all the parameters given before are kept for the next
kpeter@806
   551
    /// \ref run() call.
kpeter@810
   552
    /// However, the underlying digraph must not be modified after this
kpeter@806
   553
    /// class have been constructed, since it copies and extends the graph.
kpeter@806
   554
    ///
kpeter@806
   555
    /// For example,
kpeter@806
   556
    /// \code
kpeter@806
   557
    ///   CapacityScaling<ListDigraph> cs(graph);
kpeter@806
   558
    ///
kpeter@806
   559
    ///   // First run
kpeter@806
   560
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@806
   561
    ///     .supplyMap(sup).run();
kpeter@806
   562
    ///
kpeter@806
   563
    ///   // Run again with modified cost map (reset() is not called,
kpeter@806
   564
    ///   // so only the cost map have to be set again)
kpeter@806
   565
    ///   cost[e] += 100;
kpeter@806
   566
    ///   cs.costMap(cost).run();
kpeter@806
   567
    ///
kpeter@806
   568
    ///   // Run again from scratch using reset()
kpeter@806
   569
    ///   // (the lower bounds will be set to zero on all arcs)
kpeter@806
   570
    ///   cs.reset();
kpeter@806
   571
    ///   cs.upperMap(capacity).costMap(cost)
kpeter@806
   572
    ///     .supplyMap(sup).run();
kpeter@806
   573
    /// \endcode
kpeter@806
   574
    ///
kpeter@806
   575
    /// \return <tt>(*this)</tt>
kpeter@806
   576
    CapacityScaling& reset() {
kpeter@806
   577
      for (int i = 0; i != _node_num; ++i) {
kpeter@806
   578
        _supply[i] = 0;
kpeter@806
   579
      }
kpeter@806
   580
      for (int j = 0; j != _res_arc_num; ++j) {
kpeter@806
   581
        _lower[j] = 0;
kpeter@806
   582
        _upper[j] = INF;
kpeter@806
   583
        _cost[j] = _forward[j] ? 1 : -1;
kpeter@806
   584
      }
kpeter@806
   585
      _have_lower = false;
kpeter@806
   586
      return *this;
kpeter@805
   587
    }
kpeter@805
   588
kpeter@805
   589
    /// @}
kpeter@805
   590
kpeter@805
   591
    /// \name Query Functions
kpeter@805
   592
    /// The results of the algorithm can be obtained using these
kpeter@805
   593
    /// functions.\n
kpeter@806
   594
    /// The \ref run() function must be called before using them.
kpeter@805
   595
kpeter@805
   596
    /// @{
kpeter@805
   597
kpeter@806
   598
    /// \brief Return the total cost of the found flow.
kpeter@805
   599
    ///
kpeter@806
   600
    /// This function returns the total cost of the found flow.
kpeter@806
   601
    /// Its complexity is O(e).
kpeter@806
   602
    ///
kpeter@806
   603
    /// \note The return type of the function can be specified as a
kpeter@806
   604
    /// template parameter. For example,
kpeter@806
   605
    /// \code
kpeter@806
   606
    ///   cs.totalCost<double>();
kpeter@806
   607
    /// \endcode
kpeter@806
   608
    /// It is useful if the total cost cannot be stored in the \c Cost
kpeter@806
   609
    /// type of the algorithm, which is the default return type of the
kpeter@806
   610
    /// function.
kpeter@805
   611
    ///
kpeter@805
   612
    /// \pre \ref run() must be called before using this function.
kpeter@806
   613
    template <typename Number>
kpeter@806
   614
    Number totalCost() const {
kpeter@806
   615
      Number c = 0;
kpeter@806
   616
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   617
        int i = _arc_idb[a];
kpeter@806
   618
        c += static_cast<Number>(_res_cap[i]) *
kpeter@806
   619
             (-static_cast<Number>(_cost[i]));
kpeter@806
   620
      }
kpeter@806
   621
      return c;
kpeter@805
   622
    }
kpeter@805
   623
kpeter@806
   624
#ifndef DOXYGEN
kpeter@806
   625
    Cost totalCost() const {
kpeter@806
   626
      return totalCost<Cost>();
kpeter@805
   627
    }
kpeter@806
   628
#endif
kpeter@805
   629
kpeter@805
   630
    /// \brief Return the flow on the given arc.
