lemon/euler.h
changeset 784 1a7fe3bef514
parent 592 2ebfdb89ec66
child 877 141f9c0db4a3
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/euler.h	Thu Nov 05 15:50:01 2009 +0100
     1.3 @@ -0,0 +1,287 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2009
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_EULER_H
    1.23 +#define LEMON_EULER_H
    1.24 +
    1.25 +#include<lemon/core.h>
    1.26 +#include<lemon/adaptors.h>
    1.27 +#include<lemon/connectivity.h>
    1.28 +#include <list>
    1.29 +
    1.30 +/// \ingroup graph_properties
    1.31 +/// \file
    1.32 +/// \brief Euler tour iterators and a function for checking the \e Eulerian 
    1.33 +/// property.
    1.34 +///
    1.35 +///This file provides Euler tour iterators and a function to check
    1.36 +///if a (di)graph is \e Eulerian.
    1.37 +
    1.38 +namespace lemon {
    1.39 +
    1.40 +  ///Euler tour iterator for digraphs.
    1.41 +
    1.42 +  /// \ingroup graph_prop
    1.43 +  ///This iterator provides an Euler tour (Eulerian circuit) of a \e directed
    1.44 +  ///graph (if there exists) and it converts to the \c Arc type of the digraph.
    1.45 +  ///
    1.46 +  ///For example, if the given digraph has an Euler tour (i.e it has only one
    1.47 +  ///non-trivial component and the in-degree is equal to the out-degree 
    1.48 +  ///for all nodes), then the following code will put the arcs of \c g
    1.49 +  ///to the vector \c et according to an Euler tour of \c g.
    1.50 +  ///\code
    1.51 +  ///  std::vector<ListDigraph::Arc> et;
    1.52 +  ///  for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e)
    1.53 +  ///    et.push_back(e);
    1.54 +  ///\endcode
    1.55 +  ///If \c g has no Euler tour, then the resulted walk will not be closed
    1.56 +  ///or not contain all arcs.
    1.57 +  ///\sa EulerIt
    1.58 +  template<typename GR>
    1.59 +  class DiEulerIt
    1.60 +  {
    1.61 +    typedef typename GR::Node Node;
    1.62 +    typedef typename GR::NodeIt NodeIt;
    1.63 +    typedef typename GR::Arc Arc;
    1.64 +    typedef typename GR::ArcIt ArcIt;
    1.65 +    typedef typename GR::OutArcIt OutArcIt;
    1.66 +    typedef typename GR::InArcIt InArcIt;
    1.67 +
    1.68 +    const GR &g;
    1.69 +    typename GR::template NodeMap<OutArcIt> narc;
    1.70 +    std::list<Arc> euler;
    1.71 +
    1.72 +  public:
    1.73 +
    1.74 +    ///Constructor
    1.75 +
    1.76 +    ///Constructor.
    1.77 +    ///\param gr A digraph.
    1.78 +    ///\param start The starting point of the tour. If it is not given,
    1.79 +    ///the tour will start from the first node that has an outgoing arc.
    1.80 +    DiEulerIt(const GR &gr, typename GR::Node start = INVALID)
    1.81 +      : g(gr), narc(g)
    1.82 +    {
    1.83 +      if (start==INVALID) {
    1.84 +        NodeIt n(g);
    1.85 +        while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n;
    1.86 +        start=n;
    1.87 +      }
    1.88 +      if (start!=INVALID) {
    1.89 +        for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n);
    1.90 +        while (narc[start]!=INVALID) {
    1.91 +          euler.push_back(narc[start]);
    1.92 +          Node next=g.target(narc[start]);
    1.93 +          ++narc[start];
    1.94 +          start=next;
    1.95 +        }
    1.96 +      }
    1.97 +    }
    1.98 +
    1.99 +    ///Arc conversion
   1.100 +    operator Arc() { return euler.empty()?INVALID:euler.front(); }
   1.101 +    ///Compare with \c INVALID
   1.102 +    bool operator==(Invalid) { return euler.empty(); }
   1.103 +    ///Compare with \c INVALID
   1.104 +    bool operator!=(Invalid) { return !euler.empty(); }
   1.105 +
   1.106 +    ///Next arc of the tour
   1.107 +
   1.108 +    ///Next arc of the tour
   1.109 +    ///
   1.110 +    DiEulerIt &operator++() {
   1.111 +      Node s=g.target(euler.front());
   1.112 +      euler.pop_front();
   1.113 +      typename std::list<Arc>::iterator next=euler.begin();
   1.114 +      while(narc[s]!=INVALID) {
   1.115 +        euler.insert(next,narc[s]);
   1.116 +        Node n=g.target(narc[s]);
   1.117 +        ++narc[s];
   1.118 +        s=n;
   1.119 +      }
   1.120 +      return *this;
   1.121 +    }
   1.122 +    ///Postfix incrementation
   1.123 +
   1.124 +    /// Postfix incrementation.
