1.1 --- a/doc/groups.dox Fri Oct 16 10:21:37 2009 +0200
1.2 +++ b/doc/groups.dox Thu Nov 05 15:50:01 2009 +0100
1.3 @@ -2,7 +2,7 @@
1.4 *
1.5 * This file is a part of LEMON, a generic C++ optimization library.
1.6 *
1.7 - * Copyright (C) 2003-2008
1.8 + * Copyright (C) 2003-2009
1.9 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
1.10 * (Egervary Research Group on Combinatorial Optimization, EGRES).
1.11 *
1.12 @@ -16,9 +16,11 @@
1.13 *
1.14 */
1.15
1.16 +namespace lemon {
1.17 +
1.18 /**
1.19 @defgroup datas Data Structures
1.20 -This group describes the several data structures implemented in LEMON.
1.21 +This group contains the several data structures implemented in LEMON.
1.22 */
1.23
1.24 /**
1.25 @@ -60,13 +62,79 @@
1.26 */
1.27
1.28 /**
1.29 -@defgroup semi_adaptors Semi-Adaptor Classes for Graphs
1.30 +@defgroup graph_adaptors Adaptor Classes for Graphs
1.31 @ingroup graphs
1.32 -\brief Graph types between real graphs and graph adaptors.
1.33 +\brief Adaptor classes for digraphs and graphs
1.34
1.35 -This group describes some graph types between real graphs and graph adaptors.
1.36 -These classes wrap graphs to give new functionality as the adaptors do it.
1.37 -On the other hand they are not light-weight structures as the adaptors.
1.38 +This group contains several useful adaptor classes for digraphs and graphs.
1.39 +
1.40 +The main parts of LEMON are the different graph structures, generic
1.41 +graph algorithms, graph concepts, which couple them, and graph
1.42 +adaptors. While the previous notions are more or less clear, the
1.43 +latter one needs further explanation. Graph adaptors are graph classes
1.44 +which serve for considering graph structures in different ways.
1.45 +
1.46 +A short example makes this much clearer. Suppose that we have an
1.47 +instance \c g of a directed graph type, say ListDigraph and an algorithm
1.48 +\code
1.49 +template <typename Digraph>
1.50 +int algorithm(const Digraph&);
1.51 +\endcode
1.52 +is needed to run on the reverse oriented graph. It may be expensive
1.53 +(in time or in memory usage) to copy \c g with the reversed
1.54 +arcs. In this case, an adaptor class is used, which (according
1.55 +to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph.
1.56 +The adaptor uses the original digraph structure and digraph operations when
1.57 +methods of the reversed oriented graph are called. This means that the adaptor
1.58 +have minor memory usage, and do not perform sophisticated algorithmic
1.59 +actions. The purpose of it is to give a tool for the cases when a
1.60 +graph have to be used in a specific alteration. If this alteration is
1.61 +obtained by a usual construction like filtering the node or the arc set or
1.62 +considering a new orientation, then an adaptor is worthwhile to use.
1.63 +To come back to the reverse oriented graph, in this situation
1.64 +\code
1.65 +template<typename Digraph> class ReverseDigraph;
1.66 +\endcode
1.67 +template class can be used. The code looks as follows
1.68 +\code
1.69 +ListDigraph g;
1.70 +ReverseDigraph<ListDigraph> rg(g);
1.71 +int result = algorithm(rg);
1.72 +\endcode
1.73 +During running the algorithm, the original digraph \c g is untouched.
1.74 +This techniques give rise to an elegant code, and based on stable
1.75 +graph adaptors, complex algorithms can be implemented easily.
1.76 +
1.77 +In flow, circulation and matching problems, the residual
1.78 +graph is of particular importance. Combining an adaptor implementing
1.79 +this with shortest path algorithms or minimum mean cycle algorithms,
1.80 +a range of weighted and cardinality optimization algorithms can be
1.81 +obtained. For other examples, the interested user is referred to the
1.82 +detailed documentation of particular adaptors.
1.83 +
1.84 +The behavior of graph adaptors can be very different. Some of them keep
1.85 +capabilities of the original graph while in other cases this would be
1.86 +meaningless. This means that the concepts that they meet depend
1.87 +on the graph adaptor, and the wrapped graph.
1.88 +For example, if an arc of a reversed digraph is deleted, this is carried
1.89 +out by deleting the corresponding arc of the original digraph, thus the
1.90 +adaptor modifies the original digraph.
