kpeter@808
|
1 |
/* -*- C++ -*-
|
kpeter@808
|
2 |
*
|
kpeter@808
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
kpeter@808
|
4 |
*
|
kpeter@808
|
5 |
* Copyright (C) 2003-2008
|
kpeter@808
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
kpeter@808
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
kpeter@808
|
8 |
*
|
kpeter@808
|
9 |
* Permission to use, modify and distribute this software is granted
|
kpeter@808
|
10 |
* provided that this copyright notice appears in all copies. For
|
kpeter@808
|
11 |
* precise terms see the accompanying LICENSE file.
|
kpeter@808
|
12 |
*
|
kpeter@808
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
kpeter@808
|
14 |
* express or implied, and with no claim as to its suitability for any
|
kpeter@808
|
15 |
* purpose.
|
kpeter@808
|
16 |
*
|
kpeter@808
|
17 |
*/
|
kpeter@808
|
18 |
|
kpeter@808
|
19 |
#ifndef LEMON_COST_SCALING_H
|
kpeter@808
|
20 |
#define LEMON_COST_SCALING_H
|
kpeter@808
|
21 |
|
kpeter@808
|
22 |
/// \ingroup min_cost_flow_algs
|
kpeter@808
|
23 |
/// \file
|
kpeter@808
|
24 |
/// \brief Cost scaling algorithm for finding a minimum cost flow.
|
kpeter@808
|
25 |
|
kpeter@808
|
26 |
#include <vector>
|
kpeter@808
|
27 |
#include <deque>
|
kpeter@808
|
28 |
#include <limits>
|
kpeter@808
|
29 |
|
kpeter@808
|
30 |
#include <lemon/core.h>
|
kpeter@808
|
31 |
#include <lemon/maps.h>
|
kpeter@808
|
32 |
#include <lemon/math.h>
|
kpeter@809
|
33 |
#include <lemon/static_graph.h>
|
kpeter@808
|
34 |
#include <lemon/circulation.h>
|
kpeter@808
|
35 |
#include <lemon/bellman_ford.h>
|
kpeter@808
|
36 |
|
kpeter@808
|
37 |
namespace lemon {
|
kpeter@808
|
38 |
|
kpeter@809
|
39 |
/// \brief Default traits class of CostScaling algorithm.
|
kpeter@809
|
40 |
///
|
kpeter@809
|
41 |
/// Default traits class of CostScaling algorithm.
|
kpeter@809
|
42 |
/// \tparam GR Digraph type.
|
kpeter@812
|
43 |
/// \tparam V The number type used for flow amounts, capacity bounds
|
kpeter@809
|
44 |
/// and supply values. By default it is \c int.
|
kpeter@812
|
45 |
/// \tparam C The number type used for costs and potentials.
|
kpeter@809
|
46 |
/// By default it is the same as \c V.
|
kpeter@809
|
47 |
#ifdef DOXYGEN
|
kpeter@809
|
48 |
template <typename GR, typename V = int, typename C = V>
|
kpeter@809
|
49 |
#else
|
kpeter@809
|
50 |
template < typename GR, typename V = int, typename C = V,
|
kpeter@809
|
51 |
bool integer = std::numeric_limits<C>::is_integer >
|
kpeter@809
|
52 |
#endif
|
kpeter@809
|
53 |
struct CostScalingDefaultTraits
|
kpeter@809
|
54 |
{
|
kpeter@809
|
55 |
/// The type of the digraph
|
kpeter@809
|
56 |
typedef GR Digraph;
|
kpeter@809
|
57 |
/// The type of the flow amounts, capacity bounds and supply values
|
kpeter@809
|
58 |
typedef V Value;
|
kpeter@809
|
59 |
/// The type of the arc costs
|
kpeter@809
|
60 |
typedef C Cost;
|
kpeter@809
|
61 |
|
kpeter@809
|
62 |
/// \brief The large cost type used for internal computations
|
kpeter@809
|
63 |
///
|
kpeter@809
|
64 |
/// The large cost type used for internal computations.
|
kpeter@809
|
65 |
/// It is \c long \c long if the \c Cost type is integer,
|
kpeter@809
|
66 |
/// otherwise it is \c double.
|
kpeter@809
|
67 |
/// \c Cost must be convertible to \c LargeCost.
|
kpeter@809
|
68 |
typedef double LargeCost;
|
kpeter@809
|
69 |
};
|
kpeter@809
|
70 |
|
kpeter@809
|
71 |
// Default traits class for integer cost types
|
kpeter@809
|
72 |
template <typename GR, typename V, typename C>
|
kpeter@809
|
73 |
struct CostScalingDefaultTraits<GR, V, C, true>
|
kpeter@809
|
74 |
{
|
kpeter@809
|
75 |
typedef GR Digraph;
|
kpeter@809
|
76 |
typedef V Value;
|
kpeter@809
|
77 |
typedef C Cost;
|
kpeter@809
|
78 |
#ifdef LEMON_HAVE_LONG_LONG
|
kpeter@809
|
79 |
typedef long long LargeCost;
|
kpeter@809
|
80 |
#else
|
kpeter@809
|
81 |
typedef long LargeCost;
|
kpeter@809
|
82 |
#endif
|
kpeter@809
|
83 |
};
|
kpeter@809
|
84 |
|
kpeter@809
|
85 |
|
kpeter@808
|
86 |
/// \addtogroup min_cost_flow_algs
|
kpeter@808
|
87 |
/// @{
|
kpeter@808
|
88 |
|
kpeter@809
|
89 |
/// \brief Implementation of the Cost Scaling algorithm for
|
kpeter@809
|
90 |
/// finding a \ref min_cost_flow "minimum cost flow".
|
kpeter@808
|
91 |
///
|
kpeter@809
|
92 |
/// \ref CostScaling implements a cost scaling algorithm that performs
|
kpeter@813
|
93 |
/// push/augment and relabel operations for finding a \ref min_cost_flow
|
kpeter@813
|
94 |
/// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
|
kpeter@813
|
95 |
/// \ref goldberg97efficient, \ref bunnagel98efficient.
|
kpeter@813
|
96 |
/// It is a highly efficient primal-dual solution method, which
|
kpeter@809
|
97 |
/// can be viewed as the generalization of the \ref Preflow
|
kpeter@809
|
98 |
/// "preflow push-relabel" algorithm for the maximum flow problem.
|
kpeter@808
|
99 |
///
|
kpeter@809
|
100 |
/// Most of the parameters of the problem (except for the digraph)
|
kpeter@809
|
101 |
/// can be given using separate functions, and the algorithm can be
|
kpeter@809
|
102 |
/// executed using the \ref run() function. If some parameters are not
|
kpeter@809
|
103 |
/// specified, then default values will be used.
|
kpeter@808
|
104 |
///
|
kpeter@809
|
105 |
/// \tparam GR The digraph type the algorithm runs on.
|
kpeter@812
|
106 |
/// \tparam V The number type used for flow amounts, capacity bounds
|
kpeter@809
|
107 |
/// and supply values in the algorithm. By default it is \c int.
|
kpeter@812
|
108 |
/// \tparam C The number type used for costs and potentials in the
|
kpeter@809
|
109 |
/// algorithm. By default it is the same as \c V.
|
kpeter@808
|
110 |
///
|
kpeter@812
|
111 |
/// \warning Both number types must be signed and all input data must
|
kpeter@809
|
112 |
/// be integer.
|
kpeter@809
|
113 |
/// \warning This algorithm does not support negative costs for such
|
kpeter@809
|
114 |
/// arcs that have infinite upper bound.
|
kpeter@810
|
115 |
///
|
kpeter@810
|
116 |
/// \note %CostScaling provides three different internal methods,
|
kpeter@810
|
117 |
/// from which the most efficient one is used by default.
|
kpeter@810
|
118 |
/// For more information, see \ref Method.
|
kpeter@809
|
119 |
#ifdef DOXYGEN
|
kpeter@809
|
120 |
template <typename GR, typename V, typename C, typename TR>
|
kpeter@809
|
121 |
#else
|
kpeter@809
|
122 |
template < typename GR, typename V = int, typename C = V,
|
kpeter@809
|
123 |
typename TR = CostScalingDefaultTraits<GR, V, C> >
|
kpeter@809
|
124 |
#endif
|
kpeter@808
|
125 |
class CostScaling
|
kpeter@808
|
126 |
{
|
kpeter@809
|
127 |
public:
|
kpeter@808
|
128 |
|
kpeter@809
|
129 |
/// The type of the digraph
|
kpeter@809
|
130 |
typedef typename TR::Digraph Digraph;
|
kpeter@809
|
131 |
/// The type of the flow amounts, capacity bounds and supply values
|
kpeter@809
|
132 |
typedef typename TR::Value Value;
|
kpeter@809
|
133 |
/// The type of the arc costs
|
kpeter@809
|
134 |
typedef typename TR::Cost Cost;
|
kpeter@808
|
135 |
|
kpeter@809
|
136 |
/// \brief The large cost type
|
kpeter@809
|
137 |
///
|
kpeter@809
|
138 |
/// The large cost type used for internal computations.
|
kpeter@809
|
139 |
/// Using the \ref CostScalingDefaultTraits "default traits class",
|
kpeter@809
|
140 |
/// it is \c long \c long if the \c Cost type is integer,
|
kpeter@809
|
141 |
/// otherwise it is \c double.
