test/min_cost_flow_test.cc
changeset 784 1a7fe3bef514
parent 664 cc61d09f053b
child 818 bc75ee2ad082
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/test/min_cost_flow_test.cc	Thu Nov 05 15:50:01 2009 +0100
     1.3 @@ -0,0 +1,450 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2009
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#include <iostream>
    1.23 +#include <fstream>
    1.24 +#include <limits>
    1.25 +
    1.26 +#include <lemon/list_graph.h>
    1.27 +#include <lemon/lgf_reader.h>
    1.28 +
    1.29 +#include <lemon/network_simplex.h>
    1.30 +
    1.31 +#include <lemon/concepts/digraph.h>
    1.32 +#include <lemon/concept_check.h>
    1.33 +
    1.34 +#include "test_tools.h"
    1.35 +
    1.36 +using namespace lemon;
    1.37 +
    1.38 +char test_lgf[] =
    1.39 +  "@nodes\n"
    1.40 +  "label  sup1 sup2 sup3 sup4 sup5 sup6\n"
    1.41 +  "    1    20   27    0   30   20   30\n"
    1.42 +  "    2    -4    0    0    0   -8   -3\n"
    1.43 +  "    3     0    0    0    0    0    0\n"
    1.44 +  "    4     0    0    0    0    0    0\n"
    1.45 +  "    5     9    0    0    0    6   11\n"
    1.46 +  "    6    -6    0    0    0   -5   -6\n"
    1.47 +  "    7     0    0    0    0    0    0\n"
    1.48 +  "    8     0    0    0    0    0    3\n"
    1.49 +  "    9     3    0    0    0    0    0\n"
    1.50 +  "   10    -2    0    0    0   -7   -2\n"
    1.51 +  "   11     0    0    0    0  -10    0\n"
    1.52 +  "   12   -20  -27    0  -30  -30  -20\n"
    1.53 +  "\n"                
    1.54 +  "@arcs\n"
    1.55 +  "       cost  cap low1 low2 low3\n"
    1.56 +  " 1  2    70   11    0    8    8\n"
    1.57 +  " 1  3   150    3    0    1    0\n"
    1.58 +  " 1  4    80   15    0    2    2\n"
    1.59 +  " 2  8    80   12    0    0    0\n"
    1.60 +  " 3  5   140    5    0    3    1\n"
    1.61 +  " 4  6    60   10    0    1    0\n"
    1.62 +  " 4  7    80    2    0    0    0\n"
    1.63 +  " 4  8   110    3    0    0    0\n"
    1.64 +  " 5  7    60   14    0    0    0\n"
    1.65 +  " 5 11   120   12    0    0    0\n"
    1.66 +  " 6  3     0    3    0    0    0\n"
    1.67 +  " 6  9   140    4    0    0    0\n"
    1.68 +  " 6 10    90    8    0    0    0\n"
    1.69 +  " 7  1    30    5    0    0   -5\n"
    1.70 +  " 8 12    60   16    0    4    3\n"
    1.71 +  " 9 12    50    6    0    0    0\n"
    1.72 +  "10 12    70   13    0    5    2\n"
    1.73 +  "10  2   100    7    0    0    0\n"
    1.74 +  "10  7    60   10    0    0   -3\n"
    1.75 +  "11 10    20   14    0    6  -20\n"
    1.76 +  "12 11    30   10    0    0  -10\n"
    1.77 +  "\n"
    1.78 +  "@attributes\n"
    1.79 +  "source 1\n"
    1.80 +  "target 12\n";
    1.81 +
    1.82 +
    1.83 +enum SupplyType {
    1.84 +  EQ,
    1.85 +  GEQ,
    1.86 +  LEQ
    1.87 +};
    1.88 +
    1.89 +// Check the interface of an MCF algorithm
    1.90 +template <typename GR, typename Value, typename Cost>
    1.91 +class McfClassConcept
    1.92 +{
    1.93 +public:
    1.94 +
    1.95 +  template <typename MCF>
    1.96 +  struct Constraints {
    1.97 +    void constraints() {
    1.98 +      checkConcept<concepts::Digraph, GR>();
    1.99 +      
   1.100 +      const Constraints& me = *this;
   1.101 +
   1.102 +      MCF mcf(me.g);
   1.103 +      const MCF& const_mcf = mcf;