1.91 +However in case of a residual digraph, this operation has no sense.
1.92 +
1.93 +Let us stand one more example here to simplify your work.
1.94 +ReverseDigraph has constructor
1.95 +\code
1.96 +ReverseDigraph(Digraph& digraph);
1.97 +\endcode
1.98 +This means that in a situation, when a <tt>const %ListDigraph&</tt>
1.99 +reference to a graph is given, then it have to be instantiated with
1.100 +<tt>Digraph=const %ListDigraph</tt>.
1.101 +\code
1.102 +int algorithm1(const ListDigraph& g) {
1.103 + ReverseDigraph<const ListDigraph> rg(g);
1.104 + return algorithm2(rg);
1.105 +}
1.106 +\endcode
1.107 */
1.108
1.109 /**
1.110 @@ -74,7 +142,7 @@
1.111 @ingroup datas
1.112 \brief Map structures implemented in LEMON.
1.113
1.114 -This group describes the map structures implemented in LEMON.
1.115 +This group contains the map structures implemented in LEMON.
1.116
1.117 LEMON provides several special purpose maps and map adaptors that e.g. combine
1.118 new maps from existing ones.
1.119 @@ -87,8 +155,11 @@
1.120 @ingroup maps
1.121 \brief Special graph-related maps.
1.122
1.123 -This group describes maps that are specifically designed to assign
1.124 -values to the nodes and arcs of graphs.
1.125 +This group contains maps that are specifically designed to assign
1.126 +values to the nodes and arcs/edges of graphs.
1.127 +
1.128 +If you are looking for the standard graph maps (\c NodeMap, \c ArcMap,
1.129 +\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts".
1.130 */
1.131
1.132 /**
1.133 @@ -96,10 +167,10 @@
1.134 \ingroup maps
1.135 \brief Tools to create new maps from existing ones
1.136
1.137 -This group describes map adaptors that are used to create "implicit"
1.138 +This group contains map adaptors that are used to create "implicit"
1.139 maps from other maps.
1.140
1.141 -Most of them are \ref lemon::concepts::ReadMap "read-only maps".
1.142 +Most of them are \ref concepts::ReadMap "read-only maps".
1.143 They can make arithmetic and logical operations between one or two maps
1.144 (negation, shifting, addition, multiplication, logical 'and', 'or',
1.145 'not' etc.) or e.g. convert a map to another one of different Value type.
1.146 @@ -155,19 +226,11 @@
1.147 */
1.148
1.149 /**
1.150 -@defgroup matrices Matrices
1.151 -@ingroup datas
1.152 -\brief Two dimensional data storages implemented in LEMON.
1.153 -
1.154 -This group describes two dimensional data storages implemented in LEMON.
1.155 -*/
1.156 -
1.157 -/**
1.158 @defgroup paths Path Structures
1.159 @ingroup datas
1.160 \brief %Path structures implemented in LEMON.
1.161
1.162 -This group describes the path structures implemented in LEMON.
1.163 +This group contains the path structures implemented in LEMON.
1.164
1.165 LEMON provides flexible data structures to work with paths.
1.166 All of them have similar interfaces and they can be copied easily with
1.167 @@ -175,7 +238,36 @@
1.168 efficient to have e.g. the Dijkstra algorithm to store its result in
1.169 any kind of path structure.
1.170
1.171 -\sa lemon::concepts::Path
1.172 +\sa \ref concepts::Path "Path concept"
1.173 +*/
1.174 +
1.175 +/**
1.176 +@defgroup heaps Heap Structures
1.177 +@ingroup datas
1.178 +\brief %Heap structures implemented in LEMON.
1.179 +
1.180 +This group contains the heap structures implemented in LEMON.
1.181 +
1.182 +LEMON provides several heap classes. They are efficient implementations
1.183 +of the abstract data type \e priority \e queue. They store items with
1.184 +specified values called \e priorities in such a way that finding and
1.185 +removing the item with minimum priority are efficient.
1.186 +The basic operations are adding and erasing items, changing the priority
1.187 +of an item, etc.
1.188 +
1.189 +Heaps are crucial in several algorithms, such as Dijkstra and Prim.
1.190 +The heap implementations have the same interface, thus any of them can be
1.191 +used easily in such algorithms.
