lemon/hypercube_graph.h
changeset 364 b4a01426c0d9
child 365 a12eef1f82b2
equal deleted inserted replaced
-1:000000000000 0:52d27f122bbb
       
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library.
       
     4  *
       
     5  * Copyright (C) 2003-2008
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef HYPERCUBE_GRAPH_H
       
    20 #define HYPERCUBE_GRAPH_H
       
    21 
       
    22 #include <iostream>
       
    23 #include <vector>
       
    24 #include <lemon/core.h>
       
    25 #include <lemon/error.h>
       
    26 
       
    27 #include <lemon/bits/base_extender.h>
       
    28 #include <lemon/bits/graph_extender.h>
       
    29 
       
    30 ///\ingroup graphs
       
    31 ///\file
       
    32 ///\brief HypercubeDigraph class.
       
    33 
       
    34 namespace lemon {
       
    35 
       
    36   class HypercubeDigraphBase {
       
    37 
       
    38   public:
       
    39 
       
    40     typedef HypercubeDigraphBase Digraph;
       
    41 
       
    42     class Node;
       
    43     class Arc;
       
    44 
       
    45   public:
       
    46 
       
    47     HypercubeDigraphBase() {}
       
    48 
       
    49   protected:
       
    50 
       
    51     void construct(int dim) {
       
    52       _dim = dim;
       
    53       _nodeNum = 1 << dim;
       
    54     }
       
    55 
       
    56   public:
       
    57 
       
    58     typedef True NodeNumTag;
       
    59     typedef True ArcNumTag;
       
    60 
       
    61     int nodeNum() const { return _nodeNum; }
       
    62     int arcNum() const { return _nodeNum * _dim; }
       
    63 
       
    64     int maxNodeId() const { return nodeNum() - 1; }
       
    65     int maxArcId() const { return arcNum() - 1; }
       
    66 
       
    67     Node source(Arc e) const {
       
    68       return e.id / _dim;
       
    69     }
       
    70 
       
    71     Node target(Arc e) const {
       
    72       return (e.id / _dim) ^ (1 << (e.id % _dim));
       
    73     }
       
    74 
       
    75     static int id(Node v) { return v.id; }
       
    76     static int id(Arc e) { return e.id; }
       
    77 
       
    78     static Node nodeFromId(int id) { return Node(id); }
       
    79 
       
    80     static Arc arcFromId(int id) { return Arc(id); }
       
    81 
       
    82     class Node {
       
    83       friend class HypercubeDigraphBase;
       
    84     protected:
       
    85       int id;
       
    86       Node(int _id) { id = _id;}
       
    87     public:
       
    88       Node() {}
       
    89       Node (Invalid) { id = -1; }
       
    90       bool operator==(const Node node) const { return id == node.id; }
       
    91       bool operator!=(const Node node) const { return id != node.id; }
       
    92       bool operator<(const Node node) const { return id < node.id; }
       
    93     };
       
    94 
       
    95     class Arc {
       
    96       friend class HypercubeDigraphBase;
       
    97     protected:
       
    98       int id;
       
    99       Arc(int _id) : id(_id) {}
       
   100     public:
       
   101       Arc() { }
       
   102       Arc (Invalid) { id = -1; }
       
   103       bool operator==(const Arc arc) const { return id == arc.id; }
       
   104       bool operator!=(const Arc arc) const { return id != arc.id; }
       
   105       bool operator<(const Arc arc) const { return id < arc.id; }
       
   106     };
       
   107 
       
   108     void first(Node& node) const {
       
   109       node.id = nodeNum() - 1;
       
   110     }
       
   111 
       
   112     static void next(Node& node) {
       
   113       --node.id;
       
   114     }
       
   115 
       
   116     void first(Arc& arc) const {
       
   117       arc.id = arcNum() - 1;
       
   118     }
       
   119 
       
   120     static void next(Arc& arc) {
       
   121       --arc.id;
       