   1.104 +
   1.105 +      b = mcf.reset()
   1.106 +             .lowerMap(me.lower)
   1.107 +             .upperMap(me.upper)
   1.108 +             .costMap(me.cost)
   1.109 +             .supplyMap(me.sup)
   1.110 +             .stSupply(me.n, me.n, me.k)
   1.111 +             .run();
   1.112 +
   1.113 +      c = const_mcf.totalCost();
   1.114 +      x = const_mcf.template totalCost<double>();
   1.115 +      v = const_mcf.flow(me.a);
   1.116 +      c = const_mcf.potential(me.n);
   1.117 +      const_mcf.flowMap(fm);
   1.118 +      const_mcf.potentialMap(pm);
   1.119 +    }
   1.120 +
   1.121 +    typedef typename GR::Node Node;
   1.122 +    typedef typename GR::Arc Arc;
   1.123 +    typedef concepts::ReadMap<Node, Value> NM;
   1.124 +    typedef concepts::ReadMap<Arc, Value> VAM;
   1.125 +    typedef concepts::ReadMap<Arc, Cost> CAM;
   1.126 +    typedef concepts::WriteMap<Arc, Value> FlowMap;
   1.127 +    typedef concepts::WriteMap<Node, Cost> PotMap;
   1.128 +  
   1.129 +    GR g;
   1.130 +    VAM lower;
   1.131 +    VAM upper;
   1.132 +    CAM cost;
   1.133 +    NM sup;
   1.134 +    Node n;
   1.135 +    Arc a;
   1.136 +    Value k;
   1.137 +
   1.138 +    FlowMap fm;
   1.139 +    PotMap pm;
   1.140 +    bool b;
   1.141 +    double x;
   1.142 +    typename MCF::Value v;
   1.143 +    typename MCF::Cost c;
   1.144 +  };
   1.145 +
   1.146 +};
   1.147 +
   1.148 +
   1.149 +// Check the feasibility of the given flow (primal soluiton)
   1.150 +template < typename GR, typename LM, typename UM,
   1.151 +           typename SM, typename FM >
   1.152 +bool checkFlow( const GR& gr, const LM& lower, const UM& upper,
   1.153 +                const SM& supply, const FM& flow,
   1.154 +                SupplyType type = EQ )
   1.155 +{
   1.156 +  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   1.157 +
   1.158 +  for (ArcIt e(gr); e != INVALID; ++e) {
   1.159 +    if (flow[e] < lower[e] || flow[e] > upper[e]) return false;
   1.160 +  }
   1.161 +
   1.162 +  for (NodeIt n(gr); n != INVALID; ++n) {
   1.163 +    typename SM::Value sum = 0;
   1.164 +    for (OutArcIt e(gr, n); e != INVALID; ++e)
   1.165 +      sum += flow[e];
   1.166 +    for (InArcIt e(gr, n); e != INVALID; ++e)
   1.167 +      sum -= flow[e];
   1.168 +    bool b = (type ==  EQ && sum == supply[n]) ||
   1.169 +             (type == GEQ && sum >= supply[n]) ||
   1.170 +             (type == LEQ && sum <= supply[n]);
   1.171 +    if (!b) return false;
   1.172 +  }
   1.173 +
   1.174 +  return true;
   1.175 +}
   1.176 +
   1.177 +// Check the feasibility of the given potentials (dual soluiton)
   1.178 +// using the "Complementary Slackness" optimality condition
   1.179 +template < typename GR, typename LM, typename UM,
   1.180 +           typename CM, typename SM, typename FM, typename PM >
   1.181 +bool checkPotential( const GR& gr, const LM& lower, const UM& upper,
   1.182 +                     const CM& cost, const SM& supply, const FM& flow, 
   1.183 +                     const PM& pi, SupplyType type )
   1.184 +{
   1.185 +  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   1.186 +
   1.187 +  bool opt = true;
   1.188 +  for (ArcIt e(gr); opt && e != INVALID; ++e) {
   1.189 +    typename CM::Value red_cost =
