test/euler_test.cc
changeset 784 1a7fe3bef514
parent 531 ba7bafdc458d
child 877 141f9c0db4a3
child 997 761fe0846f49
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/test/euler_test.cc	Thu Nov 05 15:50:01 2009 +0100
     1.3 @@ -0,0 +1,223 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2009
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#include <lemon/euler.h>
    1.23 +#include <lemon/list_graph.h>
    1.24 +#include <lemon/adaptors.h>
    1.25 +#include "test_tools.h"
    1.26 +
    1.27 +using namespace lemon;
    1.28 +
    1.29 +template <typename Digraph>
    1.30 +void checkDiEulerIt(const Digraph& g,
    1.31 +                    const typename Digraph::Node& start = INVALID)
    1.32 +{
    1.33 +  typename Digraph::template ArcMap<int> visitationNumber(g, 0);
    1.34 +
    1.35 +  DiEulerIt<Digraph> e(g, start);
    1.36 +  if (e == INVALID) return;
    1.37 +  typename Digraph::Node firstNode = g.source(e);
    1.38 +  typename Digraph::Node lastNode = g.target(e);
    1.39 +  if (start != INVALID) {
    1.40 +    check(firstNode == start, "checkDiEulerIt: Wrong first node");
    1.41 +  }
    1.42 +
    1.43 +  for (; e != INVALID; ++e) {
    1.44 +    if (e != INVALID) lastNode = g.target(e);
    1.45 +    ++visitationNumber[e];
    1.46 +  }
    1.47 +
    1.48 +  check(firstNode == lastNode,
    1.49 +      "checkDiEulerIt: First and last nodes are not the same");
    1.50 +
    1.51 +  for (typename Digraph::ArcIt a(g); a != INVALID; ++a)
    1.52 +  {
    1.53 +    check(visitationNumber[a] == 1,
    1.54 +        "checkDiEulerIt: Not visited or multiple times visited arc found");
    1.55 +  }
    1.56 +}
    1.57 +
    1.58 +template <typename Graph>
    1.59 +void checkEulerIt(const Graph& g,
    1.60 +                  const typename Graph::Node& start = INVALID)
    1.61 +{
    1.62 +  typename Graph::template EdgeMap<int> visitationNumber(g, 0);
    1.63 +
    1.64 +  EulerIt<Graph> e(g, start);
    1.65 +  if (e == INVALID) return;
    1.66 +  typename Graph::Node firstNode = g.source(typename Graph::Arc(e));
    1.67 +  typename Graph::Node lastNode = g.target(typename Graph::Arc(e));
    1.68 +  if (start != INVALID) {
    1.69 +    check(firstNode == start, "checkEulerIt: Wrong first node");
    1.70 +  }
    1.71 +
    1.72 +  for (; e != INVALID; ++e) {
    1.73 +    if (e != INVALID) lastNode = g.target(typename Graph::Arc(e));
    1.74 +    ++visitationNumber[e];
    1.75 +  }
    1.76 +
    1.77 +  check(firstNode == lastNode,
    1.78 +      "checkEulerIt: First and last nodes are not the same");
    1.79 +
    1.80 +  for (typename Graph::EdgeIt e(g); e != INVALID; ++e)
    1.81 +  {
    1.82 +    check(visitationNumber[e] == 1,
    1.83 +        "checkEulerIt: Not visited or multiple times visited edge found");
    1.84 +  }
    1.85 +}
    1.86 +
    1.87 +int main()
    1.88 +{
    1.89 +  typedef ListDigraph Digraph;
    1.90 +  typedef Undirector<Digraph> Graph;
    1.91 +  
    1.92 +  {
    1.93 +    Digraph d;
    1.94 +    Graph g(d);
    1.95 +    
    1.96 +    checkDiEulerIt(d);
    1.97 +    checkDiEulerIt(g);
    1.98 +    checkEulerIt(g);
    1.99 +
   1.100 +    check(eulerian(d), "This graph is Eulerian");
   1.101 +    check(eulerian(g), "This graph is Eulerian");
   1.102 +  }
   1.103 +  {
   1.104 +    Digraph d;
   1.105 +    Graph g(d);
   1.106 +    Digraph::Node n = d.addNode();
   1.107 +
   1.108 +    checkDiEulerIt(d);
   1.109 +    checkDiEulerIt(g);
   1.110 +    checkEulerIt(g);
   1.111 +
   1.112 +    check(eulerian(d), "This graph is Eulerian");
   1.113 +    check(eulerian(g), "This graph is Eulerian");