kpeter@805
   631
    ///
kpeter@806
   632
    /// This function returns the flow on the given arc.
kpeter@805
   633
    ///
kpeter@805
   634
    /// \pre \ref run() must be called before using this function.
kpeter@806
   635
    Value flow(const Arc& a) const {
kpeter@806
   636
      return _res_cap[_arc_idb[a]];
kpeter@805
   637
    }
kpeter@805
   638
kpeter@806
   639
    /// \brief Return the flow map (the primal solution).
kpeter@805
   640
    ///
kpeter@806
   641
    /// This function copies the flow value on each arc into the given
kpeter@806
   642
    /// map. The \c Value type of the algorithm must be convertible to
kpeter@806
   643
    /// the \c Value type of the map.
kpeter@805
   644
    ///
kpeter@805
   645
    /// \pre \ref run() must be called before using this function.
kpeter@806
   646
    template <typename FlowMap>
kpeter@806
   647
    void flowMap(FlowMap &map) const {
kpeter@806
   648
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   649
        map.set(a, _res_cap[_arc_idb[a]]);
kpeter@806
   650
      }
kpeter@805
   651
    }
kpeter@805
   652
kpeter@806
   653
    /// \brief Return the potential (dual value) of the given node.
kpeter@805
   654
    ///
kpeter@806
   655
    /// This function returns the potential (dual value) of the
kpeter@806
   656
    /// given node.
kpeter@805
   657
    ///
kpeter@805
   658
    /// \pre \ref run() must be called before using this function.
kpeter@806
   659
    Cost potential(const Node& n) const {
kpeter@806
   660
      return _pi[_node_id[n]];
kpeter@806
   661
    }
kpeter@806
   662
kpeter@806
   663
    /// \brief Return the potential map (the dual solution).
kpeter@806
   664
    ///
kpeter@806
   665
    /// This function copies the potential (dual value) of each node
kpeter@806
   666
    /// into the given map.
kpeter@806
   667
    /// The \c Cost type of the algorithm must be convertible to the
kpeter@806
   668
    /// \c Value type of the map.
kpeter@806
   669
    ///
kpeter@806
   670
    /// \pre \ref run() must be called before using this function.
kpeter@806
   671
    template <typename PotentialMap>
kpeter@806
   672
    void potentialMap(PotentialMap &map) const {
kpeter@806
   673
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@806
   674
        map.set(n, _pi[_node_id[n]]);
kpeter@806
   675
      }
kpeter@805
   676
    }
kpeter@805
   677
kpeter@805
   678
    /// @}
kpeter@805
   679
kpeter@805
   680
  private:
kpeter@805
   681
kpeter@806
   682
    // Initialize the algorithm
kpeter@810
   683
    ProblemType init() {
kpeter@821
   684
      if (_node_num <= 1) return INFEASIBLE;
kpeter@805
   685
kpeter@806
   686
      // Check the sum of supply values
kpeter@806
   687
      _sum_supply = 0;
kpeter@806
   688
      for (int i = 0; i != _root; ++i) {
kpeter@806
   689
        _sum_supply += _supply[i];
kpeter@805
   690
      }
kpeter@806
   691
      if (_sum_supply > 0) return INFEASIBLE;
kpeter@806
   692
      
kpeter@811
   693
      // Initialize vectors
kpeter@806
   694
      for (int i = 0; i != _root; ++i) {
kpeter@806
   695
        _pi[i] = 0;
kpeter@806
   696
        _excess[i] = _supply[i];
kpeter@805
   697
      }
kpeter@805
   698
kpeter@806
   699
      // Remove non-zero lower bounds
kpeter@811
   700
      const Value MAX = std::numeric_limits<Value>::max();
kpeter@811
   701
      int last_out;
kpeter@806
   702
      if (_have_lower) {
kpeter@806
   703
        for (int i = 0; i != _root; ++i) {
kpeter@811
   704
          last_out = _first_out[i+1];
kpeter@811
   705
          for (int j = _first_out[i]; j != last_out; ++j) {
kpeter@806
   706
            if (_forward[j]) {
kpeter@806
   707
              Value c = _lower[j];
kpeter@806
   708