1.192 +
1.193 +\sa \ref concepts::Heap "Heap concept"
1.194 +*/
1.195 +
1.196 +/**
1.197 +@defgroup matrices Matrices
1.198 +@ingroup datas
1.199 +\brief Two dimensional data storages implemented in LEMON.
1.200 +
1.201 +This group contains two dimensional data storages implemented in LEMON.
1.202 */
1.203
1.204 /**
1.205 @@ -183,16 +275,38 @@
1.206 @ingroup datas
1.207 \brief Auxiliary data structures implemented in LEMON.
1.208
1.209 -This group describes some data structures implemented in LEMON in
1.210 +This group contains some data structures implemented in LEMON in
1.211 order to make it easier to implement combinatorial algorithms.
1.212 */
1.213
1.214 /**
1.215 +@defgroup geomdat Geometric Data Structures
1.216 +@ingroup auxdat
1.217 +\brief Geometric data structures implemented in LEMON.
1.218 +
1.219 +This group contains geometric data structures implemented in LEMON.
1.220 +
1.221 + - \ref lemon::dim2::Point "dim2::Point" implements a two dimensional
1.222 + vector with the usual operations.
1.223 + - \ref lemon::dim2::Box "dim2::Box" can be used to determine the
1.224 + rectangular bounding box of a set of \ref lemon::dim2::Point
1.225 + "dim2::Point"'s.
1.226 +*/
1.227 +
1.228 +/**
1.229 +@defgroup matrices Matrices
1.230 +@ingroup auxdat
1.231 +\brief Two dimensional data storages implemented in LEMON.
1.232 +
1.233 +This group contains two dimensional data storages implemented in LEMON.
1.234 +*/
1.235 +
1.236 +/**
1.237 @defgroup algs Algorithms
1.238 -\brief This group describes the several algorithms
1.239 +\brief This group contains the several algorithms
1.240 implemented in LEMON.
1.241
1.242 -This group describes the several algorithms
1.243 +This group contains the several algorithms
1.244 implemented in LEMON.
1.245 */
1.246
1.247 @@ -201,8 +315,9 @@
1.248 @ingroup algs
1.249 \brief Common graph search algorithms.
1.250
1.251 -This group describes the common graph search algorithms like
1.252 -Breadth-First Search (BFS) and Depth-First Search (DFS).
1.253 +This group contains the common graph search algorithms, namely
1.254 +\e breadth-first \e search (BFS) and \e depth-first \e search (DFS)
1.255 +\ref clrs01algorithms.
1.256 */
1.257
1.258 /**
1.259 @@ -210,7 +325,30 @@
1.260 @ingroup algs
1.261 \brief Algorithms for finding shortest paths.
1.262
1.263 -This group describes the algorithms for finding shortest paths in graphs.
1.264 +This group contains the algorithms for finding shortest paths in digraphs
1.265 +\ref clrs01algorithms.
1.266 +
1.267 + - \ref Dijkstra algorithm for finding shortest paths from a source node
1.268 + when all arc lengths are non-negative.
1.269 + - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths
1.270 + from a source node when arc lenghts can be either positive or negative,
1.271 + but the digraph should not contain directed cycles with negative total
1.272 + length.
1.273 + - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms
1.274 + for solving the \e all-pairs \e shortest \e paths \e problem when arc
1.275 + lenghts can be either positive or negative, but the digraph should
1.276 + not contain directed cycles with negative total length.
1.277 + - \ref Suurballe A successive shortest path algorithm for finding
1.278 + arc-disjoint paths between two nodes having minimum total length.
1.279 +*/
1.280 +
1.281 +/**
1.282 +@defgroup spantree Minimum Spanning Tree Algorithms
1.283 +@ingroup algs
1.284 +\brief Algorithms for finding minimum cost spanning trees and arborescences.
1.285 +
1.286 +This group contains the algorithms for finding minimum cost spanning
1.287 +trees and arborescences \ref clrs01algorithms.
1.288 */
1.289
1.290 /**
1.291 @@ -218,40 +356,70 @@
1.292 @ingroup algs
1.293 \brief Algorithms for finding maximum flows.
1.294
1.295 -This group describes the algorithms for finding maximum flows and
1.296 -feasible circulations.
1.297 +This group contains the algorithms for finding maximum flows and
1.298 +feasible circulations \ref clrs01algorithms, \ref amo93networkflows.