|
kpeter@809
|
142 |
typedef typename TR::LargeCost LargeCost;
|
kpeter@808
|
143 |
|
kpeter@809
|
144 |
/// The \ref CostScalingDefaultTraits "traits class" of the algorithm
|
kpeter@809
|
145 |
typedef TR Traits;
|
kpeter@808
|
146 |
|
kpeter@808
|
147 |
public:
|
kpeter@808
|
148 |
|
kpeter@809
|
149 |
/// \brief Problem type constants for the \c run() function.
|
kpeter@809
|
150 |
///
|
kpeter@809
|
151 |
/// Enum type containing the problem type constants that can be
|
kpeter@809
|
152 |
/// returned by the \ref run() function of the algorithm.
|
kpeter@809
|
153 |
enum ProblemType {
|
kpeter@809
|
154 |
/// The problem has no feasible solution (flow).
|
kpeter@809
|
155 |
INFEASIBLE,
|
kpeter@809
|
156 |
/// The problem has optimal solution (i.e. it is feasible and
|
kpeter@809
|
157 |
/// bounded), and the algorithm has found optimal flow and node
|
kpeter@809
|
158 |
/// potentials (primal and dual solutions).
|
kpeter@809
|
159 |
OPTIMAL,
|
kpeter@809
|
160 |
/// The digraph contains an arc of negative cost and infinite
|
kpeter@809
|
161 |
/// upper bound. It means that the objective function is unbounded
|
kpeter@812
|
162 |
/// on that arc, however, note that it could actually be bounded
|
kpeter@809
|
163 |
/// over the feasible flows, but this algroithm cannot handle
|
kpeter@809
|
164 |
/// these cases.
|
kpeter@809
|
165 |
UNBOUNDED
|
kpeter@809
|
166 |
};
|
kpeter@808
|
167 |
|
kpeter@810
|
168 |
/// \brief Constants for selecting the internal method.
|
kpeter@810
|
169 |
///
|
kpeter@810
|
170 |
/// Enum type containing constants for selecting the internal method
|
kpeter@810
|
171 |
/// for the \ref run() function.
|
kpeter@810
|
172 |
///
|
kpeter@810
|
173 |
/// \ref CostScaling provides three internal methods that differ mainly
|
kpeter@810
|
174 |
/// in their base operations, which are used in conjunction with the
|
kpeter@810
|
175 |
/// relabel operation.
|
kpeter@810
|
176 |
/// By default, the so called \ref PARTIAL_AUGMENT
|
kpeter@810
|
177 |
/// "Partial Augment-Relabel" method is used, which proved to be
|
kpeter@810
|
178 |
/// the most efficient and the most robust on various test inputs.
|
kpeter@810
|
179 |
/// However, the other methods can be selected using the \ref run()
|
kpeter@810
|
180 |
/// function with the proper parameter.
|
kpeter@810
|
181 |
enum Method {
|
kpeter@810
|
182 |
/// Local push operations are used, i.e. flow is moved only on one
|
kpeter@810
|
183 |
/// admissible arc at once.
|
kpeter@810
|
184 |
PUSH,
|
kpeter@810
|
185 |
/// Augment operations are used, i.e. flow is moved on admissible
|
kpeter@810
|
186 |
/// paths from a node with excess to a node with deficit.
|
kpeter@810
|
187 |
AUGMENT,
|
kpeter@810
|
188 |
/// Partial augment operations are used, i.e. flow is moved on
|
kpeter@810
|
189 |
/// admissible paths started from a node with excess, but the
|
kpeter@810
|
190 |
/// lengths of these paths are limited. This method can be viewed
|
kpeter@810
|
191 |
/// as a combined version of the previous two operations.
|
kpeter@810
|
192 |
PARTIAL_AUGMENT
|
kpeter@810
|
193 |
};
|
kpeter@810
|
194 |
|
kpeter@808
|
195 |
private:
|
kpeter@808
|
196 |
|
kpeter@809
|
197 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
|
kpeter@808
|
198 |
|
kpeter@809
|
199 |
typedef std::vector<int> IntVector;
|
kpeter@809
|
200 |
typedef std::vector<char> BoolVector;
|
kpeter@809
|
201 |
typedef std::vector<Value> ValueVector;
|
kpeter@809
|
202 |
typedef std::vector<Cost> CostVector;
|
kpeter@809
|
203 |
typedef std::vector<LargeCost> LargeCostVector;
|
kpeter@808
|
204 |
|
kpeter@809
|
205 |
private:
|
kpeter@809
|
206 |
|
kpeter@809
|
207 |
template <typename KT, typename VT>
|
kpeter@820
|
208 |
class StaticVectorMap {
|
kpeter@808
|
209 |
public:
|
kpeter@809
|
210 |
typedef KT Key;
|
kpeter@809
|
211 |
typedef VT Value;
|
kpeter@809
|
212 |
|
kpeter@820
|
213 |
StaticVectorMap(std::vector<Value>& v) : _v(v) {}
|
kpeter@809
|
214 |
|
kpeter@809
|
215 |
const Value& operator[](const Key& key) const {
|
kpeter@809
|
216 |
return _v[StaticDigraph::id(key)];
|
kpeter@808
|
217 |
}
|
kpeter@808
|
218 |
|
kpeter@809
|
219 |
Value& operator[](const Key& key) {
|
kpeter@809
|
220 |
return _v[StaticDigraph::id(key)];
|
kpeter@809
|
221 |
}
|
kpeter@809
|
222 |
|
kpeter@809
|
223 |
void set(const Key& key, const Value& val) {
|
kpeter@809
|
224 |
_v[StaticDigraph::id(key)] = val;
|
kpeter@808
|
225 |
}
|
kpeter@808
|
226 |
|
kpeter@809
|
227 |
private:
|
kpeter@809
|
228 |
std::vector<Value>& _v;
|
kpeter@809
|
229 |
};
|
kpeter@809
|
230 |
|
kpeter@820
|
231 |
typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
|
kpeter@820
|
232 |
typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
|
kpeter@808
|
233 |
|
kpeter@808
|
234 |
private:
|
kpeter@808
|
235 |
|
kpeter@809
|
236 |
// Data related to the underlying digraph
|
kpeter@809
|
237 |
const GR &_graph;
|
kpeter@809
|
238 |
int _node_num;
|
kpeter@809
|
239 |
int _arc_num;
|
kpeter@809
|
240 |
int _res_node_num;
|
kpeter@809
|
241 |
int _res_arc_num;
|
kpeter@809
|
242 |
int _root;
|
kpeter@808
|
243 |
|
kpeter@809
|
244 |
// Parameters of the problem
|
kpeter@809
|
245 |
bool _have_lower;
|
kpeter@809
|
246 |
Value _sum_supply;
|
kpeter@808
|
247 |
|
kpeter@809
|
248 |
// Data structures for storing the digraph
|
kpeter@809
|
249 |
IntNodeMap _node_id;
|
kpeter@809
|
250 |
IntArcMap _arc_idf;
|
kpeter@809
|
251 |
IntArcMap _arc_idb;
|
kpeter@809
|
252 |
IntVector _first_out;
|
kpeter@809
|
253 |
BoolVector _forward;
|
kpeter@809
|
254 |
IntVector _source;
|
kpeter@809
|
255 |
IntVector _target;
|
kpeter@809
|
256 |
IntVector _reverse;
|
kpeter@809
|
257 |
|
kpeter@809
|
258 |
// Node and arc data
|
kpeter@809
|
259 |
ValueVector _lower;
|
kpeter@809
|
260 |
ValueVector _upper;
|
kpeter@809
|
261 |
CostVector _scost;
|
kpeter@809
|
262 |
ValueVector _supply;
|
kpeter@809
|
263 |
|
kpeter@809
|
264 |
ValueVector _res_cap;
|
kpeter@809
|
265 |
LargeCostVector _cost;
|
kpeter@809
|
266 |
LargeCostVector _pi;
|
kpeter@809
|
267 |
ValueVector _excess;
|
kpeter@809
|
268 |
IntVector _next_out;
|
kpeter@809
|
269 |
std::deque<int> _active_nodes;
|
kpeter@809
|
270 |
|
kpeter@809
|
271 |
// Data for scaling
|
kpeter@809
|
272 |
LargeCost _epsilon;
|
kpeter@808
|
273 |
int _alpha;
|
kpeter@808
|
274 |
|
kpeter@809
|
275 |
// Data for a StaticDigraph structure
|
kpeter@809
|
276 |
typedef std::pair<int, int> IntPair;
|
kpeter@809
|
277 |
StaticDigraph _sgr;
|
kpeter@809
|
278 |
std::vector<IntPair> _arc_vec;
|
kpeter@809
|
279 |
std::vector<LargeCost> _cost_vec;
|
kpeter@809
|
280 |
LargeCostArcMap _cost_map;
|
kpeter@809
|
281 |
LargeCostNodeMap _pi_map;
|
kpeter@809
|
282 |
|
kpeter@809
|
283 |
public:
|
kpeter@809
|
284 |
|
kpeter@809
|
285 |
/// \brief Constant for infinite upper bounds (capacities).
|
kpeter@809
|
286 |
///
|
kpeter@809
|
287 |
/// Constant for infinite upper bounds (capacities).
|
kpeter@809
|
288 |
/// It is \c std::numeric_limits<Value>::infinity() if available,
|
kpeter@809
|
289 |
/// \c std::numeric_limits<Value>::max() otherwise.