   122     }
       
   123 
       
   124     void firstOut(Arc& arc, const Node& node) const {
       
   125       arc.id = node.id * _dim;
       
   126     }
       
   127 
       
   128     void nextOut(Arc& arc) const {
       
   129       ++arc.id;
       
   130       if (arc.id % _dim == 0) arc.id = -1;
       
   131     }
       
   132 
       
   133     void firstIn(Arc& arc, const Node& node) const {
       
   134       arc.id = (node.id ^ 1) * _dim;
       
   135     }
       
   136 
       
   137     void nextIn(Arc& arc) const {
       
   138       int cnt = arc.id % _dim;
       
   139       if ((cnt + 1) % _dim == 0) {
       
   140         arc.id = -1;
       
   141       } else {
       
   142         arc.id = ((arc.id / _dim) ^ ((1 << cnt) * 3)) * _dim + cnt + 1;
       
   143       }
       
   144     }
       
   145 
       
   146     int dimension() const {
       
   147       return _dim;
       
   148     }
       
   149 
       
   150     bool projection(Node node, int n) const {
       
   151       return static_cast<bool>(node.id & (1 << n));
       
   152     }
       
   153 
       
   154     int dimension(Arc arc) const {
       
   155       return arc.id % _dim;
       
   156     }
       
   157 
       
   158     int index(Node node) const {
       
   159       return node.id;
       
   160     }
       
   161 
       
   162     Node operator()(int ix) const {
       
   163       return Node(ix);
       
   164     }
       
   165 
       
   166   private:
       
   167     int _dim, _nodeNum;
       
   168   };
       
   169 
       
   170 
       
   171   typedef DigraphExtender<HypercubeDigraphBase> ExtendedHypercubeDigraphBase;
       
   172 
       
   173   /// \ingroup digraphs
       
   174   ///
       
   175   /// \brief Hypercube digraph class
       
   176   ///
       
   177   /// This class implements a special digraph type. The nodes of the
       
   178   /// digraph are indiced with integers with at most \c dim binary digits.
       
   179   /// Two nodes are connected in the digraph if the indices differ only
       
   180   /// on one position in the binary form.
       
   181   ///
       
   182   /// \note The type of the \c ids is chosen to \c int because efficiency
       
   183   /// reasons. Thus the maximum dimension of this implementation is 26.
       
   184   ///
       
   185   /// The digraph type is fully conform to the \ref concepts::Digraph
       
   186   /// concept but it does not conform to \ref concepts::Graph.
       
   187   class HypercubeDigraph : public ExtendedHypercubeDigraphBase {
       
   188   public:
       
   189 
       
   190     typedef ExtendedHypercubeDigraphBase Parent;
       
   191 
       
   192     /// \brief Construct a hypercube digraph with \c dim dimension.
       
   193     ///
       
   194     /// Construct a hypercube digraph with \c dim dimension.
       
   195     HypercubeDigraph(int dim) { construct(dim); }
       
   196 
       
   197     /// \brief Gives back the number of the dimensions.
       
   198     ///
       
   199     /// Gives back the number of the dimensions.
       
   200     int dimension() const {
       
   201       return Parent::dimension();
       
   202     }
       
   203 
       
   204     /// \brief Returns true if the n'th bit of the node is one.
       
   205     ///
       
   206     /// Returns true if the n'th bit of the node is one.
       
   207     bool projection(Node node, int n) const {
       
   208       return Parent::projection(node, n);
       
   209     }
       
   210 
       
   211     /// \brief The dimension id of the arc.
       
   212     ///
       
   213     /// It returns the dimension id of the arc. It can
       
   214     /// be in the \f$ \{0, 1, \dots, dim-1\} \f$ interval.
       
   215     int dimension(Arc arc) const {
       
   216       return Parent::dimension(arc);
       
   217     }
       
   218 
       
   219     /// \brief Gives back the index of the node.
       