1.299
1.300 -The maximum flow problem is to find a flow between a single source and
1.301 -a single target that is maximum. Formally, there is a \f$G=(V,A)\f$
1.302 -directed graph, an \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity
1.303 -function and given \f$s, t \in V\f$ source and target node. The
1.304 -maximum flow is the \f$f_a\f$ solution of the next optimization problem:
1.305 +The \e maximum \e flow \e problem is to find a flow of maximum value between
1.306 +a single source and a single target. Formally, there is a \f$G=(V,A)\f$
1.307 +digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
1.308 +\f$s, t \in V\f$ source and target nodes.
1.309 +A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
1.310 +following optimization problem.
1.311
1.312 -\f[ 0 \le f_a \le c_a \f]
1.313 -\f[ \sum_{v\in\delta^{-}(u)}f_{vu}=\sum_{v\in\delta^{+}(u)}f_{uv}
1.314 -\qquad \forall u \in V \setminus \{s,t\}\f]
1.315 -\f[ \max \sum_{v\in\delta^{+}(s)}f_{uv} - \sum_{v\in\delta^{-}(s)}f_{vu}\f]
1.316 +\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
1.317 +\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
1.318 + \quad \forall u\in V\setminus\{s,t\} \f]
1.319 +\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f]
1.320
1.321 LEMON contains several algorithms for solving maximum flow problems:
1.322 -- \ref lemon::EdmondsKarp "Edmonds-Karp"
1.323 -- \ref lemon::Preflow "Goldberg's Preflow algorithm"
1.324 -- \ref lemon::DinitzSleatorTarjan "Dinitz's blocking flow algorithm with dynamic trees"
1.325 -- \ref lemon::GoldbergTarjan "Preflow algorithm with dynamic trees"
1.326 +- \ref EdmondsKarp Edmonds-Karp algorithm
1.327 + \ref edmondskarp72theoretical.
1.328 +- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm
1.329 + \ref goldberg88newapproach.
1.330 +- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees
1.331 + \ref dinic70algorithm, \ref sleator83dynamic.
1.332 +- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees
1.333 + \ref goldberg88newapproach, \ref sleator83dynamic.
1.334
1.335 -In most cases the \ref lemon::Preflow "Preflow" algorithm provides the
1.336 -fastest method to compute the maximum flow. All impelementations
1.337 -provides functions to query the minimum cut, which is the dual linear
1.338 -programming problem of the maximum flow.
1.339 +In most cases the \ref Preflow algorithm provides the
1.340 +fastest method for computing a maximum flow. All implementations
1.341 +also provide functions to query the minimum cut, which is the dual
1.342 +problem of maximum flow.
1.343 +
1.344 +\ref Circulation is a preflow push-relabel algorithm implemented directly
1.345 +for finding feasible circulations, which is a somewhat different problem,
1.346 +but it is strongly related to maximum flow.
1.347 +For more information, see \ref Circulation.
1.348 */
1.349
1.350 /**
1.351 -@defgroup min_cost_flow Minimum Cost Flow Algorithms
1.352 +@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms
1.353 @ingroup algs
1.354
1.355 \brief Algorithms for finding minimum cost flows and circulations.
1.356
1.357 -This group describes the algorithms for finding minimum cost flows and
1.358 -circulations.
1.359 +This group contains the algorithms for finding minimum cost flows and
1.360 +circulations \ref amo93networkflows. For more information about this
1.361 +problem and its dual solution, see \ref min_cost_flow
1.362 +"Minimum Cost Flow Problem".
1.363 +
1.364 +LEMON contains several algorithms for this problem.
1.365 + - \ref NetworkSimplex Primal Network Simplex algorithm with various
1.366 + pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex.
1.367 + - \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on
1.368 + cost scaling \ref goldberg90approximation, \ref goldberg97efficient,
1.369 + \ref bunnagel98efficient.
1.370 + - \ref CapacityScaling Successive Shortest %Path algorithm with optional
1.371 + capacity scaling \ref edmondskarp72theoretical.
1.372 + - \ref CancelAndTighten The Cancel and Tighten algorithm
1.373 + \ref goldberg89cyclecanceling.
1.374 + - \ref CycleCanceling Cycle-Canceling algorithms
1.375 + \ref klein67primal, \ref goldberg89cyclecanceling.
1.376 +
1.377 +In general NetworkSimplex is the most efficient implementation,
1.378 +but in special cases other algorithms could be faster.
1.379 +For example, if the total supply and/or capacities are rather small,
1.380 +CapacityScaling is usually the fastest algorithm (without effective scaling).