   1.114 +  }
   1.115 +  {
   1.116 +    Digraph d;
   1.117 +    Graph g(d);
   1.118 +    Digraph::Node n = d.addNode();
   1.119 +    d.addArc(n, n);
   1.120 +
   1.121 +    checkDiEulerIt(d);
   1.122 +    checkDiEulerIt(g);
   1.123 +    checkEulerIt(g);
   1.124 +
   1.125 +    check(eulerian(d), "This graph is Eulerian");
   1.126 +    check(eulerian(g), "This graph is Eulerian");
   1.127 +  }
   1.128 +  {
   1.129 +    Digraph d;
   1.130 +    Graph g(d);
   1.131 +    Digraph::Node n1 = d.addNode();
   1.132 +    Digraph::Node n2 = d.addNode();
   1.133 +    Digraph::Node n3 = d.addNode();
   1.134 +    
   1.135 +    d.addArc(n1, n2);
   1.136 +    d.addArc(n2, n1);
   1.137 +    d.addArc(n2, n3);
   1.138 +    d.addArc(n3, n2);
   1.139 +
   1.140 +    checkDiEulerIt(d);
   1.141 +    checkDiEulerIt(d, n2);
   1.142 +    checkDiEulerIt(g);
   1.143 +    checkDiEulerIt(g, n2);
   1.144 +    checkEulerIt(g);
   1.145 +    checkEulerIt(g, n2);
   1.146 +
   1.147 +    check(eulerian(d), "This graph is Eulerian");
   1.148 +    check(eulerian(g), "This graph is Eulerian");
   1.149 +  }
   1.150 +  {
   1.151 +    Digraph d;
   1.152 +    Graph g(d);
   1.153 +    Digraph::Node n1 = d.addNode();
   1.154 +    Digraph::Node n2 = d.addNode();
   1.155 +    Digraph::Node n3 = d.addNode();
   1.156 +    Digraph::Node n4 = d.addNode();
   1.157 +    Digraph::Node n5 = d.addNode();
   1.158 +    Digraph::Node n6 = d.addNode();
   1.159 +    
   1.160 +    d.addArc(n1, n2);
   1.161 +    d.addArc(n2, n4);
   1.162 +    d.addArc(n1, n3);
   1.163 +    d.addArc(n3, n4);
   1.164 +    d.addArc(n4, n1);
   1.165 +    d.addArc(n3, n5);
   1.166 +    d.addArc(n5, n2);
   1.167 +    d.addArc(n4, n6);
   1.168 +    d.addArc(n2, n6);
   1.169 +    d.addArc(n6, n1);
   1.170 +    d.addArc(n6, n3);
   1.171 +
   1.172 +    checkDiEulerIt(d);
   1.173 +    checkDiEulerIt(d, n1);
   1.174 +    checkDiEulerIt(d, n5);
   1.175 +
   1.176 +    checkDiEulerIt(g);
   1.177 +    checkDiEulerIt(g, n1);
   1.178 +    checkDiEulerIt(g, n5);
   1.179 +    checkEulerIt(g);
   1.180 +    checkEulerIt(g, n1);
   1.181 +    checkEulerIt(g, n5);
   1.182 +
   1.183 +    check(eulerian(d), "This graph is Eulerian");
   1.184 +    check(eulerian(g), "This graph is Eulerian");
   1.185 +  }
   1.186 +  {
   1.187 +    Digraph d;
   1.188 +    Graph g(d);
   1.189 +    Digraph::Node n0 = d.addNode();
   1.190 +    Digraph::Node n1 = d.addNode();
   1.191 +    Digraph::Node n2 = d.addNode();
   1.192 +    Digraph::Node n3 = d.addNode();
   1.193 +    Digraph::Node n4 = d.addNode();
   1.194 +    Digraph::Node n5 = d.addNode();
   1.195 +    
   1.196 +    d.addArc(n1, n2);
   1.197 +    d.addArc(n2, n3);
   1.198 +    d.addArc(n3, n1);
   1.199 +
   1.200 +    checkDiEulerIt(d);
   1.201 +    checkDiEulerIt(d, n2);
   1.202 +
   1.203 +    checkDiEulerIt(g);
   1.204 +    checkDiEulerIt(g, n2);
   1.205 +    checkEulerIt(g);
   1.206 +    checkEulerIt(g, n2);
   1.207 +
   1.208 +    check(!eulerian(d), "This graph is not Eulerian");
   1.209 +    check(!eulerian(g), "This graph is not Eulerian");
   1.210 +  }
   1.211 +  {
   1.212 +    Digraph d;
   1.213 +    Graph g(d);
   1.214 +    Digraph::Node n1 = d.addNode();
   1.215 +    Digraph::Node n2 = d.addNode();
   1.216 +    Digraph::Node n3 = d.addNode();
   1.217 +    
   1.218 +    d.addArc(n1, n2);
   1.219 +    d.addArc(n2, n3);
   1.220 +
   1.221 +    check(!eulerian(d), "This graph is not Eulerian");
   1.222 +    check(!eulerian(g), "This graph is not Eulerian");
   1.223 +  }
   1.224 +
   1.225 +  return 0;
   1.226 +}