   1.125 +    ///
   1.126 +    ///\warning This incrementation
   1.127 +    ///returns an \c Arc, not a \ref DiEulerIt, as one may
   1.128 +    ///expect.
   1.129 +    Arc operator++(int)
   1.130 +    {
   1.131 +      Arc e=*this;
   1.132 +      ++(*this);
   1.133 +      return e;
   1.134 +    }
   1.135 +  };
   1.136 +
   1.137 +  ///Euler tour iterator for graphs.
   1.138 +
   1.139 +  /// \ingroup graph_properties
   1.140 +  ///This iterator provides an Euler tour (Eulerian circuit) of an
   1.141 +  ///\e undirected graph (if there exists) and it converts to the \c Arc
   1.142 +  ///and \c Edge types of the graph.
   1.143 +  ///
   1.144 +  ///For example, if the given graph has an Euler tour (i.e it has only one 
   1.145 +  ///non-trivial component and the degree of each node is even),
   1.146 +  ///the following code will print the arc IDs according to an
   1.147 +  ///Euler tour of \c g.
   1.148 +  ///\code
   1.149 +  ///  for(EulerIt<ListGraph> e(g); e!=INVALID; ++e) {
   1.150 +  ///    std::cout << g.id(Edge(e)) << std::eol;
   1.151 +  ///  }
   1.152 +  ///\endcode
   1.153 +  ///Although this iterator is for undirected graphs, it still returns 
   1.154 +  ///arcs in order to indicate the direction of the tour.
   1.155 +  ///(But arcs convert to edges, of course.)
   1.156 +  ///
   1.157 +  ///If \c g has no Euler tour, then the resulted walk will not be closed
   1.158 +  ///or not contain all edges.
   1.159 +  template<typename GR>
   1.160 +  class EulerIt
   1.161 +  {
   1.162 +    typedef typename GR::Node Node;
   1.163 +    typedef typename GR::NodeIt NodeIt;
   1.164 +    typedef typename GR::Arc Arc;
   1.165 +    typedef typename GR::Edge Edge;
   1.166 +    typedef typename GR::ArcIt ArcIt;
   1.167 +    typedef typename GR::OutArcIt OutArcIt;
   1.168 +    typedef typename GR::InArcIt InArcIt;
   1.169 +
   1.170 +    const GR &g;
   1.171 +    typename GR::template NodeMap<OutArcIt> narc;
   1.172 +    typename GR::template EdgeMap<bool> visited;
   1.173 +    std::list<Arc> euler;
   1.174 +
   1.175 +  public:
   1.176 +
   1.177 +    ///Constructor
   1.178 +
   1.179 +    ///Constructor.
   1.180 +    ///\param gr A graph.
   1.181 +    ///\param start The starting point of the tour. If it is not given,
   1.182 +    ///the tour will start from the first node that has an incident edge.
