|
1 /* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 * |
|
3 * This file is a part of LEMON, a generic C++ optimization library. |
|
4 * |
|
5 * Copyright (C) 2003-2009 |
|
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 * |
|
9 * Permission to use, modify and distribute this software is granted |
|
10 * provided that this copyright notice appears in all copies. For |
|
11 * precise terms see the accompanying LICENSE file. |
|
12 * |
|
13 * This software is provided "AS IS" with no warranty of any kind, |
|
14 * express or implied, and with no claim as to its suitability for any |
|
15 * purpose. |
|
16 * |
|
17 */ |
|
18 |
|
19 #ifndef LEMON_FIB_HEAP_H |
|
20 #define LEMON_FIB_HEAP_H |
|
21 |
|
22 ///\file |
|
23 ///\ingroup auxdat |
|
24 ///\brief Fibonacci Heap implementation. |
|
25 |
|
26 #include <vector> |
|
27 #include <functional> |
|
28 #include <lemon/math.h> |
|
29 |
|
30 namespace lemon { |
|
31 |
|
32 /// \ingroup auxdat |
|
33 /// |
|
34 ///\brief Fibonacci Heap. |
|
35 /// |
|
36 ///This class implements the \e Fibonacci \e heap data structure. A \e heap |
|
37 ///is a data structure for storing items with specified values called \e |
|
38 ///priorities in such a way that finding the item with minimum priority is |
|
39 ///efficient. \c Compare specifies the ordering of the priorities. In a heap |
|
40 ///one can change the priority of an item, add or erase an item, etc. |
|
41 /// |
|
42 ///The methods \ref increase and \ref erase are not efficient in a Fibonacci |
|
43 ///heap. In case of many calls to these operations, it is better to use a |
|
44 ///\ref BinHeap "binary heap". |
|
45 /// |
|
46 ///\param _Prio Type of the priority of the items. |
|
47 ///\param _ItemIntMap A read and writable Item int map, used internally |
|
48 ///to handle the cross references. |
|
49 ///\param _Compare A class for the ordering of the priorities. The |
|
50 ///default is \c std::less<_Prio>. |
|
51 /// |
|
52 ///\sa BinHeap |
|
53 ///\sa Dijkstra |
|
54 #ifdef DOXYGEN |
|
55 template <typename _Prio, |
|
56 typename _ItemIntMap, |
|
57 typename _Compare> |
|
58 #else |
|
59 template <typename _Prio, |
|
60 typename _ItemIntMap, |
|
61 typename _Compare = std::less<_Prio> > |
|
62 #endif |
|
63 class FibHeap { |
|
64 public: |
|
65 ///\e |
|
66 typedef _ItemIntMap ItemIntMap; |
|
67 ///\e |
|
68 typedef _Prio Prio; |
|
69 ///\e |
|
70 typedef typename ItemIntMap::Key Item; |
|
71 ///\e |
|
72 typedef std::pair<Item,Prio> Pair; |
|
73 ///\e |
|
74 typedef _Compare Compare; |
|
75 |
|
76 private: |
|
77 class store; |
|
78 |
|
79 std::vector<store> container; |
|
80 int minimum; |
|
81 ItemIntMap &iimap; |
|
82 Compare comp; |
|
83 int num_items; |
|
84 |
|
85 public: |
|
86 ///Status of the nodes |
|
87 enum State { |
|
88 ///The node is in the heap |
|
89 IN_HEAP = 0, |
|
90 ///The node has never been in the heap |
|
91 PRE_HEAP = -1, |
|
92 ///The node was in the heap but it got out of it |
|
93 POST_HEAP = -2 |
|
94 }; |
|
95 |
|
96 /// \brief The constructor |
|
97 /// |
|
98 /// \c _iimap should be given to the constructor, since it is |
|
99 /// used internally to handle the cross references. |
|
100 explicit FibHeap(ItemIntMap &_iimap) |
|
101 : minimum(0), iimap(_iimap), num_items() {} |
|
102 |
|
103 /// \brief The constructor |
|
104 /// |
|
105 /// \c _iimap should be given to the constructor, since it is used |
|
106 /// internally to handle the cross references. \c _comp is an |
|
107 /// object for ordering of the priorities. |
|
108 FibHeap(ItemIntMap &_iimap, const Compare &_comp) |
|
109 : minimum(0), iimap(_iimap), comp(_comp), num_items() {} |
|
110 |
|
111 /// \brief The number of items stored in the heap. |
|
112 /// |
|
113 /// Returns the number of items stored in the heap. |