1.381 */
1.382
1.383 /**
1.384 @@ -260,40 +428,117 @@
1.385
1.386 \brief Algorithms for finding minimum cut in graphs.
1.387
1.388 -This group describes the algorithms for finding minimum cut in graphs.
1.389 +This group contains the algorithms for finding minimum cut in graphs.
1.390
1.391 -The minimum cut problem is to find a non-empty and non-complete
1.392 -\f$X\f$ subset of the vertices with minimum overall capacity on
1.393 -outgoing arcs. Formally, there is \f$G=(V,A)\f$ directed graph, an
1.394 -\f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
1.395 +The \e minimum \e cut \e problem is to find a non-empty and non-complete
1.396 +\f$X\f$ subset of the nodes with minimum overall capacity on
1.397 +outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
1.398 +\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
1.399 cut is the \f$X\f$ solution of the next optimization problem:
1.400
1.401 \f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
1.402 -\sum_{uv\in A, u\in X, v\not\in X}c_{uv}\f]
1.403 + \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
1.404
1.405 LEMON contains several algorithms related to minimum cut problems:
1.406
1.407 -- \ref lemon::HaoOrlin "Hao-Orlin algorithm" to calculate minimum cut
1.408 - in directed graphs
1.409 -- \ref lemon::NagamochiIbaraki "Nagamochi-Ibaraki algorithm" to
1.410 - calculate minimum cut in undirected graphs
1.411 -- \ref lemon::GomoryHuTree "Gomory-Hu tree computation" to calculate all
1.412 - pairs minimum cut in undirected graphs
1.413 +- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
1.414 + in directed graphs.
1.415 +- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
1.416 + calculating minimum cut in undirected graphs.
1.417 +- \ref GomoryHu "Gomory-Hu tree computation" for calculating
1.418 + all-pairs minimum cut in undirected graphs.
1.419
1.420 If you want to find minimum cut just between two distinict nodes,
1.421 -please see the \ref max_flow "Maximum Flow page".
1.422 +see the \ref max_flow "maximum flow problem".
1.423 */
1.424
1.425 /**
1.426 -@defgroup graph_prop Connectivity and Other Graph Properties
1.427 +@defgroup min_mean_cycle Minimum Mean Cycle Algorithms
1.428 +@ingroup algs
1.429 +\brief Algorithms for finding minimum mean cycles.
1.430 +
1.431 +This group contains the algorithms for finding minimum mean cycles
1.432 +\ref clrs01algorithms, \ref amo93networkflows.
1.433 +
1.434 +The \e minimum \e mean \e cycle \e problem is to find a directed cycle
1.435 +of minimum mean length (cost) in a digraph.
1.436 +The mean length of a cycle is the average length of its arcs, i.e. the
1.437 +ratio between the total length of the cycle and the number of arcs on it.
1.438 +
1.439 +This problem has an important connection to \e conservative \e length
1.440 +\e functions, too. A length function on the arcs of a digraph is called
1.441 +conservative if and only if there is no directed cycle of negative total
1.442 +length. For an arbitrary length function, the negative of the minimum
1.443 +cycle mean is the smallest \f$\epsilon\f$ value so that increasing the
1.444 +arc lengths uniformly by \f$\epsilon\f$ results in a conservative length
1.445 +function.
1.446 +
1.447 +LEMON contains three algorithms for solving the minimum mean cycle problem:
1.448 +- \ref Karp "Karp"'s original algorithm \ref amo93networkflows,
1.449 + \ref dasdan98minmeancycle.
1.450 +- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved
1.451 + version of Karp's algorithm \ref dasdan98minmeancycle.
1.452 +- \ref Howard "Howard"'s policy iteration algorithm
1.453 + \ref dasdan98minmeancycle.
1.454 +
1.455 +In practice, the Howard algorithm proved to be by far the most efficient
1.456 +one, though the best known theoretical bound on its running time is
1.457 +exponential.
1.458 +Both Karp and HartmannOrlin algorithms run in time O(ne) and use space
1.459 +O(n<sup>2</sup>+e), but the latter one is typically faster due to the
1.460 +applied early termination scheme.
1.461 +*/
1.462 +
1.463 +/**
1.464 +@defgroup matching Matching Algorithms
1.465 +@ingroup algs
1.466 +\brief Algorithms for finding matchings in graphs and bipartite graphs.