|
kpeter@809
|
290 |
const Value INF;
|
kpeter@809
|
291 |
|
kpeter@808
|
292 |
public:
|
kpeter@808
|
293 |
|
kpeter@809
|
294 |
/// \name Named Template Parameters
|
kpeter@809
|
295 |
/// @{
|
kpeter@809
|
296 |
|
kpeter@809
|
297 |
template <typename T>
|
kpeter@809
|
298 |
struct SetLargeCostTraits : public Traits {
|
kpeter@809
|
299 |
typedef T LargeCost;
|
kpeter@809
|
300 |
};
|
kpeter@809
|
301 |
|
kpeter@809
|
302 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
kpeter@809
|
303 |
/// \c LargeCost type.
|
kpeter@808
|
304 |
///
|
kpeter@809
|
305 |
/// \ref named-templ-param "Named parameter" for setting \c LargeCost
|
kpeter@809
|
306 |
/// type, which is used for internal computations in the algorithm.
|
kpeter@809
|
307 |
/// \c Cost must be convertible to \c LargeCost.
|
kpeter@809
|
308 |
template <typename T>
|
kpeter@809
|
309 |
struct SetLargeCost
|
kpeter@809
|
310 |
: public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
|
kpeter@809
|
311 |
typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
|
kpeter@809
|
312 |
};
|
kpeter@809
|
313 |
|
kpeter@809
|
314 |
/// @}
|
kpeter@809
|
315 |
|
kpeter@809
|
316 |
public:
|
kpeter@809
|
317 |
|
kpeter@809
|
318 |
/// \brief Constructor.
|
kpeter@808
|
319 |
///
|
kpeter@809
|
320 |
/// The constructor of the class.
|
kpeter@809
|
321 |
///
|
kpeter@809
|
322 |
/// \param graph The digraph the algorithm runs on.
|
kpeter@809
|
323 |
CostScaling(const GR& graph) :
|
kpeter@809
|
324 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
|
kpeter@809
|
325 |
_cost_map(_cost_vec), _pi_map(_pi),
|
kpeter@809
|
326 |
INF(std::numeric_limits<Value>::has_infinity ?
|
kpeter@809
|
327 |
std::numeric_limits<Value>::infinity() :
|
kpeter@809
|
328 |
std::numeric_limits<Value>::max())
|
kpeter@808
|
329 |
{
|
kpeter@812
|
330 |
// Check the number types
|
kpeter@809
|
331 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
|
kpeter@809
|
332 |
"The flow type of CostScaling must be signed");
|
kpeter@809
|
333 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
|
kpeter@809
|
334 |
"The cost type of CostScaling must be signed");
|
kpeter@809
|
335 |
|
kpeter@809
|
336 |
// Resize vectors
|
kpeter@809
|
337 |
_node_num = countNodes(_graph);
|
kpeter@809
|
338 |
_arc_num = countArcs(_graph);
|
kpeter@809
|
339 |
_res_node_num = _node_num + 1;
|
kpeter@809
|
340 |
_res_arc_num = 2 * (_arc_num + _node_num);
|
kpeter@809
|
341 |
_root = _node_num;
|
kpeter@809
|
342 |
|
kpeter@809
|
343 |
_first_out.resize(_res_node_num + 1);
|
kpeter@809
|
344 |
_forward.resize(_res_arc_num);
|
kpeter@809
|
345 |
_source.resize(_res_arc_num);
|
kpeter@809
|
346 |
_target.resize(_res_arc_num);
|
kpeter@809
|
347 |
_reverse.resize(_res_arc_num);
|
kpeter@809
|
348 |
|
kpeter@809
|
349 |
_lower.resize(_res_arc_num);
|
kpeter@809
|
350 |
_upper.resize(_res_arc_num);
|
kpeter@809
|
351 |
_scost.resize(_res_arc_num);
|
kpeter@809
|
352 |
_supply.resize(_res_node_num);
|
kpeter@808
|
353 |
|
kpeter@809
|
354 |
_res_cap.resize(_res_arc_num);
|
kpeter@809
|
355 |
_cost.resize(_res_arc_num);
|
kpeter@809
|
356 |
_pi.resize(_res_node_num);
|
kpeter@809
|
357 |
_excess.resize(_res_node_num);
|
kpeter@809
|
358 |
_next_out.resize(_res_node_num);
|
kpeter@808
|
359 |
|
kpeter@809
|
360 |
_arc_vec.reserve(_res_arc_num);
|
kpeter@809
|
361 |
_cost_vec.reserve(_res_arc_num);
|
kpeter@809
|
362 |
|
kpeter@809
|
363 |
// Copy the graph
|
kpeter@809
|
364 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num;
|
kpeter@809
|
365 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
kpeter@809
|
366 |
_node_id[n] = i;
|
kpeter@809
|
367 |
}
|
kpeter@809
|
368 |
i = 0;
|
kpeter@809
|
369 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
kpeter@809
|
370 |
_first_out[i] = j;
|
kpeter@809
|
371 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
kpeter@809
|
372 |
_arc_idf[a] = j;
|
kpeter@809
|
373 |
_forward[j] = true;
|
kpeter@809
|
374 |
_source[j] = i;
|
kpeter@809
|
375 |
_target[j] = _node_id[_graph.runningNode(a)];
|
kpeter@808
|
376 |
}
|
kpeter@809
|
377 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
kpeter@809
|
378 |
_arc_idb[a] = j;
|
kpeter@809
|
379 |
_forward[j] = false;
|
kpeter@809
|
380 |
_source[j] = i;
|
kpeter@809
|
381 |
_target[j] = _node_id[_graph.runningNode(a)];
|
kpeter@809
|
382 |
}
|
kpeter@809
|
383 |
_forward[j] = false;
|
kpeter@809
|
384 |
_source[j] = i;
|
kpeter@809
|
385 |
_target[j] = _root;
|
kpeter@809
|
386 |
_reverse[j] = k;
|
kpeter@809
|
387 |
_forward[k] = true;
|
kpeter@809
|
388 |
_source[k] = _root;
|
kpeter@809
|
389 |
_target[k] = i;
|
kpeter@809
|
390 |
_reverse[k] = j;
|
kpeter@809
|
391 |
++j; ++k;
|
kpeter@808
|
392 |
}
|
kpeter@809
|
393 |
_first_out[i] = j;
|
kpeter@809
|
394 |
_first_out[_res_node_num] = k;
|
kpeter@809
|
395 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
396 |
int fi = _arc_idf[a];
|
kpeter@809
|
397 |
int bi = _arc_idb[a];
|
kpeter@809
|
398 |
_reverse[fi] = bi;
|
kpeter@809
|
399 |
_reverse[bi] = fi;
|
kpeter@809
|
400 |
}
|
kpeter@809
|
401 |
|
kpeter@809
|
402 |
// Reset parameters
|
kpeter@809
|
403 |
reset();
|
kpeter@808
|
404 |
}
|
kpeter@808
|
405 |
|
kpeter@809
|
406 |
/// \name Parameters
|
kpeter@809
|
407 |
/// The parameters of the algorithm can be specified using these
|
kpeter@809
|
408 |
/// functions.
|
kpeter@809
|
409 |
|
kpeter@809
|
410 |
/// @{
|
kpeter@809
|
411 |
|
kpeter@809
|
412 |
/// \brief Set the lower bounds on the arcs.
|
kpeter@808
|
413 |
///
|
kpeter@809
|
414 |
/// This function sets the lower bounds on the arcs.
|
kpeter@809
|
415 |
/// If it is not used before calling \ref run(), the lower bounds
|
kpeter@809
|
416 |
/// will be set to zero on all arcs.
|
kpeter@808
|
417 |
///
|
kpeter@809
|
418 |
/// \param map An arc map storing the lower bounds.
|
kpeter@809
|
419 |
/// Its \c Value type must be convertible to the \c Value type
|
kpeter@809
|
420 |
/// of the algorithm.
|
kpeter@809
|
421 |
///
|
kpeter@809
|
422 |
/// \return <tt>(*this)</tt>
|
kpeter@809
|
423 |
template <typename LowerMap>
|
kpeter@809
|
424 |
CostScaling& lowerMap(const LowerMap& map) {
|
kpeter@809
|
425 |
_have_lower = true;
|
kpeter@809
|
426 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
427 |
_lower[_arc_idf[a]] = map[a];
|
kpeter@809
|
428 |
_lower[_arc_idb[a]] = map[a];
|
kpeter@808
|
429 |
}
|
kpeter@808
|
430 |
return *this;
|
kpeter@808
|
431 |
}
|
kpeter@808
|
432 |
|
kpeter@809
|
433 |
/// \brief Set the upper bounds (capacities) on the arcs.
|
kpeter@808
|
434 |
///
|
kpeter@809
|
435 |
/// This function sets the upper bounds (capacities) on the arcs.
|
kpeter@809
|
436 |
/// If it is not used before calling \ref run(), the upper bounds
|
kpeter@809
|
437 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be
|
kpeter@812
|
438 |
/// unbounded from above).
|
kpeter@808
|
439 |
///
|
kpeter@809
|
440 |
/// \param map An arc map storing the upper bounds.
|
kpeter@809
|
441 |
/// Its \c Value type must be convertible to the \c Value type
|
kpeter@809
|
442 |
/// of the algorithm.