|
114 int size() const { return num_items; } |
|
115 |
|
116 /// \brief Checks if the heap stores no items. |
|
117 /// |
|
118 /// Returns \c true if and only if the heap stores no items. |
|
119 bool empty() const { return num_items==0; } |
|
120 |
|
121 /// \brief Make empty this heap. |
|
122 /// |
|
123 /// Make empty this heap. It does not change the cross reference |
|
124 /// map. If you want to reuse a heap what is not surely empty you |
|
125 /// should first clear the heap and after that you should set the |
|
126 /// cross reference map for each item to \c PRE_HEAP. |
|
127 void clear() { |
|
128 container.clear(); minimum = 0; num_items = 0; |
|
129 } |
|
130 |
|
131 /// \brief \c item gets to the heap with priority \c value independently |
|
132 /// if \c item was already there. |
|
133 /// |
|
134 /// This method calls \ref push(\c item, \c value) if \c item is not |
|
135 /// stored in the heap and it calls \ref decrease(\c item, \c value) or |
|
136 /// \ref increase(\c item, \c value) otherwise. |
|
137 void set (const Item& item, const Prio& value) { |
|
138 int i=iimap[item]; |
|
139 if ( i >= 0 && container[i].in ) { |
|
140 if ( comp(value, container[i].prio) ) decrease(item, value); |
|
141 if ( comp(container[i].prio, value) ) increase(item, value); |
|
142 } else push(item, value); |
|
143 } |
|
144 |
|
145 /// \brief Adds \c item to the heap with priority \c value. |
|
146 /// |
|
147 /// Adds \c item to the heap with priority \c value. |
|
148 /// \pre \c item must not be stored in the heap. |
|
149 void push (const Item& item, const Prio& value) { |
|
150 int i=iimap[item]; |
|
151 if ( i < 0 ) { |
|
152 int s=container.size(); |
|
153 iimap.set( item, s ); |
|
154 store st; |
|
155 st.name=item; |
|
156 container.push_back(st); |
|
157 i=s; |
|
158 } else { |
|
159 container[i].parent=container[i].child=-1; |
|
160 container[i].degree=0; |
|
161 container[i].in=true; |
|
162 container[i].marked=false; |
|
163 } |
|
164 |
|
165 if ( num_items ) { |
|
166 container[container[minimum].right_neighbor].left_neighbor=i; |
|
167 container[i].right_neighbor=container[minimum].right_neighbor; |
|
168 container[minimum].right_neighbor=i; |
|
169 container[i].left_neighbor=minimum; |
|
170 if ( comp( value, container[minimum].prio) ) minimum=i; |
|
171 } else { |
|
172 container[i].right_neighbor=container[i].left_neighbor=i; |
|
173 minimum=i; |
|
174 } |
|
175 container[i].prio=value; |
|
176 ++num_items; |
|
177 } |
|
178 |
|
179 /// \brief Returns the item with minimum priority relative to \c Compare. |
|
180 /// |
|
181 /// This method returns the item with minimum priority relative to \c |
|
182 /// Compare. |
|
183 /// \pre The heap must be nonempty. |
|
184 Item top() const { return container[minimum].name; } |
|
185 |
|
186 /// \brief Returns the minimum priority relative to \c Compare. |
|
187 /// |
|
188 /// It returns the minimum priority relative to \c Compare. |
|
189 /// \pre The heap must be nonempty. |
|
190 const Prio& prio() const { return container[minimum].prio; } |
|
191 |
|
192 /// \brief Returns the priority of \c item. |
|
193 /// |
|
194 /// It returns the priority of \c item. |
|
195 /// \pre \c item must be in the heap. |
|
196 const Prio& operator[](const Item& item) const { |
|
197 return container[iimap[item]].prio; |
|
198 } |
|
199 |
|
200 /// \brief Deletes the item with minimum priority relative to \c Compare. |
|
201 /// |
|
202 /// This method deletes the item with minimum priority relative to \c |
|
203 /// Compare from the heap. |
|
204 /// \pre The heap must be non-empty. |
|
205 void pop() { |
|
206 /*The first case is that there are only one root.*/ |
|
207 if ( container[minimum].left_neighbor==minimum ) { |
|
208 container[minimum].in=false; |
|