1.467 +
1.468 +This group contains the algorithms for calculating
1.469 +matchings in graphs and bipartite graphs. The general matching problem is
1.470 +finding a subset of the edges for which each node has at most one incident
1.471 +edge.
1.472 +
1.473 +There are several different algorithms for calculate matchings in
1.474 +graphs. The matching problems in bipartite graphs are generally
1.475 +easier than in general graphs. The goal of the matching optimization
1.476 +can be finding maximum cardinality, maximum weight or minimum cost
1.477 +matching. The search can be constrained to find perfect or
1.478 +maximum cardinality matching.
1.479 +
1.480 +The matching algorithms implemented in LEMON:
1.481 +- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
1.482 + for calculating maximum cardinality matching in bipartite graphs.
1.483 +- \ref PrBipartiteMatching Push-relabel algorithm
1.484 + for calculating maximum cardinality matching in bipartite graphs.
1.485 +- \ref MaxWeightedBipartiteMatching
1.486 + Successive shortest path algorithm for calculating maximum weighted
1.487 + matching and maximum weighted bipartite matching in bipartite graphs.
1.488 +- \ref MinCostMaxBipartiteMatching
1.489 + Successive shortest path algorithm for calculating minimum cost maximum
1.490 + matching in bipartite graphs.
1.491 +- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
1.492 + maximum cardinality matching in general graphs.
1.493 +- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
1.494 + maximum weighted matching in general graphs.
1.495 +- \ref MaxWeightedPerfectMatching
1.496 + Edmond's blossom shrinking algorithm for calculating maximum weighted
1.497 + perfect matching in general graphs.
1.498 +
1.499 +\image html bipartite_matching.png
1.500 +\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
1.501 +*/
1.502 +
1.503 +/**
1.504 +@defgroup graph_properties Connectivity and Other Graph Properties
1.505 @ingroup algs
1.506 \brief Algorithms for discovering the graph properties
1.507
1.508 -This group describes the algorithms for discovering the graph properties
1.509 +This group contains the algorithms for discovering the graph properties
1.510 like connectivity, bipartiteness, euler property, simplicity etc.
1.511
1.512 -\image html edge_biconnected_components.png
1.513 -\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
1.514 +\image html connected_components.png
1.515 +\image latex connected_components.eps "Connected components" width=\textwidth
1.516 */
1.517
1.518 /**
1.519 @@ -301,7 +546,7 @@
1.520 @ingroup algs
1.521 \brief Algorithms for planarity checking, embedding and drawing
1.522
1.523 -This group describes the algorithms for planarity checking,
1.524 +This group contains the algorithms for planarity checking,
1.525 embedding and drawing.
1.526
1.527 \image html planar.png
1.528 @@ -309,53 +554,12 @@
1.529 */
1.530
1.531 /**
1.532 -@defgroup matching Matching Algorithms
1.533 +@defgroup approx Approximation Algorithms
1.534 @ingroup algs
1.535 -\brief Algorithms for finding matchings in graphs and bipartite graphs.
1.536 +\brief Approximation algorithms.
1.537
1.538 -This group contains algorithm objects and functions to calculate
1.539 -matchings in graphs and bipartite graphs. The general matching problem is
1.540 -finding a subset of the arcs which does not shares common endpoints.
1.541 -
1.542 -There are several different algorithms for calculate matchings in
1.543 -graphs. The matching problems in bipartite graphs are generally
1.544 -easier than in general graphs. The goal of the matching optimization
1.545 -can be the finding maximum cardinality, maximum weight or minimum cost
1.546 -matching. The search can be constrained to find perfect or
1.547 -maximum cardinality matching.