|
kpeter@809
|
443 |
///
|
kpeter@809
|
444 |
/// \return <tt>(*this)</tt>
|
kpeter@809
|
445 |
template<typename UpperMap>
|
kpeter@809
|
446 |
CostScaling& upperMap(const UpperMap& map) {
|
kpeter@809
|
447 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
448 |
_upper[_arc_idf[a]] = map[a];
|
kpeter@808
|
449 |
}
|
kpeter@808
|
450 |
return *this;
|
kpeter@808
|
451 |
}
|
kpeter@808
|
452 |
|
kpeter@809
|
453 |
/// \brief Set the costs of the arcs.
|
kpeter@809
|
454 |
///
|
kpeter@809
|
455 |
/// This function sets the costs of the arcs.
|
kpeter@809
|
456 |
/// If it is not used before calling \ref run(), the costs
|
kpeter@809
|
457 |
/// will be set to \c 1 on all arcs.
|
kpeter@809
|
458 |
///
|
kpeter@809
|
459 |
/// \param map An arc map storing the costs.
|
kpeter@809
|
460 |
/// Its \c Value type must be convertible to the \c Cost type
|
kpeter@809
|
461 |
/// of the algorithm.
|
kpeter@809
|
462 |
///
|
kpeter@809
|
463 |
/// \return <tt>(*this)</tt>
|
kpeter@809
|
464 |
template<typename CostMap>
|
kpeter@809
|
465 |
CostScaling& costMap(const CostMap& map) {
|
kpeter@809
|
466 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
467 |
_scost[_arc_idf[a]] = map[a];
|
kpeter@809
|
468 |
_scost[_arc_idb[a]] = -map[a];
|
kpeter@809
|
469 |
}
|
kpeter@809
|
470 |
return *this;
|
kpeter@809
|
471 |
}
|
kpeter@809
|
472 |
|
kpeter@809
|
473 |
/// \brief Set the supply values of the nodes.
|
kpeter@809
|
474 |
///
|
kpeter@809
|
475 |
/// This function sets the supply values of the nodes.
|
kpeter@809
|
476 |
/// If neither this function nor \ref stSupply() is used before
|
kpeter@809
|
477 |
/// calling \ref run(), the supply of each node will be set to zero.
|
kpeter@809
|
478 |
///
|
kpeter@809
|
479 |
/// \param map A node map storing the supply values.
|
kpeter@809
|
480 |
/// Its \c Value type must be convertible to the \c Value type
|
kpeter@809
|
481 |
/// of the algorithm.
|
kpeter@809
|
482 |
///
|
kpeter@809
|
483 |
/// \return <tt>(*this)</tt>
|
kpeter@809
|
484 |
template<typename SupplyMap>
|
kpeter@809
|
485 |
CostScaling& supplyMap(const SupplyMap& map) {
|
kpeter@809
|
486 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@809
|
487 |
_supply[_node_id[n]] = map[n];
|
kpeter@809
|
488 |
}
|
kpeter@809
|
489 |
return *this;
|
kpeter@809
|
490 |
}
|
kpeter@809
|
491 |
|
kpeter@809
|
492 |
/// \brief Set single source and target nodes and a supply value.
|
kpeter@809
|
493 |
///
|
kpeter@809
|
494 |
/// This function sets a single source node and a single target node
|
kpeter@809
|
495 |
/// and the required flow value.
|
kpeter@809
|
496 |
/// If neither this function nor \ref supplyMap() is used before
|
kpeter@809
|
497 |
/// calling \ref run(), the supply of each node will be set to zero.
|
kpeter@809
|
498 |
///
|
kpeter@809
|
499 |
/// Using this function has the same effect as using \ref supplyMap()
|
kpeter@809
|
500 |
/// with such a map in which \c k is assigned to \c s, \c -k is
|
kpeter@809
|
501 |
/// assigned to \c t and all other nodes have zero supply value.
|
kpeter@809
|
502 |
///
|
kpeter@809
|
503 |
/// \param s The source node.
|
kpeter@809
|
504 |
/// \param t The target node.
|
kpeter@809
|
505 |
/// \param k The required amount of flow from node \c s to node \c t
|
kpeter@809
|
506 |
/// (i.e. the supply of \c s and the demand of \c t).
|
kpeter@809
|
507 |
///
|
kpeter@809
|
508 |
/// \return <tt>(*this)</tt>
|
kpeter@809
|
509 |
CostScaling& stSupply(const Node& s, const Node& t, Value k) {
|
kpeter@809
|
510 |
for (int i = 0; i != _res_node_num; ++i) {
|
kpeter@809
|
511 |
_supply[i] = 0;
|
kpeter@809
|
512 |
}
|
kpeter@809
|
513 |
_supply[_node_id[s]] = k;
|
kpeter@809
|
514 |
_supply[_node_id[t]] = -k;
|
kpeter@809
|
515 |
return *this;
|
kpeter@809
|
516 |
}
|
kpeter@809
|
517 |
|
kpeter@809
|
518 |
/// @}
|
kpeter@809
|
519 |
|
kpeter@808
|
520 |
/// \name Execution control
|
kpeter@809
|
521 |
/// The algorithm can be executed using \ref run().
|
kpeter@808
|
522 |
|
kpeter@808
|
523 |
/// @{
|
kpeter@808
|
524 |
|
kpeter@808
|
525 |
/// \brief Run the algorithm.
|
kpeter@808
|
526 |
///
|
kpeter@809
|
527 |
/// This function runs the algorithm.
|
kpeter@809
|
528 |
/// The paramters can be specified using functions \ref lowerMap(),
|
kpeter@809
|
529 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
|
kpeter@809
|
530 |
/// For example,
|
kpeter@809
|
531 |
/// \code
|
kpeter@809
|
532 |
/// CostScaling<ListDigraph> cs(graph);
|
kpeter@809
|
533 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost)
|
kpeter@809
|
534 |
/// .supplyMap(sup).run();
|
kpeter@809
|
535 |
/// \endcode
|
kpeter@809
|
536 |
///
|
kpeter@809
|
537 |
/// This function can be called more than once. All the parameters
|
kpeter@809
|
538 |
/// that have been given are kept for the next call, unless
|
kpeter@809
|
539 |
/// \ref reset() is called, thus only the modified parameters
|
kpeter@809
|
540 |
/// have to be set again. See \ref reset() for examples.
|
kpeter@810
|
541 |
/// However, the underlying digraph must not be modified after this
|
kpeter@810
|
542 |
/// class have been constructed, since it copies and extends the graph.
|
kpeter@808
|
543 |
///
|
kpeter@810
|
544 |
/// \param method The internal method that will be used in the
|
kpeter@810
|
545 |
/// algorithm. For more information, see \ref Method.
|
kpeter@810
|
546 |
/// \param factor The cost scaling factor. It must be larger than one.
|
kpeter@808
|
547 |
///
|
kpeter@809
|
548 |
/// \return \c INFEASIBLE if no feasible flow exists,
|
kpeter@809
|
549 |
/// \n \c OPTIMAL if the problem has optimal solution
|
kpeter@809
|
550 |
/// (i.e. it is feasible and bounded), and the algorithm has found
|
kpeter@809
|
551 |
/// optimal flow and node potentials (primal and dual solutions),
|
kpeter@809
|
552 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost
|
kpeter@809
|
553 |
/// and infinite upper bound. It means that the objective function
|
kpeter@812
|
554 |
/// is unbounded on that arc, however, note that it could actually be
|
kpeter@809
|
555 |
/// bounded over the feasible flows, but this algroithm cannot handle
|
kpeter@809
|
556 |
/// these cases.
|
kpeter@809
|
557 |
///
|
kpeter@810
|
558 |
/// \see ProblemType, Method
|
kpeter@810
|
559 |
ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
|
kpeter@810
|
560 |
_alpha = factor;
|
kpeter@809
|
561 |
ProblemType pt = init();
|
kpeter@809
|
562 |
if (pt != OPTIMAL) return pt;
|
kpeter@810
|
563 |
start(method);
|
kpeter@809
|
564 |
return OPTIMAL;
|
kpeter@809
|
565 |
}
|
kpeter@809
|
566 |
|
kpeter@809
|
567 |
/// \brief Reset all the parameters that have been given before.
|
kpeter@809
|
568 |
///
|
kpeter@809
|
569 |
/// This function resets all the paramaters that have been given
|
kpeter@809
|
570 |
/// before using functions \ref lowerMap(), \ref upperMap(),
|
kpeter@809
|
571 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply().
|
kpeter@809
|
572 |
///
|
kpeter@809
|
573 |
/// It is useful for multiple run() calls. If this function is not
|
kpeter@809
|
574 |
/// used, all the parameters given before are kept for the next
|
kpeter@809
|
575 |
/// \ref run() call.
|
kpeter@812
|
576 |
/// However, the underlying digraph must not be modified after this
|
kpeter@809
|
577 |
/// class have been constructed, since it copies and extends the graph.