   1.190 +      cost[e] + pi[gr.source(e)] - pi[gr.target(e)];
   1.191 +    opt = red_cost == 0 ||
   1.192 +          (red_cost > 0 && flow[e] == lower[e]) ||
   1.193 +          (red_cost < 0 && flow[e] == upper[e]);
   1.194 +  }
   1.195 +  
   1.196 +  for (NodeIt n(gr); opt && n != INVALID; ++n) {
   1.197 +    typename SM::Value sum = 0;
   1.198 +    for (OutArcIt e(gr, n); e != INVALID; ++e)
   1.199 +      sum += flow[e];
   1.200 +    for (InArcIt e(gr, n); e != INVALID; ++e)
   1.201 +      sum -= flow[e];
   1.202 +    if (type != LEQ) {
   1.203 +      opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0);
   1.204 +    } else {
   1.205 +      opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0);
   1.206 +    }
   1.207 +  }
   1.208 +  
   1.209 +  return opt;
   1.210 +}
   1.211 +
   1.212 +// Check whether the dual cost is equal to the primal cost
   1.213 +template < typename GR, typename LM, typename UM,
   1.214 +           typename CM, typename SM, typename PM >
   1.215 +bool checkDualCost( const GR& gr, const LM& lower, const UM& upper,
   1.216 +                    const CM& cost, const SM& supply, const PM& pi,
   1.217 +                    typename CM::Value total )
   1.218 +{
   1.219 +  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   1.220 +
   1.221 +  typename CM::Value dual_cost = 0;
   1.222 +  SM red_supply(gr);
   1.223 +  for (NodeIt n(gr); n != INVALID; ++n) {
   1.224 +    red_supply[n] = supply[n];
   1.225 +  }
   1.226 +  for (ArcIt a(gr); a != INVALID; ++a) {
   1.227 +    if (lower[a] != 0) {
   1.228 +      dual_cost += lower[a] * cost[a];
   1.229 +      red_supply[gr.source(a)] -= lower[a];
   1.230 +      red_supply[gr.target(a)] += lower[a];
   1.231 +    }
   1.232 +  }
   1.233 +  
   1.234 +  for (NodeIt n(gr); n != INVALID; ++n) {
   1.235 +    dual_cost -= red_supply[n] * pi[n];
   1.236 +  }
   1.237 +  for (ArcIt a(gr); a != INVALID; ++a) {
   1.238 +    typename CM::Value red_cost =
   1.239 +      cost[a] + pi[gr.source(a)] - pi[gr.target(a)];
   1.240 +    dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0);
   1.241 +  }
   1.242 +  
   1.243 +  return dual_cost == total;
   1.244 +}
   1.245 +
   1.246 +// Run a minimum cost flow algorithm and check the results
   1.247 +template < typename MCF, typename GR,
   1.248 +           typename LM, typename UM,
   1.249 +           typename CM, typename SM,
   1.250 +           typename PT >
   1.251 +void checkMcf( const MCF& mcf, PT mcf_result,
   1.252 +               const GR& gr, const LM& lower, const UM& upper,
   1.253 +               const CM& cost, const SM& supply,
   1.254 +               PT result, bool optimal, typename CM::Value total,
   1.255 +               const std::string &test_id = "",
   1.256 +               SupplyType type = EQ )
   1.257 +{
   1.258 +  check(mcf_result == result, "Wrong result " + test_id);
   1.259 +  if (optimal) {
   1.260 +    typename GR::template ArcMap<typename SM::Value> flow(gr);
   1.261 +    typename GR::template NodeMap<typename CM::Value> pi(gr);
   1.262 +    mcf.flowMap(flow);
   1.263 +    mcf.potentialMap(pi);
   1.264 +    check(checkFlow(gr, lower, upper, supply, flow, type),
   1.265 +          "The flow is not feasible " + test_id);