              if (c >= 0) {
kpeter@811
   709
                _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
kpeter@806
   710
              } else {
kpeter@811
   711
                _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
kpeter@806
   712
              }
kpeter@806
   713
              _excess[i] -= c;
kpeter@806
   714
              _excess[_target[j]] += c;
kpeter@806
   715
            } else {
kpeter@806
   716
              _res_cap[j] = 0;
kpeter@806
   717
            }
kpeter@806
   718
          }
kpeter@806
   719
        }
kpeter@806
   720
      } else {
kpeter@806
   721
        for (int j = 0; j != _res_arc_num; ++j) {
kpeter@806
   722
          _res_cap[j] = _forward[j] ? _upper[j] : 0;
kpeter@806
   723
        }
kpeter@806
   724
      }
kpeter@805
   725
kpeter@806
   726
      // Handle negative costs
kpeter@811
   727
      for (int i = 0; i != _root; ++i) {
kpeter@811
   728
        last_out = _first_out[i+1] - 1;
kpeter@811
   729
        for (int j = _first_out[i]; j != last_out; ++j) {
kpeter@811
   730
          Value rc = _res_cap[j];
kpeter@811
   731
          if (_cost[j] < 0 && rc > 0) {
kpeter@811
   732
            if (rc >= MAX) return UNBOUNDED;
kpeter@811
   733
            _excess[i] -= rc;
kpeter@811
   734
            _excess[_target[j]] += rc;
kpeter@811
   735
            _res_cap[j] = 0;
kpeter@811
   736
            _res_cap[_reverse[j]] += rc;
kpeter@806
   737
          }
kpeter@806
   738
        }
kpeter@806
   739
      }
kpeter@806
   740
      
kpeter@806
   741
      // Handle GEQ supply type
kpeter@806
   742
      if (_sum_supply < 0) {
kpeter@806
   743
        _pi[_root] = 0;
kpeter@806
   744
        _excess[_root] = -_sum_supply;
kpeter@806
   745
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
kpeter@811
   746
          int ra = _reverse[a];
kpeter@811
   747
          _res_cap[a] = -_sum_supply + 1;
kpeter@811
   748
          _res_cap[ra] = 0;
kpeter@806
   749
          _cost[a] = 0;
kpeter@811
   750
          _cost[ra] = 0;
kpeter@806
   751
        }
kpeter@806
   752
      } else {
kpeter@806
   753
        _pi[_root] = 0;
kpeter@806
   754
        _excess[_root] = 0;
kpeter@806
   755
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
kpeter@811
   756
          int ra = _reverse[a];
kpeter@806
   757
          _res_cap[a] = 1;
kpeter@811
   758
          _res_cap[ra] = 0;
kpeter@806
   759
          _cost[a] = 0;
kpeter@811
   760
          _cost[ra] = 0;
kpeter@806
   761
        }
kpeter@806
   762
      }
kpeter@806
   763
kpeter@806
   764
      // Initialize delta value
kpeter@810
   765
      if (_factor > 1) {
kpeter@805
   766
        // With scaling
kpeter@806
   767
        Value max_sup = 0, max_dem = 0;
kpeter@806
   768
        for (int i = 0; i != _node_num; ++i) {
kpeter@811
   769
          Value ex = _excess[i];
kpeter@811
   770
          if ( ex > max_sup) max_sup =  ex;
kpeter@811
   771
          if (-ex > max_dem) max_dem = -ex;
kpeter@805
   772
        }
kpeter@806
   773
        Value max_cap = 0;
kpeter@806
   774
        for (int j = 0; j != _res_arc_num; ++j) {
kpeter@806
   775
          if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
kpeter@805
   776
        }
kpeter@805
   777
        max_sup = std::min(std::min(max_sup, max_dem), max_cap);
kpeter@810
   778
        for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
kpeter@805
   779
      } else {
kpeter@805
   780
        // Without scaling
kpeter@805
   781
        _delta = 1;
kpeter@805
   782
      }
kpeter@805
   783
kpeter@806
   784
      return OPTIMAL;
kpeter@805
   785
    }
kpeter@805
   786
kpeter@806
   787
    ProblemType start() {
kpeter@806
   788
      // Execute the algorithm
kpeter@806