|
kpeter@809
|
578 |
///
|
kpeter@809
|
579 |
/// For example,
|
kpeter@809
|
580 |
/// \code
|
kpeter@809
|
581 |
/// CostScaling<ListDigraph> cs(graph);
|
kpeter@809
|
582 |
///
|
kpeter@809
|
583 |
/// // First run
|
kpeter@809
|
584 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost)
|
kpeter@809
|
585 |
/// .supplyMap(sup).run();
|
kpeter@809
|
586 |
///
|
kpeter@809
|
587 |
/// // Run again with modified cost map (reset() is not called,
|
kpeter@809
|
588 |
/// // so only the cost map have to be set again)
|
kpeter@809
|
589 |
/// cost[e] += 100;
|
kpeter@809
|
590 |
/// cs.costMap(cost).run();
|
kpeter@809
|
591 |
///
|
kpeter@809
|
592 |
/// // Run again from scratch using reset()
|
kpeter@809
|
593 |
/// // (the lower bounds will be set to zero on all arcs)
|
kpeter@809
|
594 |
/// cs.reset();
|
kpeter@809
|
595 |
/// cs.upperMap(capacity).costMap(cost)
|
kpeter@809
|
596 |
/// .supplyMap(sup).run();
|
kpeter@809
|
597 |
/// \endcode
|
kpeter@809
|
598 |
///
|
kpeter@809
|
599 |
/// \return <tt>(*this)</tt>
|
kpeter@809
|
600 |
CostScaling& reset() {
|
kpeter@809
|
601 |
for (int i = 0; i != _res_node_num; ++i) {
|
kpeter@809
|
602 |
_supply[i] = 0;
|
kpeter@808
|
603 |
}
|
kpeter@809
|
604 |
int limit = _first_out[_root];
|
kpeter@809
|
605 |
for (int j = 0; j != limit; ++j) {
|
kpeter@809
|
606 |
_lower[j] = 0;
|
kpeter@809
|
607 |
_upper[j] = INF;
|
kpeter@809
|
608 |
_scost[j] = _forward[j] ? 1 : -1;
|
kpeter@809
|
609 |
}
|
kpeter@809
|
610 |
for (int j = limit; j != _res_arc_num; ++j) {
|
kpeter@809
|
611 |
_lower[j] = 0;
|
kpeter@809
|
612 |
_upper[j] = INF;
|
kpeter@809
|
613 |
_scost[j] = 0;
|
kpeter@809
|
614 |
_scost[_reverse[j]] = 0;
|
kpeter@809
|
615 |
}
|
kpeter@809
|
616 |
_have_lower = false;
|
kpeter@809
|
617 |
return *this;
|
kpeter@808
|
618 |
}
|
kpeter@808
|
619 |
|
kpeter@808
|
620 |
/// @}
|
kpeter@808
|
621 |
|
kpeter@808
|
622 |
/// \name Query Functions
|
kpeter@809
|
623 |
/// The results of the algorithm can be obtained using these
|
kpeter@808
|
624 |
/// functions.\n
|
kpeter@809
|
625 |
/// The \ref run() function must be called before using them.
|
kpeter@808
|
626 |
|
kpeter@808
|
627 |
/// @{
|
kpeter@808
|
628 |
|
kpeter@809
|
629 |
/// \brief Return the total cost of the found flow.
|
kpeter@808
|
630 |
///
|
kpeter@809
|
631 |
/// This function returns the total cost of the found flow.
|
kpeter@809
|
632 |
/// Its complexity is O(e).
|
kpeter@809
|
633 |
///
|
kpeter@809
|
634 |
/// \note The return type of the function can be specified as a
|
kpeter@809
|
635 |
/// template parameter. For example,
|
kpeter@809
|
636 |
/// \code
|
kpeter@809
|
637 |
/// cs.totalCost<double>();
|
kpeter@809
|
638 |
/// \endcode
|
kpeter@809
|
639 |
/// It is useful if the total cost cannot be stored in the \c Cost
|
kpeter@809
|
640 |
/// type of the algorithm, which is the default return type of the
|
kpeter@809
|
641 |
/// function.
|
kpeter@808
|
642 |
///
|
kpeter@808
|
643 |
/// \pre \ref run() must be called before using this function.
|
kpeter@809
|
644 |
template <typename Number>
|
kpeter@809
|
645 |
Number totalCost() const {
|
kpeter@809
|
646 |
Number c = 0;
|
kpeter@809
|
647 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
648 |
int i = _arc_idb[a];
|
kpeter@809
|
649 |
c += static_cast<Number>(_res_cap[i]) *
|
kpeter@809
|
650 |
(-static_cast<Number>(_scost[i]));
|
kpeter@809
|
651 |
}
|
kpeter@809
|
652 |
return c;
|
kpeter@808
|
653 |
}
|
kpeter@808
|
654 |
|
kpeter@809
|
655 |
#ifndef DOXYGEN
|
kpeter@809
|
656 |
Cost totalCost() const {
|
kpeter@809
|
657 |
return totalCost<Cost>();
|
kpeter@808
|
658 |
}
|
kpeter@809
|
659 |
#endif
|
kpeter@808
|
660 |
|
kpeter@808
|
661 |
/// \brief Return the flow on the given arc.
|
kpeter@808
|
662 |
///
|
kpeter@809
|
663 |
/// This function returns the flow on the given arc.
|
kpeter@808
|
664 |
///
|
kpeter@808
|
665 |
/// \pre \ref run() must be called before using this function.
|
kpeter@809
|
666 |
Value flow(const Arc& a) const {
|
kpeter@809
|
667 |
return _res_cap[_arc_idb[a]];
|
kpeter@808
|
668 |
}
|
kpeter@808
|
669 |
|
kpeter@809
|
670 |
/// \brief Return the flow map (the primal solution).
|
kpeter@808
|
671 |
///
|
kpeter@809
|
672 |
/// This function copies the flow value on each arc into the given
|
kpeter@809
|
673 |
/// map. The \c Value type of the algorithm must be convertible to
|
kpeter@809
|
674 |
/// the \c Value type of the map.
|
kpeter@808
|
675 |
///
|
kpeter@808
|
676 |
/// \pre \ref run() must be called before using this function.
|
kpeter@809
|
677 |
template <typename FlowMap>
|
kpeter@809
|
678 |
void flowMap(FlowMap &map) const {
|
kpeter@809
|
679 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
680 |
map.set(a, _res_cap[_arc_idb[a]]);
|
kpeter@809
|
681 |
}
|
kpeter@808
|
682 |
}
|
kpeter@808
|
683 |
|
kpeter@809
|
684 |
/// \brief Return the potential (dual value) of the given node.
|
kpeter@808
|
685 |
///
|
kpeter@809
|
686 |
/// This function returns the potential (dual value) of the
|
kpeter@809
|
687 |
/// given node.
|
kpeter@808
|
688 |
///
|
kpeter@808
|
689 |
/// \pre \ref run() must be called before using this function.
|
kpeter@809
|
690 |
Cost potential(const Node& n) const {
|
kpeter@809
|
691 |
return static_cast<Cost>(_pi[_node_id[n]]);
|
kpeter@809
|
692 |
}
|
kpeter@809
|
693 |
|
kpeter@809
|
694 |
/// \brief Return the potential map (the dual solution).
|
kpeter@809
|
695 |
///
|
kpeter@809
|
696 |
/// This function copies the potential (dual value) of each node
|
kpeter@809
|
697 |
/// into the given map.
|
kpeter@809
|
698 |
/// The \c Cost type of the algorithm must be convertible to the
|
kpeter@809
|
699 |
/// \c Value type of the map.
|
kpeter@809
|
700 |
///
|
kpeter@809
|
701 |
/// \pre \ref run() must be called before using this function.