1.548 -
1.549 -LEMON contains the next algorithms:
1.550 -- \ref lemon::MaxBipartiteMatching "MaxBipartiteMatching" Hopcroft-Karp
1.551 - augmenting path algorithm for calculate maximum cardinality matching in
1.552 - bipartite graphs
1.553 -- \ref lemon::PrBipartiteMatching "PrBipartiteMatching" Push-Relabel
1.554 - algorithm for calculate maximum cardinality matching in bipartite graphs
1.555 -- \ref lemon::MaxWeightedBipartiteMatching "MaxWeightedBipartiteMatching"
1.556 - Successive shortest path algorithm for calculate maximum weighted matching
1.557 - and maximum weighted bipartite matching in bipartite graph
1.558 -- \ref lemon::MinCostMaxBipartiteMatching "MinCostMaxBipartiteMatching"
1.559 - Successive shortest path algorithm for calculate minimum cost maximum
1.560 - matching in bipartite graph
1.561 -- \ref lemon::MaxMatching "MaxMatching" Edmond's blossom shrinking algorithm
1.562 - for calculate maximum cardinality matching in general graph
1.563 -- \ref lemon::MaxWeightedMatching "MaxWeightedMatching" Edmond's blossom
1.564 - shrinking algorithm for calculate maximum weighted matching in general
1.565 - graph
1.566 -- \ref lemon::MaxWeightedPerfectMatching "MaxWeightedPerfectMatching"
1.567 - Edmond's blossom shrinking algorithm for calculate maximum weighted
1.568 - perfect matching in general graph
1.569 -
1.570 -\image html bipartite_matching.png
1.571 -\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
1.572 -*/
1.573 -
1.574 -/**
1.575 -@defgroup spantree Minimum Spanning Tree Algorithms
1.576 -@ingroup algs
1.577 -\brief Algorithms for finding a minimum cost spanning tree in a graph.
1.578 -
1.579 -This group describes the algorithms for finding a minimum cost spanning
1.580 -tree in a graph
1.581 +This group contains the approximation and heuristic algorithms
1.582 +implemented in LEMON.
1.583 */
1.584
1.585 /**
1.586 @@ -363,36 +567,30 @@
1.587 @ingroup algs
1.588 \brief Auxiliary algorithms implemented in LEMON.
1.589
1.590 -This group describes some algorithms implemented in LEMON
1.591 +This group contains some algorithms implemented in LEMON
1.592 in order to make it easier to implement complex algorithms.
1.593 */
1.594
1.595 /**
1.596 -@defgroup approx Approximation Algorithms
1.597 -@ingroup algs
1.598 -\brief Approximation algorithms.
1.599 +@defgroup gen_opt_group General Optimization Tools
1.600 +\brief This group contains some general optimization frameworks
1.601 +implemented in LEMON.
1.602
1.603 -This group describes the approximation and heuristic algorithms
1.604 +This group contains some general optimization frameworks
1.605 implemented in LEMON.
1.606 */
1.607
1.608 /**
1.609 -@defgroup gen_opt_group General Optimization Tools
1.610 -\brief This group describes some general optimization frameworks
1.611 -implemented in LEMON.
1.612 +@defgroup lp_group LP and MIP Solvers
1.613 +@ingroup gen_opt_group
1.614 +\brief LP and MIP solver interfaces for LEMON.
1.615
1.616 -This group describes some general optimization frameworks
1.617 -implemented in LEMON.
1.618 -*/
1.619 +This group contains LP and MIP solver interfaces for LEMON.
1.620 +Various LP solvers could be used in the same manner with this
1.621 +high-level interface.
1.622
1.623 -/**
1.624 -@defgroup lp_group Lp and Mip Solvers
1.625 -@ingroup gen_opt_group
1.626 -\brief Lp and Mip solver interfaces for LEMON.
1.627 -
1.628 -This group describes Lp and Mip solver interfaces for LEMON. The
1.629 -various LP solvers could be used in the same manner with this
1.630 -interface.
1.631 +The currently supported solvers are \ref glpk, \ref clp, \ref cbc,
1.632 +\ref cplex, \ref soplex.
1.633 */
1.634
1.635 /**
1.636 @@ -409,7 +607,7 @@
1.637 @ingroup gen_opt_group
1.638 \brief Metaheuristics for LEMON library.
1.639
1.640 -This group describes some metaheuristic optimization tools.
1.641 +This group contains some metaheuristic optimization tools.
1.642 */
1.643
1.644 /**
1.645 @@ -424,7 +622,7 @@
1.646 @ingroup utils
1.647 \brief Simple basic graph utilities.
1.648
1.649 -This group describes some simple basic graph utilities.
1.650 +This group contains some simple basic graph utilities.
1.651 */
1.652
1.653 /**
1.654 @@ -432,7 +630,7 @@
1.655 @ingroup utils
1.656 \brief Tools for development, debugging and testing.
1.657
1.658 -This group describes several useful tools for development,
1.659 +This group contains several useful tools for development,
1.660 debugging and testing.
1.661 */
1.662
1.663 @@ -441,7 +639,7 @@
1.664 @ingroup misc
1.665 \brief Simple tools for measuring the performance of algorithms.