209 if ( container[minimum].degree!=0 ) { |
|
210 makeroot(container[minimum].child); |
|
211 minimum=container[minimum].child; |
|
212 balance(); |
|
213 } |
|
214 } else { |
|
215 int right=container[minimum].right_neighbor; |
|
216 unlace(minimum); |
|
217 container[minimum].in=false; |
|
218 if ( container[minimum].degree > 0 ) { |
|
219 int left=container[minimum].left_neighbor; |
|
220 int child=container[minimum].child; |
|
221 int last_child=container[child].left_neighbor; |
|
222 |
|
223 makeroot(child); |
|
224 |
|
225 container[left].right_neighbor=child; |
|
226 container[child].left_neighbor=left; |
|
227 container[right].left_neighbor=last_child; |
|
228 container[last_child].right_neighbor=right; |
|
229 } |
|
230 minimum=right; |
|
231 balance(); |
|
232 } // the case where there are more roots |
|
233 --num_items; |
|
234 } |
|
235 |
|
236 /// \brief Deletes \c item from the heap. |
|
237 /// |
|
238 /// This method deletes \c item from the heap, if \c item was already |
|
239 /// stored in the heap. It is quite inefficient in Fibonacci heaps. |
|
240 void erase (const Item& item) { |
|
241 int i=iimap[item]; |
|
242 |
|
243 if ( i >= 0 && container[i].in ) { |
|
244 if ( container[i].parent!=-1 ) { |
|
245 int p=container[i].parent; |
|
246 cut(i,p); |
|
247 cascade(p); |
|
248 } |
|
249 minimum=i; //As if its prio would be -infinity |
|
250 pop(); |
|
251 } |
|
252 } |
|
253 |
|
254 /// \brief Decreases the priority of \c item to \c value. |
|
255 /// |
|
256 /// This method decreases the priority of \c item to \c value. |
|
257 /// \pre \c item must be stored in the heap with priority at least \c |
|
258 /// value relative to \c Compare. |
|
259 void decrease (Item item, const Prio& value) { |
|
260 int i=iimap[item]; |
|
261 container[i].prio=value; |
|
262 int p=container[i].parent; |
|
263 |
|
264 if ( p!=-1 && comp(value, container[p].prio) ) { |
|
265 cut(i,p); |
|
266 cascade(p); |
|
267 } |
|
268 if ( comp(value, container[minimum].prio) ) minimum=i; |
|
269 } |
|
270 |
|
271 /// \brief Increases the priority of \c item to \c value. |
|
272 /// |
|
273 /// This method sets the priority of \c item to \c value. Though |
|
274 /// there is no precondition on the priority of \c item, this |
|
275 /// method should be used only if it is indeed necessary to increase |
|
276 /// (relative to \c Compare) the priority of \c item, because this |
|
277 /// method is inefficient. |
|
278 void increase (Item item, const Prio& value) { |
|
279 erase(item); |
|
280 push(item, value); |
|
281 } |
|
282 |
|
283 |
|
284 /// \brief Returns if \c item is in, has already been in, or has never |
|
285 /// been in the heap. |
|
286 /// |
|
287 /// This method returns PRE_HEAP if \c item has never been in the |
|
288 /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
289 /// otherwise. In the latter case it is possible that \c item will |
|
290 /// get back to the heap again. |
|
291 State state(const Item &item) const { |
|
292 int i=iimap[item]; |
|
293 if( i>=0 ) { |
|
294 if ( container[i].in ) i=0; |
|
295 else i=-2; |
|
296 } |
|
297 return State(i); |
|
298 } |
|
299 |
|
300 /// \brief Sets the state of the \c item in the heap. |
|
301 /// |
|
302 /// Sets the state of the \c item in the heap. It can be used to |
|
303 /// manually clear the heap when it is important to achive the |
|
304 /// better time complexity. |
|
305 /// \param i The item. |
|
306 /// \param st The state. It should not be \c IN_HEAP. |
|
307 void state(const Item& i, State st) { |
|
308 switch (st) { |
|
309 case POST_HEAP: |
|
310 case PRE_HEAP: |
|
311 if (state(i) == IN_HEAP) { |
|
312 erase(i); |
|
313 } |
|
314 iimap[i] = st; |
|
315 break; |
|
316 case IN_HEAP: |
|
317 break; |
|
318 } |
|
319 } |
|
320 |
|
321 private: |
|