|
kpeter@809
|
702 |
template <typename PotentialMap>
|
kpeter@809
|
703 |
void potentialMap(PotentialMap &map) const {
|
kpeter@809
|
704 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@809
|
705 |
map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
|
kpeter@809
|
706 |
}
|
kpeter@808
|
707 |
}
|
kpeter@808
|
708 |
|
kpeter@808
|
709 |
/// @}
|
kpeter@808
|
710 |
|
kpeter@808
|
711 |
private:
|
kpeter@808
|
712 |
|
kpeter@809
|
713 |
// Initialize the algorithm
|
kpeter@809
|
714 |
ProblemType init() {
|
kpeter@821
|
715 |
if (_res_node_num <= 1) return INFEASIBLE;
|
kpeter@809
|
716 |
|
kpeter@809
|
717 |
// Check the sum of supply values
|
kpeter@809
|
718 |
_sum_supply = 0;
|
kpeter@809
|
719 |
for (int i = 0; i != _root; ++i) {
|
kpeter@809
|
720 |
_sum_supply += _supply[i];
|
kpeter@808
|
721 |
}
|
kpeter@809
|
722 |
if (_sum_supply > 0) return INFEASIBLE;
|
kpeter@809
|
723 |
|
kpeter@809
|
724 |
|
kpeter@809
|
725 |
// Initialize vectors
|
kpeter@809
|
726 |
for (int i = 0; i != _res_node_num; ++i) {
|
kpeter@809
|
727 |
_pi[i] = 0;
|
kpeter@809
|
728 |
_excess[i] = _supply[i];
|
kpeter@809
|
729 |
}
|
kpeter@809
|
730 |
|
kpeter@809
|
731 |
// Remove infinite upper bounds and check negative arcs
|
kpeter@809
|
732 |
const Value MAX = std::numeric_limits<Value>::max();
|
kpeter@809
|
733 |
int last_out;
|
kpeter@809
|
734 |
if (_have_lower) {
|
kpeter@809
|
735 |
for (int i = 0; i != _root; ++i) {
|
kpeter@809
|
736 |
last_out = _first_out[i+1];
|
kpeter@809
|
737 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
kpeter@809
|
738 |
if (_forward[j]) {
|
kpeter@809
|
739 |
Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
|
kpeter@809
|
740 |
if (c >= MAX) return UNBOUNDED;
|
kpeter@809
|
741 |
_excess[i] -= c;
|
kpeter@809
|
742 |
_excess[_target[j]] += c;
|
kpeter@809
|
743 |
}
|
kpeter@809
|
744 |
}
|
kpeter@809
|
745 |
}
|
kpeter@809
|
746 |
} else {
|
kpeter@809
|
747 |
for (int i = 0; i != _root; ++i) {
|
kpeter@809
|
748 |
last_out = _first_out[i+1];
|
kpeter@809
|
749 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
kpeter@809
|
750 |
if (_forward[j] && _scost[j] < 0) {
|
kpeter@809
|
751 |
Value c = _upper[j];
|
kpeter@809
|
752 |
if (c >= MAX) return UNBOUNDED;
|
kpeter@809
|
753 |
_excess[i] -= c;
|
kpeter@809
|
754 |
_excess[_target[j]] += c;
|
kpeter@809
|
755 |
}
|
kpeter@809
|
756 |
}
|
kpeter@809
|
757 |
}
|
kpeter@809
|
758 |
}
|
kpeter@809
|
759 |
Value ex, max_cap = 0;
|
kpeter@809
|
760 |
for (int i = 0; i != _res_node_num; ++i) {
|
kpeter@809
|
761 |
ex = _excess[i];
|
kpeter@809
|
762 |
_excess[i] = 0;
|
kpeter@809
|
763 |
if (ex < 0) max_cap -= ex;
|
kpeter@809
|
764 |
}
|
kpeter@809
|
765 |
for (int j = 0; j != _res_arc_num; ++j) {
|
kpeter@809
|
766 |
if (_upper[j] >= MAX) _upper[j] = max_cap;
|
kpeter@808
|
767 |
}
|
kpeter@808
|
768 |
|
kpeter@809
|
769 |
// Initialize the large cost vector and the epsilon parameter
|
kpeter@809
|
770 |
_epsilon = 0;
|
kpeter@809
|
771 |
LargeCost lc;
|
kpeter@809
|
772 |
for (int i = 0; i != _root; ++i) {
|
kpeter@809
|
773 |
last_out = _first_out[i+1];
|
kpeter@809
|
774 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
kpeter@809
|
775 |
lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
|
kpeter@809
|
776 |
_cost[j] = lc;
|
kpeter@809
|
777 |
if (lc > _epsilon) _epsilon = lc;
|
kpeter@809
|
778 |
}
|
kpeter@809
|
779 |
}
|
kpeter@809
|
780 |
_epsilon /= _alpha;
|
kpeter@808
|
781 |
|
kpeter@809
|
782 |
// Initialize maps for Circulation and remove non-zero lower bounds
|
kpeter@809
|
783 |
ConstMap<Arc, Value> low(0);
|
kpeter@809
|
784 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap;
|
kpeter@809
|
785 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
|
kpeter@809
|
786 |
ValueArcMap cap(_graph), flow(_graph);
|
kpeter@809
|
787 |
ValueNodeMap sup(_graph);
|
kpeter@809
|
788 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@809
|
789 |
sup[n] = _supply[_node_id[n]];
|
kpeter@808
|
790 |
}
|
kpeter@809
|
791 |
if (_have_lower) {
|
kpeter@809
|
792 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
793 |
int j = _arc_idf[a];
|
kpeter@809
|
794 |
Value c = _lower[j];
|
kpeter@809
|
795 |
cap[a] = _upper[j] - c;
|
kpeter@809
|
796 |
sup[_graph.source(a)] -= c;
|
kpeter@809
|
797 |
sup[_graph.target(a)] += c;
|
kpeter@809
|
798 |
}
|
kpeter@809
|
799 |
} else {
|
kpeter@809
|
800 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
801 |
cap[a] = _upper[_arc_idf[a]];
|
kpeter@809
|
802 |
}
|
kpeter@809
|
803 |
}
|
kpeter@808
|
804 |
|
kpeter@808
|
805 |
// Find a feasible flow using Circulation
|
kpeter@809
|
806 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
|
kpeter@809
|
807 |
circ(_graph, low, cap, sup);
|
kpeter@809
|
808 |
if (!circ.flowMap(flow).run()) return INFEASIBLE;
|
kpeter@809
|
809 |
|
kpeter@809
|
810 |
// Set residual capacities and handle GEQ supply type
|
kpeter@809
|
811 |
if (_sum_supply < 0) {
|
kpeter@809
|
812 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
813 |
Value fa = flow[a];
|
kpeter@809
|
814 |
_res_cap[_arc_idf[a]] = cap[a] - fa;
|
kpeter@809
|
815 |
_res_cap[_arc_idb[a]] = fa;
|
kpeter@809
|
816 |
sup[_graph.source(a)] -= fa;
|
kpeter@809
|
817 |
sup[_graph.target(a)] += fa;
|
kpeter@809
|
818 |
}
|
kpeter@809
|
819 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@809
|
820 |
_excess[_node_id[n]] = sup[n];
|
kpeter@809
|
821 |
}
|
kpeter@809
|
822 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
kpeter@809
|
823 |
int u = _target[a];
|
kpeter@809
|
824 |
int ra = _reverse[a];
|
kpeter@809
|
825 |
_res_cap[a] = -_sum_supply + 1;
|
kpeter@809
|
826 |
_res_cap[ra] = -_excess[u];
|
kpeter@809
|
827 |
_cost[a] = 0;
|
kpeter@809
|
828 |
_cost[ra] = 0;
|
kpeter@809
|
829 |
_excess[u] = 0;
|
kpeter@809
|
830 |
}
|
kpeter@809
|
831 |
} else {
|
kpeter@809
|
832 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
833 |
Value fa = flow[a];
|
kpeter@809
|
834 |
_res_cap[_arc_idf[a]] = cap[a] - fa;
|
kpeter@809
|
835 |
_res_cap[_arc_idb[a]] = fa;
|
kpeter@809
|
836 |
}
|
kpeter@809
|
837 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
kpeter@809
|
838 |
int ra = _reverse[a];
|
kpeter@809
|
839 |
_res_cap[a] = 1;
|
kpeter@809
|
840 |
_res_cap[ra] = 0;
|
kpeter@809
|
841 |
_cost[a] = 0;
|
kpeter@809
|
842 |
_cost[ra] = 0;
|
kpeter@809
|
843 |
}
|
kpeter@809
|
844 |
}
|
kpeter@809
|
845 |
|
kpeter@809
|
846 |
return OPTIMAL;
|
kpeter@809
|
847 |
}
|
kpeter@809
|
848 |
|
kpeter@809
|
849 |
// Execute the algorithm and transform the results
|
kpeter@810
|
850 |
void start(Method method) {
|
kpeter@810
|
851 |
// Maximum path length for partial augment
|
kpeter@810
|
852 |
const int MAX_PATH_LENGTH = 4;
|
kpeter@810
|
853 |
|
kpeter@809
|
854 |
// Execute the algorithm
|
kpeter@810
|
855 |
switch (method) {
|
kpeter@810
|
856 |
case PUSH:
|
kpeter@810
|
857 |
startPush();
|
kpeter@810
|
858 |
break;
|
kpeter@810
|
859 |
case AUGMENT:
|
kpeter@810
|
860 |
startAugment();
|
kpeter@810
|
861 |
break;
|
kpeter@810
|
862 |
case PARTIAL_AUGMENT:
|
kpeter@810
|
863 |
startAugment(MAX_PATH_LENGTH);
|