   220     ///
       
   221     /// Gives back the index of the node. The lower bits of the
       
   222     /// integer describes the node.
       
   223     int index(Node node) const {
       
   224       return Parent::index(node);
       
   225     }
       
   226 
       
   227     /// \brief Gives back the node by its index.
       
   228     ///
       
   229     /// Gives back the node by its index.
       
   230     Node operator()(int ix) const {
       
   231       return Parent::operator()(ix);
       
   232     }
       
   233 
       
   234     /// \brief Number of nodes.
       
   235     int nodeNum() const { return Parent::nodeNum(); }
       
   236     /// \brief Number of arcs.
       
   237     int arcNum() const { return Parent::arcNum(); }
       
   238 
       
   239     /// \brief Linear combination map.
       
   240     ///
       
   241     /// It makes possible to give back a linear combination
       
   242     /// for each node. This function works like the \c std::accumulate
       
   243     /// so it accumulates the \c bf binary function with the \c fv
       
   244     /// first value. The map accumulates only on that dimensions where
       
   245     /// the node's index is one. The accumulated values should be
       
   246     /// given by the \c begin and \c end iterators and the length of this
       
   247     /// range should be equal to the dimension number of the digraph.
       
   248     ///
       
   249     ///\code
       
   250     /// const int DIM = 3;
       
   251     /// HypercubeDigraph digraph(DIM);
       
   252     /// dim2::Point<double> base[DIM];
       
   253     /// for (int k = 0; k < DIM; ++k) {
       
   254     ///   base[k].x = rnd();
       
   255     ///   base[k].y = rnd();
       
   256     /// }
       
   257     /// HypercubeDigraph::HyperMap<dim2::Point<double> >
       
   258     ///   pos(digraph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
       
   259     ///\endcode
       
   260     ///
       
   261     /// \see HypercubeDigraph
       
   262     template <typename T, typename BF = std::plus<T> >
       
   263     class HyperMap {
       
   264     public:
       
   265 
       
   266       typedef Node Key;
       
   267       typedef T Value;
       
   268 
       
   269 
       
   270       /// \brief Constructor for HyperMap.
       
   271       ///
       
   272       /// Construct a HyperMap for the given digraph. The accumulated values
       
   273       /// should be given by the \c begin and \c end iterators and the length
       
   274       /// of this range should be equal to the dimension number of the digraph.
       
   275       ///
       
   276       /// This function accumulates the \c bf binary function with
       
   277       /// the \c fv first value. The map accumulates only on that dimensions
       
   278       /// where the node's index is one.
       
   279       template <typename It>
       
   280       HyperMap(const Digraph& digraph, It begin, It end,
       
   281                T fv = 0.0, const BF& bf = BF())
       
   282         : _graph(digraph), _values(begin, end), _first_value(fv), _bin_func(bf)
       
   283       {
       
   284         LEMON_ASSERT(_values.size() == digraph.dimension(),
       
   285                      "Wrong size of dimension");
       
   286       }
       
   287 
       
   288       /// \brief Gives back the partial accumulated value.
       
   289       ///
       
   290       /// Gives back the partial accumulated value.
       
   291       Value operator[](Key k) const {
       
   292         Value val = _first_value;
       
   293         int id = _graph.index(k);
       
   294         int n = 0;
       
   295         while (id != 0) {
       
   296           if (id & 1) {
       
   297             val = _bin_func(val, _values[n]);
       
   298           }
       
   299           id >>= 1;
       
   300           ++n;
       
   301         }
       
   302         return val;
       
   303       }
       
   304 
       
   305     private:
       
   306       const Digraph& _graph;
       
   307       std::vector<T> _values;
       
   308       T _first_value;
       
   309       BF _bin_func;
       
   310     };
       
   311 
       
   312   };
       
   313 
       
   314 }
       
   315 
       
   316 #endif