322 |
|
323 void balance() { |
|
324 |
|
325 int maxdeg=int( std::floor( 2.08*log(double(container.size()))))+1; |
|
326 |
|
327 std::vector<int> A(maxdeg,-1); |
|
328 |
|
329 /* |
|
330 *Recall that now minimum does not point to the minimum prio element. |
|
331 *We set minimum to this during balance(). |
|
332 */ |
|
333 int anchor=container[minimum].left_neighbor; |
|
334 int next=minimum; |
|
335 bool end=false; |
|
336 |
|
337 do { |
|
338 int active=next; |
|
339 if ( anchor==active ) end=true; |
|
340 int d=container[active].degree; |
|
341 next=container[active].right_neighbor; |
|
342 |
|
343 while (A[d]!=-1) { |
|
344 if( comp(container[active].prio, container[A[d]].prio) ) { |
|
345 fuse(active,A[d]); |
|
346 } else { |
|
347 fuse(A[d],active); |
|
348 active=A[d]; |
|
349 } |
|
350 A[d]=-1; |
|
351 ++d; |
|
352 } |
|
353 A[d]=active; |
|
354 } while ( !end ); |
|
355 |
|
356 |
|
357 while ( container[minimum].parent >=0 ) |
|
358 minimum=container[minimum].parent; |
|
359 int s=minimum; |
|
360 int m=minimum; |
|
361 do { |
|
362 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s; |
|
363 s=container[s].right_neighbor; |
|
364 } while ( s != m ); |
|
365 } |
|
366 |
|
367 void makeroot(int c) { |
|
368 int s=c; |
|
369 do { |
|
370 container[s].parent=-1; |
|
371 s=container[s].right_neighbor; |
|
372 } while ( s != c ); |
|
373 } |
|
374 |
|
375 void cut(int a, int b) { |
|
376 /* |
|
377 *Replacing a from the children of b. |
|
378 */ |
|
379 --container[b].degree; |
|
380 |
|
381 if ( container[b].degree !=0 ) { |
|
382 int child=container[b].child; |
|
383 if ( child==a ) |
|
384 container[b].child=container[child].right_neighbor; |
|
385 unlace(a); |
|
386 } |
|
387 |
|
388 |
|
389 /*Lacing a to the roots.*/ |
|
390 int right=container[minimum].right_neighbor; |
|
391 container[minimum].right_neighbor=a; |
|
392 container[a].left_neighbor=minimum; |
|
393 container[a].right_neighbor=right; |
|
394 container[right].left_neighbor=a; |
|
395 |
|
396 container[a].parent=-1; |
|
397 container[a].marked=false; |
|
398 } |
|
399 |
|
400 void cascade(int a) { |
|
401 if ( container[a].parent!=-1 ) { |
|
402 int p=container[a].parent; |
|
403 |
|
404 if ( container[a].marked==false ) container[a].marked=true; |
|
405 else { |
|
406 cut(a,p); |
|
407 cascade(p); |
|
408 } |
|
409 } |
|
410 } |
|
411 |
|
412 void fuse(int a, int b) { |
|
413 unlace(b); |
|
414 |
|
415 /*Lacing b under a.*/ |
|
416 container[b].parent=a; |
|
417 |
|
418 if (container[a].degree==0) { |
|
419 container[b].left_neighbor=b; |
|
420 container[b].right_neighbor=b; |
|
421 container[a].child=b; |
|
422 } else { |
|
423 int child=container[a].child; |
|
424 int last_child=container[child].left_neighbor; |
|
425 container[child].left_neighbor=b; |
|
426 container[b].right_neighbor=child; |
|
427 container[last_child].right_neighbor=b; |
|
428 container[b].left_neighbor=last_child; |
|
429 } |
|
430 |
|
431 ++container[a].degree; |
|
432 |
|
433 container[b].marked=false; |
|
434 } |
|
435 |
|
436 /* |
|
437 *It is invoked only if a has siblings. |
|
438 */ |
|
439 void unlace(int a) { |
|
440 int leftn=container[a].left_neighbor; |
|
441 int rightn=container[a].right_neighbor; |
|
442 container[leftn].right_neighbor=rightn; |
|
443 container[rightn].left_neighbor=leftn; |
|
444 } |
|
445 |
|
446 |
|
447 class store { |
|
448 friend class FibHeap; |
|
449 |
|
450 Item name; |
|
451 int parent; |
|
452 int left_neighbor; |
|
453 int right_neighbor; |
|
454 int child; |
|
455 int degree; |
|
456 bool marked; |
|
457 bool in; |
|
458 Prio prio; |
|
459 |
|
460 store() : parent(-1), child(-1), degree(), marked(false), in(true) {} |
|
461 }; |
|
462 }; |
|
463 |
|
464 } //namespace lemon |
|
465 |
|
466 #endif //LEMON_FIB_HEAP_H |
|
467 |