kpeter@810
|
864 |
break;
|
kpeter@809
|
865 |
}
|
kpeter@809
|
866 |
|
kpeter@809
|
867 |
// Compute node potentials for the original costs
|
kpeter@809
|
868 |
_arc_vec.clear();
|
kpeter@809
|
869 |
_cost_vec.clear();
|
kpeter@809
|
870 |
for (int j = 0; j != _res_arc_num; ++j) {
|
kpeter@809
|
871 |
if (_res_cap[j] > 0) {
|
kpeter@809
|
872 |
_arc_vec.push_back(IntPair(_source[j], _target[j]));
|
kpeter@809
|
873 |
_cost_vec.push_back(_scost[j]);
|
kpeter@809
|
874 |
}
|
kpeter@809
|
875 |
}
|
kpeter@809
|
876 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
|
kpeter@809
|
877 |
|
kpeter@809
|
878 |
typename BellmanFord<StaticDigraph, LargeCostArcMap>
|
kpeter@809
|
879 |
::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map);
|
kpeter@809
|
880 |
bf.distMap(_pi_map);
|
kpeter@809
|
881 |
bf.init(0);
|
kpeter@809
|
882 |
bf.start();
|
kpeter@809
|
883 |
|
kpeter@809
|
884 |
// Handle non-zero lower bounds
|
kpeter@809
|
885 |
if (_have_lower) {
|
kpeter@809
|
886 |
int limit = _first_out[_root];
|
kpeter@809
|
887 |
for (int j = 0; j != limit; ++j) {
|
kpeter@809
|
888 |
if (!_forward[j]) _res_cap[j] += _lower[j];
|
kpeter@809
|
889 |
}
|
kpeter@809
|
890 |
}
|
kpeter@808
|
891 |
}
|
kpeter@808
|
892 |
|
kpeter@810
|
893 |
/// Execute the algorithm performing augment and relabel operations
|
kpeter@810
|
894 |
void startAugment(int max_length = std::numeric_limits<int>::max()) {
|
kpeter@808
|
895 |
// Paramters for heuristics
|
kpeter@809
|
896 |
const int BF_HEURISTIC_EPSILON_BOUND = 1000;
|
kpeter@809
|
897 |
const int BF_HEURISTIC_BOUND_FACTOR = 3;
|
kpeter@808
|
898 |
|
kpeter@809
|
899 |
// Perform cost scaling phases
|
kpeter@809
|
900 |
IntVector pred_arc(_res_node_num);
|
kpeter@809
|
901 |
std::vector<int> path_nodes;
|
kpeter@808
|
902 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
|
kpeter@808
|
903 |
1 : _epsilon / _alpha )
|
kpeter@808
|
904 |
{
|
kpeter@808
|
905 |
// "Early Termination" heuristic: use Bellman-Ford algorithm
|
kpeter@808
|
906 |
// to check if the current flow is optimal
|
kpeter@808
|
907 |
if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
|
kpeter@809
|
908 |
_arc_vec.clear();
|
kpeter@809
|
909 |
_cost_vec.clear();
|
kpeter@809
|
910 |
for (int j = 0; j != _res_arc_num; ++j) {
|
kpeter@809
|
911 |
if (_res_cap[j] > 0) {
|
kpeter@809
|
912 |
_arc_vec.push_back(IntPair(_source[j], _target[j]));
|
kpeter@809
|
913 |
_cost_vec.push_back(_cost[j] + 1);
|
kpeter@809
|
914 |
}
|
kpeter@809
|
915 |
}
|
kpeter@809
|
916 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
|
kpeter@809
|
917 |
|
kpeter@809
|
918 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
|
kpeter@808
|
919 |
bf.init(0);
|
kpeter@808
|
920 |
bool done = false;
|
kpeter@809
|
921 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num));
|
kpeter@808
|
922 |
for (int i = 0; i < K && !done; ++i)
|
kpeter@808
|
923 |
done = bf.processNextWeakRound();
|
kpeter@808
|
924 |
if (done) break;
|
kpeter@808
|
925 |
}
|
kpeter@809
|
926 |
|
kpeter@808
|
927 |
// Saturate arcs not satisfying the optimality condition
|
kpeter@809
|
928 |
for (int a = 0; a != _res_arc_num; ++a) {
|
kpeter@809
|
929 |
if (_res_cap[a] > 0 &&
|
kpeter@809
|
930 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
kpeter@809
|
931 |
Value delta = _res_cap[a];
|
kpeter@809
|
932 |
_excess[_source[a]] -= delta;
|
kpeter@809
|
933 |
_excess[_target[a]] += delta;
|
kpeter@809
|
934 |
_res_cap[a] = 0;
|
kpeter@809
|
935 |
_res_cap[_reverse[a]] += delta;
|
kpeter@808
|
936 |
}
|
kpeter@808
|
937 |
}
|
kpeter@809
|
938 |
|
kpeter@808
|
939 |
// Find active nodes (i.e. nodes with positive excess)
|
kpeter@809
|
940 |
for (int u = 0; u != _res_node_num; ++u) {
|
kpeter@809
|
941 |
if (_excess[u] > 0) _active_nodes.push_back(u);
|
kpeter@808
|
942 |
}
|
kpeter@808
|
943 |
|
kpeter@809
|
944 |
// Initialize the next arcs
|
kpeter@809
|
945 |
for (int u = 0; u != _res_node_num; ++u) {
|
kpeter@809
|
946 |
_next_out[u] = _first_out[u];
|
kpeter@808
|
947 |
}
|
kpeter@808
|
948 |
|
kpeter@808
|
949 |
// Perform partial augment and relabel operations
|
kpeter@809
|
950 |
while (true) {
|
kpeter@808
|
951 |
// Select an active node (FIFO selection)
|
kpeter@809
|
952 |
while (_active_nodes.size() > 0 &&
|
kpeter@809
|
953 |
_excess[_active_nodes.front()] <= 0) {
|
kpeter@809
|
954 |
_active_nodes.pop_front();
|
kpeter@808
|
955 |
}
|
kpeter@809
|
956 |
if (_active_nodes.size() == 0) break;
|
kpeter@809
|
957 |
int start = _active_nodes.front();
|
kpeter@808
|
958 |
path_nodes.clear();
|
kpeter@808
|
959 |
path_nodes.push_back(start);
|
kpeter@808
|
960 |
|
kpeter@808
|
961 |
// Find an augmenting path from the start node
|
kpeter@809
|
962 |
int tip = start;
|
kpeter@809
|
963 |
while (_excess[tip] >= 0 &&
|
kpeter@810
|
964 |
int(path_nodes.size()) <= max_length) {
|
kpeter@809
|
965 |
int u;
|
kpeter@809
|
966 |
LargeCost min_red_cost, rc;
|
kpeter@809
|
967 |
int last_out = _sum_supply < 0 ?
|
kpeter@809
|
968 |
_first_out[tip+1] : _first_out[tip+1] - 1;
|
kpeter@809
|
969 |
for (int a = _next_out[tip]; a != last_out; ++a) {
|
kpeter@809
|
970 |
if (_res_cap[a] > 0 &&
|
kpeter@809
|
971 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
kpeter@809
|
972 |
u = _target[a];
|
kpeter@809
|
973 |
pred_arc[u] = a;
|
kpeter@809
|
974 |
_next_out[tip] = a;
|
kpeter@808
|
975 |
tip = u;
|
kpeter@808
|
976 |
path_nodes.push_back(tip);
|
kpeter@808
|
977 |
goto next_step;
|
kpeter@808
|
978 |
}
|
kpeter@808
|
979 |
}
|
kpeter@808
|
980 |
|
kpeter@808
|
981 |
// Relabel tip node
|
kpeter@809
|
982 |
min_red_cost = std::numeric_limits<LargeCost>::max() / 2;
|
kpeter@809
|
983 |
for (int a = _first_out[tip]; a != last_out; ++a) {
|
kpeter@809
|
984 |
rc = _cost[a] + _pi[_source[a]] - _pi[_target[a]];
|
kpeter@809
|
985 |
if (_res_cap[a] > 0 && rc < min_red_cost) {
|
kpeter@809
|
986 |
min_red_cost = rc;
|
kpeter@809
|
987 |
}
|
kpeter@808
|
988 |
}
|
kpeter@809
|
989 |
_pi[tip] -= min_red_cost + _epsilon;
|
kpeter@808
|
990 |
|
kpeter@809
|
991 |
// Reset the next arc of tip
|
kpeter@809
|
992 |
_next_out[tip] = _first_out[tip];
|
kpeter@808
|
993 |
|
kpeter@808
|
994 |
// Step back
|
kpeter@808
|
995 |
if (tip != start) {
|
kpeter@808
|
996 |
path_nodes.pop_back();
|
kpeter@809
|
997 |
tip = path_nodes.back();
|
kpeter@808
|
998 |
}
|
kpeter@808
|
999 |
|
kpeter@809
|
1000 |
next_step: ;
|
kpeter@808
|
1001 |
}
|
kpeter@808
|
1002 |
|
kpeter@808
|
1003 |
// Augment along the found path (as much flow as possible)
|
kpeter@809
|
1004 |
Value delta;
|
kpeter@809
|
1005 |
int u, v = path_nodes.front(), pa;
|
kpeter@808
|
1006 |
for (int i = 1; i < int(path_nodes.size()); ++i) {
|
kpeter@809
|
1007 |
u = v;
|
kpeter@809
|
1008 |
v = path_nodes[i];
|
kpeter@809
|
1009 |
pa = pred_arc[v];
|
kpeter@809
|
1010 |
delta = std::min(_res_cap[pa], _excess[u]);
|
kpeter@809
|
1011 |
_res_cap[pa] -= delta;
|
kpeter@809
|
1012 |
_res_cap[_reverse[pa]] += delta;
|
kpeter@809
|
1013 |
_excess[u] -= delta;
|
kpeter@809
|
1014 |
_excess[v] += delta;
|
kpeter@809
|
1015 |
if (_excess[v] > 0 && _excess[v] <= delta)