1.666
1.667 -This group describes simple tools for measuring the performance
1.668 +This group contains simple tools for measuring the performance
1.669 of algorithms.
1.670 */
1.671
1.672 @@ -450,25 +648,25 @@
1.673 @ingroup utils
1.674 \brief Exceptions defined in LEMON.
1.675
1.676 -This group describes the exceptions defined in LEMON.
1.677 +This group contains the exceptions defined in LEMON.
1.678 */
1.679
1.680 /**
1.681 @defgroup io_group Input-Output
1.682 \brief Graph Input-Output methods
1.683
1.684 -This group describes the tools for importing and exporting graphs
1.685 +This group contains the tools for importing and exporting graphs
1.686 and graph related data. Now it supports the \ref lgf-format
1.687 "LEMON Graph Format", the \c DIMACS format and the encapsulated
1.688 postscript (EPS) format.
1.689 */
1.690
1.691 /**
1.692 -@defgroup lemon_io LEMON Input-Output
1.693 +@defgroup lemon_io LEMON Graph Format
1.694 @ingroup io_group
1.695 \brief Reading and writing LEMON Graph Format.
1.696
1.697 -This group describes methods for reading and writing
1.698 +This group contains methods for reading and writing
1.699 \ref lgf-format "LEMON Graph Format".
1.700 */
1.701
1.702 @@ -477,15 +675,31 @@
1.703 @ingroup io_group
1.704 \brief General \c EPS drawer and graph exporter
1.705
1.706 -This group describes general \c EPS drawing methods and special
1.707 +This group contains general \c EPS drawing methods and special
1.708 graph exporting tools.
1.709 */
1.710
1.711 /**
1.712 +@defgroup dimacs_group DIMACS Format
1.713 +@ingroup io_group
1.714 +\brief Read and write files in DIMACS format
1.715 +
1.716 +Tools to read a digraph from or write it to a file in DIMACS format data.
1.717 +*/
1.718 +
1.719 +/**
1.720 +@defgroup nauty_group NAUTY Format
1.721 +@ingroup io_group
1.722 +\brief Read \e Nauty format
1.723 +
1.724 +Tool to read graphs from \e Nauty format data.
1.725 +*/
1.726 +
1.727 +/**
1.728 @defgroup concept Concepts
1.729 \brief Skeleton classes and concept checking classes
1.730
1.731 -This group describes the data/algorithm skeletons and concept checking
1.732 +This group contains the data/algorithm skeletons and concept checking
1.733 classes implemented in LEMON.
1.734
1.735 The purpose of the classes in this group is fourfold.
1.736 @@ -515,8 +729,8 @@
1.737 @ingroup concept
1.738 \brief Skeleton and concept checking classes for graph structures
1.739
1.740 -This group describes the skeletons and concept checking classes of LEMON's
1.741 -graph structures and helper classes used to implement these.
1.742 +This group contains the skeletons and concept checking classes of
1.743 +graph structures.
1.744 */
1.745
1.746 /**
1.747 @@ -524,23 +738,11 @@
1.748 @ingroup concept
1.749 \brief Skeleton and concept checking classes for maps
1.750
1.751 -This group describes the skeletons and concept checking classes of maps.
1.752 +This group contains the skeletons and concept checking classes of maps.
1.753 */
1.754
1.755 /**
1.756 -\anchor demoprograms
1.757 -
1.758 -@defgroup demos Demo programs
1.759 -
1.760 -Some demo programs are listed here. Their full source codes can be found in
1.761 -the \c demo subdirectory of the source tree.
1.762 -
1.763 -It order to compile them, use <tt>--enable-demo</tt> configure option when
1.764 -build the library.
1.765 -*/
1.766 -
1.767 -/**
1.768 -@defgroup tools Standalone utility applications
1.769 +@defgroup tools Standalone Utility Applications
1.770
1.771 Some utility applications are listed here.
1.772
1.773 @@ -548,3 +750,16 @@
1.774 them, as well.
1.775 */
1.776
1.777 +/**
1.778 +\anchor demoprograms
1.779 +
1.780 +@defgroup demos Demo Programs
1.781 +
1.782 +Some demo programs are listed here. Their full source codes can be found in
1.783 +the \c demo subdirectory of the source tree.
1.784 +
1.785 +In order to compile them, use the <tt>make demo</tt> or the
1.786 +<tt>make check</tt> commands.
1.787 +*/
1.788 +
1.789 +}