   1.183 +    EulerIt(const GR &gr, typename GR::Node start = INVALID)
   1.184 +      : g(gr), narc(g), visited(g, false)
   1.185 +    {
   1.186 +      if (start==INVALID) {
   1.187 +        NodeIt n(g);
   1.188 +        while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n;
   1.189 +        start=n;
   1.190 +      }
   1.191 +      if (start!=INVALID) {
   1.192 +        for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n);
   1.193 +        while(narc[start]!=INVALID) {
   1.194 +          euler.push_back(narc[start]);
   1.195 +          visited[narc[start]]=true;
   1.196 +          Node next=g.target(narc[start]);
   1.197 +          ++narc[start];
   1.198 +          start=next;
   1.199 +          while(narc[start]!=INVALID && visited[narc[start]]) ++narc[start];
   1.200 +        }
   1.201 +      }
   1.202 +    }
   1.203 +
   1.204 +    ///Arc conversion
   1.205 +    operator Arc() const { return euler.empty()?INVALID:euler.front(); }
   1.206 +    ///Edge conversion
   1.207 +    operator Edge() const { return euler.empty()?INVALID:euler.front(); }
   1.208 +    ///Compare with \c INVALID
   1.209 +    bool operator==(Invalid) const { return euler.empty(); }
   1.210 +    ///Compare with \c INVALID
   1.211 +    bool operator!=(Invalid) const { return !euler.empty(); }
   1.212 +
   1.213 +    ///Next arc of the tour
   1.214 +
   1.215 +    ///Next arc of the tour
   1.216 +    ///
   1.217 +    EulerIt &operator++() {
   1.218 +      Node s=g.target(euler.front());
   1.219 +      euler.pop_front();
   1.220 +      typename std::list<Arc>::iterator next=euler.begin();
   1.221 +      while(narc[s]!=INVALID) {
   1.222 +        while(narc[s]!=INVALID && visited[narc[s]]) ++narc[s];
   1.223 +        if(narc[s]==INVALID) break;
   1.224 +        else {
   1.225 +          euler.insert(next,narc[s]);
   1.226 +          visited[narc[s]]=true;
   1.227 +          Node n=g.target(narc[s]);
   1.228 +          ++narc[s];
   1.229 +          s=n;
   1.230 +        }
   1.231 +      }
   1.232 +      return *this;
   1.233 +    }
   1.234 +
   1.235 +    ///Postfix incrementation
   1.236 +
   1.237 +    /// Postfix incrementation.
   1.238 +    ///
   1.239 +    ///\warning This incrementation returns an \c Arc (which converts to 
   1.240 +    ///an \c Edge), not an \ref EulerIt, as one may expect.
   1.241 +    Arc operator++(int)
   1.242 +    {
   1.243 +      Arc e=*this;
   1.244 +      ++(*this);
   1.245 +      return e;
   1.246 +    }
   1.247 +  };
   1.248 +
   1.249 +
   1.250 +  ///Check if the given graph is Eulerian
   1.251 +
   1.252 +  /// \ingroup graph_properties
   1.253 +  ///This function checks if the given graph is Eulerian.
   1.254 +  ///It works for both directed and undirected graphs.
   1.255 +  ///
   1.256 +  ///By definition, a digraph is called \e Eulerian if
   1.257 +  ///and only if it is connected and the number of incoming and outgoing
   1.258 +  ///arcs are the same for each node.
   1.259 +  ///Similarly, an undirected graph is called \e Eulerian if
   1.260 +  ///and only if it is connected and the number of incident edges is even
   1.261 +  ///for each node.
   1.262 +  ///
   1.263 +  ///\note There are (di)graphs that are not Eulerian, but still have an
   1.264 +  /// Euler tour, since they may contain isolated nodes.
   1.265 +  ///
   1.266 +  ///\sa DiEulerIt, EulerIt
   1.267 +  template<typename GR>
   1.268 +#ifdef DOXYGEN
   1.269 +  bool
   1.270 +#else
   1.271 +  typename enable_if<UndirectedTagIndicator<GR>,bool>::type
   1.272 +  eulerian(const GR &g)
   1.273 +  {
   1.274 +    for(typename GR::NodeIt n(g);n!=INVALID;++n)
   1.275 +      if(countIncEdges(g,n)%2) return false;
   1.276 +    return connected(g);
   1.277 +  }
   1.278 +  template<class GR>
   1.279 +  typename disable_if<UndirectedTagIndicator<GR>,bool>::type
   1.280 +#endif
   1.281 +  eulerian(const GR &g)
   1.282 +  {
   1.283 +    for(typename GR::NodeIt n(g);n!=INVALID;++n)
   1.284 +      if(countInArcs(g,n)!=countOutArcs(g,n)) return false;
   1.285 +    return connected(undirector(g));
   1.286 +  }
   1.287 +
   1.288 +}
   1.289 +
   1.290 +#endif