|
kpeter@809
|
1016 |
_active_nodes.push_back(v);
|
kpeter@808
|
1017 |
}
|
kpeter@808
|
1018 |
}
|
kpeter@808
|
1019 |
}
|
kpeter@808
|
1020 |
}
|
kpeter@808
|
1021 |
|
kpeter@809
|
1022 |
/// Execute the algorithm performing push and relabel operations
|
kpeter@810
|
1023 |
void startPush() {
|
kpeter@808
|
1024 |
// Paramters for heuristics
|
kpeter@809
|
1025 |
const int BF_HEURISTIC_EPSILON_BOUND = 1000;
|
kpeter@809
|
1026 |
const int BF_HEURISTIC_BOUND_FACTOR = 3;
|
kpeter@808
|
1027 |
|
kpeter@809
|
1028 |
// Perform cost scaling phases
|
kpeter@809
|
1029 |
BoolVector hyper(_res_node_num, false);
|
kpeter@808
|
1030 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
|
kpeter@808
|
1031 |
1 : _epsilon / _alpha )
|
kpeter@808
|
1032 |
{
|
kpeter@808
|
1033 |
// "Early Termination" heuristic: use Bellman-Ford algorithm
|
kpeter@808
|
1034 |
// to check if the current flow is optimal
|
kpeter@808
|
1035 |
if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
|
kpeter@809
|
1036 |
_arc_vec.clear();
|
kpeter@809
|
1037 |
_cost_vec.clear();
|
kpeter@809
|
1038 |
for (int j = 0; j != _res_arc_num; ++j) {
|
kpeter@809
|
1039 |
if (_res_cap[j] > 0) {
|
kpeter@809
|
1040 |
_arc_vec.push_back(IntPair(_source[j], _target[j]));
|
kpeter@809
|
1041 |
_cost_vec.push_back(_cost[j] + 1);
|
kpeter@809
|
1042 |
}
|
kpeter@809
|
1043 |
}
|
kpeter@809
|
1044 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
|
kpeter@809
|
1045 |
|
kpeter@809
|
1046 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
|
kpeter@808
|
1047 |
bf.init(0);
|
kpeter@808
|
1048 |
bool done = false;
|
kpeter@809
|
1049 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num));
|
kpeter@808
|
1050 |
for (int i = 0; i < K && !done; ++i)
|
kpeter@808
|
1051 |
done = bf.processNextWeakRound();
|
kpeter@808
|
1052 |
if (done) break;
|
kpeter@808
|
1053 |
}
|
kpeter@808
|
1054 |
|
kpeter@808
|
1055 |
// Saturate arcs not satisfying the optimality condition
|
kpeter@809
|
1056 |
for (int a = 0; a != _res_arc_num; ++a) {
|
kpeter@809
|
1057 |
if (_res_cap[a] > 0 &&
|
kpeter@809
|
1058 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
kpeter@809
|
1059 |
Value delta = _res_cap[a];
|
kpeter@809
|
1060 |
_excess[_source[a]] -= delta;
|
kpeter@809
|
1061 |
_excess[_target[a]] += delta;
|
kpeter@809
|
1062 |
_res_cap[a] = 0;
|
kpeter@809
|
1063 |
_res_cap[_reverse[a]] += delta;
|
kpeter@808
|
1064 |
}
|
kpeter@808
|
1065 |
}
|
kpeter@808
|
1066 |
|
kpeter@808
|
1067 |
// Find active nodes (i.e. nodes with positive excess)
|
kpeter@809
|
1068 |
for (int u = 0; u != _res_node_num; ++u) {
|
kpeter@809
|
1069 |
if (_excess[u] > 0) _active_nodes.push_back(u);
|
kpeter@808
|
1070 |
}
|
kpeter@808
|
1071 |
|
kpeter@809
|
1072 |
// Initialize the next arcs
|
kpeter@809
|
1073 |
for (int u = 0; u != _res_node_num; ++u) {
|
kpeter@809
|
1074 |
_next_out[u] = _first_out[u];
|
kpeter@808
|
1075 |
}
|
kpeter@808
|
1076 |
|
kpeter@808
|
1077 |
// Perform push and relabel operations
|
kpeter@809
|
1078 |
while (_active_nodes.size() > 0) {
|
kpeter@809
|
1079 |
LargeCost min_red_cost, rc;
|
kpeter@809
|
1080 |
Value delta;
|
kpeter@809
|
1081 |
int n, t, a, last_out = _res_arc_num;
|
kpeter@809
|
1082 |
|
kpeter@808
|
1083 |
// Select an active node (FIFO selection)
|
kpeter@809
|
1084 |
next_node:
|
kpeter@809
|
1085 |
n = _active_nodes.front();
|
kpeter@809
|
1086 |
last_out = _sum_supply < 0 ?
|
kpeter@809
|
1087 |
_first_out[n+1] : _first_out[n+1] - 1;
|
kpeter@808
|
1088 |
|
kpeter@808
|
1089 |
// Perform push operations if there are admissible arcs
|
kpeter@809
|
1090 |
if (_excess[n] > 0) {
|
kpeter@809
|
1091 |
for (a = _next_out[n]; a != last_out; ++a) {
|
kpeter@809
|
1092 |
if (_res_cap[a] > 0 &&
|
kpeter@809
|
1093 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
kpeter@809
|
1094 |
delta = std::min(_res_cap[a], _excess[n]);
|
kpeter@809
|
1095 |
t = _target[a];
|
kpeter@808
|
1096 |
|
kpeter@808
|
1097 |
// Push-look-ahead heuristic
|
kpeter@809
|
1098 |
Value ahead = -_excess[t];
|
kpeter@809
|
1099 |
int last_out_t = _sum_supply < 0 ?
|
kpeter@809
|
1100 |
_first_out[t+1] : _first_out[t+1] - 1;
|
kpeter@809
|
1101 |
for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
|
kpeter@809
|
1102 |
if (_res_cap[ta] > 0 &&
|
kpeter@809
|
1103 |
_cost[ta] + _pi[_source[ta]] - _pi[_target[ta]] < 0)
|
kpeter@809
|
1104 |
ahead += _res_cap[ta];
|
kpeter@809
|
1105 |
if (ahead >= delta) break;
|
kpeter@808
|
1106 |
}
|
kpeter@808
|
1107 |
if (ahead < 0) ahead = 0;
|
kpeter@808
|
1108 |
|
kpeter@808
|
1109 |
// Push flow along the arc
|
kpeter@808
|
1110 |
if (ahead < delta) {
|
kpeter@809
|
1111 |
_res_cap[a] -= ahead;
|
kpeter@809
|
1112 |
_res_cap[_reverse[a]] += ahead;
|
kpeter@808
|
1113 |
_excess[n] -= ahead;
|
kpeter@808
|
1114 |
_excess[t] += ahead;
|
kpeter@809
|
1115 |
_active_nodes.push_front(t);
|
kpeter@808
|
1116 |
hyper[t] = true;
|
kpeter@809
|
1117 |
_next_out[n] = a;
|
kpeter@809
|
1118 |
goto next_node;
|
kpeter@808
|
1119 |
} else {
|
kpeter@809
|
1120 |
_res_cap[a] -= delta;
|
kpeter@809
|
1121 |
_res_cap[_reverse[a]] += delta;
|
kpeter@808
|
1122 |
_excess[n] -= delta;
|
kpeter@808
|
1123 |
_excess[t] += delta;
|
kpeter@808
|
1124 |
if (_excess[t] > 0 && _excess[t] <= delta)
|
kpeter@809
|
1125 |
_active_nodes.push_back(t);
|
kpeter@808
|
1126 |
}
|
kpeter@808
|
1127 |
|
kpeter@809
|
1128 |
if (_excess[n] == 0) {
|
kpeter@809
|
1129 |
_next_out[n] = a;
|
kpeter@809
|
1130 |
goto remove_nodes;
|
kpeter@809
|
1131 |
}
|
kpeter@808
|
1132 |
}
|
kpeter@808
|
1133 |
}
|
kpeter@809
|
1134 |
_next_out[n] = a;
|
kpeter@808
|
1135 |
}
|
kpeter@808
|
1136 |
|
kpeter@808
|
1137 |
// Relabel the node if it is still active (or hyper)
|
kpeter@809
|
1138 |
if (_excess[n] > 0 || hyper[n]) {
|
kpeter@809
|
1139 |
min_red_cost = std::numeric_limits<LargeCost>::max() / 2;
|
kpeter@809
|
1140 |
for (int a = _first_out[n]; a != last_out; ++a) {
|
kpeter@809
|
1141 |
rc = _cost[a] + _pi[_source[a]] - _pi[_target[a]];
|
kpeter@809
|
1142 |
if (_res_cap[a] > 0 && rc < min_red_cost) {
|
kpeter@809
|
1143 |
min_red_cost = rc;
|
kpeter@809
|
1144 |
}
|
kpeter@808
|
1145 |
}
|
kpeter@809
|
1146 |
_pi[n] -= min_red_cost + _epsilon;
|
kpeter@808
|
1147 |
hyper[n] = false;
|
kpeter@808
|
1148 |
|
kpeter@809
|
1149 |
// Reset the next arc
|
kpeter@809
|
1150 |
_next_out[n] = _first_out[n];
|
kpeter@808
|
1151 |
}
|
kpeter@809
|
1152 |
|
kpeter@808
|
1153 |
// Remove nodes that are not active nor hyper
|
kpeter@809
|
1154 |
remove_nodes:
|
kpeter@809
|
1155 |
while ( _active_nodes.size() > 0 &&
|
kpeter@809
|
1156 |
_excess[_active_nodes.front()] <= 0 &&
|
kpeter@809
|
1157 |
!hyper[_active_nodes.front()] ) {
|
kpeter@809
|
1158 |
_active_nodes.pop_front();
|
kpeter@808
|
1159 |
}
|
kpeter@808
|
1160 |
}
|
kpeter@808
|
1161 |
}
|
kpeter@808
|
1162 |
}
|
kpeter@808
|
1163 |
|
kpeter@808
|
1164 |
}; //class CostScaling
|
kpeter@808
|
1165 |
|
kpeter@808
|
1166 |
///@}
|
kpeter@808
|
1167 |
|
kpeter@808
|
1168 |
} //namespace lemon
|
kpeter@808
|
1169 |
|
kpeter@808
|
1170 |
#endif //LEMON_COST_SCALING_H
|