   789
      ProblemType pt;
kpeter@805
   790
      if (_delta > 1)
kpeter@806
   791
        pt = startWithScaling();
kpeter@805
   792
      else
kpeter@806
   793
        pt = startWithoutScaling();
kpeter@806
   794
kpeter@806
   795
      // Handle non-zero lower bounds
kpeter@806
   796
      if (_have_lower) {
kpeter@811
   797
        int limit = _first_out[_root];
kpeter@811
   798
        for (int j = 0; j != limit; ++j) {
kpeter@806
   799
          if (!_forward[j]) _res_cap[j] += _lower[j];
kpeter@806
   800
        }
kpeter@806
   801
      }
kpeter@806
   802
kpeter@806
   803
      // Shift potentials if necessary
kpeter@806
   804
      Cost pr = _pi[_root];
kpeter@806
   805
      if (_sum_supply < 0 || pr > 0) {
kpeter@806
   806
        for (int i = 0; i != _node_num; ++i) {
kpeter@806
   807
          _pi[i] -= pr;
kpeter@806
   808
        }        
kpeter@806
   809
      }
kpeter@806
   810
      
kpeter@806
   811
      return pt;
kpeter@805
   812
    }
kpeter@805
   813
kpeter@806
   814
    // Execute the capacity scaling algorithm
kpeter@806
   815
    ProblemType startWithScaling() {
kpeter@807
   816
      // Perform capacity scaling phases
kpeter@806
   817
      int s, t;
kpeter@806
   818
      ResidualDijkstra _dijkstra(*this);
kpeter@805
   819
      while (true) {
kpeter@806
   820
        // Saturate all arcs not satisfying the optimality condition
kpeter@811
   821
        int last_out;
kpeter@806
   822
        for (int u = 0; u != _node_num; ++u) {
kpeter@811
   823
          last_out = _sum_supply < 0 ?
kpeter@811
   824
            _first_out[u+1] : _first_out[u+1] - 1;
kpeter@811
   825
          for (int a = _first_out[u]; a != last_out; ++a) {
kpeter@806
   826
            int v = _target[a];
kpeter@806
   827
            Cost c = _cost[a] + _pi[u] - _pi[v];
kpeter@806
   828
            Value rc = _res_cap[a];
kpeter@806
   829
            if (c < 0 && rc >= _delta) {
kpeter@806
   830
              _excess[u] -= rc;
kpeter@806
   831
              _excess[v] += rc;
kpeter@806
   832
              _res_cap[a] = 0;
kpeter@806
   833
              _res_cap[_reverse[a]] += rc;
kpeter@806
   834
            }
kpeter@805
   835
          }
kpeter@805
   836
        }
kpeter@805
   837
kpeter@806
   838
        // Find excess nodes and deficit nodes
kpeter@805
   839
        _excess_nodes.clear();
kpeter@805
   840
        _deficit_nodes.clear();
kpeter@806
   841
        for (int u = 0; u != _node_num; ++u) {
kpeter@811
   842
          Value ex = _excess[u];
kpeter@811
   843
          if (ex >=  _delta) _excess_nodes.push_back(u);
kpeter@811
   844
          if (ex <= -_delta) _deficit_nodes.push_back(u);
kpeter@805
   845
        }
kpeter@805
   846
        int next_node = 0, next_def_node = 0;
kpeter@805
   847
kpeter@806
   848
        // Find augmenting shortest paths
kpeter@805
   849
        while (next_node < int(_excess_nodes.size())) {
kpeter@806
   850
          // Check deficit nodes
kpeter@805
   851
          if (_delta > 1) {
kpeter@805
   852
            bool delta_deficit = false;
kpeter@805
   853
            for ( ; next_def_node < int(_deficit_nodes.size());
kpeter@805
   854
                    ++next_def_node ) {
kpeter@805
   855
              if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
kpeter@805
   856
                delta_deficit = true;
kpeter@805
   857
                break;
kpeter@805
   858
              }
kpeter@805
   859
            }
kpeter@805
   860
            if (!delta_deficit) break;
kpeter@805
   861
          }
kpeter@805
   862
kpeter@806
   863
          // Run Dijkstra in the residual network
kpeter@805
   864
          s = _excess_nodes[next_node];
kpeter@806
   865
          if ((t = _dijkstra.run(s, _delta)) == -1) {
kpeter@805
   866
            if (_delta > 1) {
kpeter@805
   867
              ++next_node;
kpeter@805
   868
              continue;
kpeter@805
   869
            }
kpeter@806
   870
            return INFEASIBLE;
kpeter@805
   871
          }
kpeter@805
   872
kpeter@806
   873
          // Augment along a shortest path from s to t
kpeter@806
   874
          Value d = std::min(_excess[s], -_excess[t]);
kpeter@806
   875
          int u = t;
kpeter@806
   876
          int a;
kpeter@805
   877
          if (d > _delta) {
kpeter@806
   878
            while ((a = _pred[u]) != -1) {
kpeter@806
   879
              if (_res_cap[a] < d) d = _res_cap[a];
kpeter@806
   880
              u = _source[a];
kpeter@805
   881
            }
kpeter@805
   882
          }
kpeter@805
   883
          u = t;
kpeter@806
   884
          while ((a = _pred[u]) != -1) {
kpeter@806
   885
            _res_cap[a] -= d;
kpeter@806
   886
            _res_cap[_reverse[a]] += d;
kpeter@806
   887
            u = _source[a];
kpeter@805
   888
          }
kpeter@805
   889
          _excess[s] -= d;
kpeter@805
   890
          _excess[t] += d;
kpeter@805
   891
kpeter@805
   892
          if (_excess[s] < _delta) ++next_node;
kpeter@805
   893
        }
kpeter@805
   894
kpeter@805
   895
        if (_delta == 1) break;
kpeter@810
   896
        _delta = _delta <= _factor ? 1 : _delta / _factor;
kpeter@805
   897
      }
kpeter@805
   898
kpeter@806
   899
      return OPTIMAL;
kpeter@805
   900
    }
kpeter@805
   901
kpeter@806
   902
    // Execute the successive shortest path algorithm
kpeter@806
   903
    ProblemType startWithoutScaling() {
kpeter@806
   904
      // Find excess nodes
kpeter@806
   905
      _excess_nodes.clear();
kpeter@806
   906
      for (int i = 0; i != _node_num; ++i) {
kpeter@806
   907
        if (_excess[i] > 0) _excess_nodes.push_back(i);
kpeter@806
   908
      }
kpeter@806
   909
      if (_excess_nodes.size() == 0) return OPTIMAL;
kpeter@805
   910
      int next_node = 0;
kpeter@805
   911
kpeter@806
   912
      // Find shortest paths
kpeter@806
   913
      int s, t;
kpeter@806
   914
      ResidualDijkstra _dijkstra(*this);
kpeter@805
   915
      while ( _excess[_excess_nodes[next_node]] > 0 ||
kpeter@805
   916
              ++next_node < int(_excess_nodes.size()) )
kpeter@805
   917
      {
kpeter@806
   918
        // Run Dijkstra in the residual network
kpeter@805
   919
        s = _excess_nodes[next_node];
kpeter@806
   920
        if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
kpeter@805
   921
kpeter@806
   922
        // Augment along a shortest path from s to t
kpeter@806
   923
        Value d = std::min(_excess[s], -_excess[t]);
kpeter@806
   924
        int u = t;
kpeter@806
   925
        int a;
kpeter@805
   926
        if (d > 1) {
kpeter@806
   927
          while ((a = _pred[u]) != -1) {
kpeter@806
   928
            if (_res_cap[a] < d) d = _res_cap[a];
kpeter@806
   929
            u = _source[a];
kpeter@805
   930
          }
kpeter@805
   931
        }
kpeter@805
   932
        u = t;
kpeter@806
   933
        while ((a = _pred[u]) != -1) {
kpeter@806
   934
          _res_cap[a] -= d;
kpeter@806
   935
          _res_cap[_reverse[a]] += d;
kpeter@806
   936
          u = _source[a];
kpeter@805
   937
        }
kpeter@805
   938
        _excess[s] -= d;
kpeter@805
   939
        _excess[t] += d;
kpeter@805
   940
      }
kpeter@805
   941
kpeter@806
   942
      return OPTIMAL;
kpeter@805
   943
    }
kpeter@805
   944
kpeter@805
   945
  }; //class CapacityScaling
kpeter@805
   946
kpeter@805
   947
  ///@}
kpeter@805
   948
kpeter@805
   949
} //namespace lemon
kpeter@805
   950
kpeter@805
   951
#endif //LEMON_CAPACITY_SCALING_H