   1.266 +    check(mcf.totalCost() == total, "The flow is not optimal " + test_id);
   1.267 +    check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type),
   1.268 +          "Wrong potentials " + test_id);
   1.269 +    check(checkDualCost(gr, lower, upper, cost, supply, pi, total),
   1.270 +          "Wrong dual cost " + test_id);
   1.271 +  }
   1.272 +}
   1.273 +
   1.274 +int main()
   1.275 +{
   1.276 +  // Check the interfaces
   1.277 +  {
   1.278 +    typedef concepts::Digraph GR;
   1.279 +    checkConcept< McfClassConcept<GR, int, int>,
   1.280 +                  NetworkSimplex<GR> >();
   1.281 +    checkConcept< McfClassConcept<GR, double, double>,
   1.282 +                  NetworkSimplex<GR, double> >();
   1.283 +    checkConcept< McfClassConcept<GR, int, double>,
   1.284 +                  NetworkSimplex<GR, int, double> >();
   1.285 +  }
   1.286 +
   1.287 +  // Run various MCF tests
   1.288 +  typedef ListDigraph Digraph;
   1.289 +  DIGRAPH_TYPEDEFS(ListDigraph);
   1.290 +
   1.291 +  // Read the test digraph
   1.292 +  Digraph gr;
   1.293 +  Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr);
   1.294 +  Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr);
   1.295 +  ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max());
   1.296 +  Node v, w;
   1.297 +
   1.298 +  std::istringstream input(test_lgf);
   1.299 +  DigraphReader<Digraph>(gr, input)
   1.300 +    .arcMap("cost", c)
   1.301 +    .arcMap("cap", u)
   1.302 +    .arcMap("low1", l1)
   1.303 +    .arcMap("low2", l2)
   1.304 +    .arcMap("low3", l3)
   1.305 +    .nodeMap("sup1", s1)
   1.306 +    .nodeMap("sup2", s2)
   1.307 +    .nodeMap("sup3", s3)
   1.308 +    .nodeMap("sup4", s4)
   1.309 +    .nodeMap("sup5", s5)
   1.310 +    .nodeMap("sup6", s6)
   1.311 +    .node("source", v)
   1.312 +    .node("target", w)
   1.313 +    .run();
   1.314 +  
   1.315 +  // Build test digraphs with negative costs
   1.316 +  Digraph neg_gr;
   1.317 +  Node n1 = neg_gr.addNode();
   1.318 +  Node n2 = neg_gr.addNode();
   1.319 +  Node n3 = neg_gr.addNode();
   1.320 +  Node n4 = neg_gr.addNode();
   1.321 +  Node n5 = neg_gr.addNode();
   1.322 +  Node n6 = neg_gr.addNode();
   1.323 +  Node n7 = neg_gr.addNode();
   1.324 +  
   1.325 +  Arc a1 = neg_gr.addArc(n1, n2);
   1.326 +  Arc a2 = neg_gr.addArc(n1, n3);
   1.327 +  Arc a3 = neg_gr.addArc(n2, n4);
   1.328 +  Arc a4 = neg_gr.addArc(n3, n4);
   1.329 +  Arc a5 = neg_gr.addArc(n3, n2);
   1.330 +  Arc a6 = neg_gr.addArc(n5, n3);
   1.331 +  Arc a7 = neg_gr.addArc(n5, n6);
   1.332 +  Arc a8 = neg_gr.addArc(n6, n7);
   1.333 +  Arc a9 = neg_gr.addArc(n7, n5);
   1.334 +  
   1.335 +  Digraph::ArcMap<int> neg_c(neg_gr), neg_l1(neg_gr, 0), neg_l2(neg_gr, 0);
   1.336 +  ConstMap<Arc, int> neg_u1(std::numeric_limits<int>::max()), neg_u2(5000);
   1.337 +  Digraph::NodeMap<int> neg_s(neg_gr, 0);
   1.338 +  
   1.339 +  neg_l2[a7] =  1000;
   1.340 +  neg_l2[a8] = -1000;
   1.341 +  
   1.342 +  neg_s[n1] =  100;
   1.343 +  neg_s[n4] = -100;
   1.344 +  
   1.345 +  neg_c[a1] =  100;
   1.346 +  neg_c[a2] =   30;
   1.347 +  neg_c[a3] =   20;
   1.348 +  neg_c[a4] =   80;
   1.349 +  neg_c[a5] =   50;
   1.350 +  neg_c[a6] =   10;
   1.351 +  neg_c[a7] =   80;
   1.352 +  neg_c[a8] =   30;
   1.353 +  neg_c[a9] = -120;
   1.354 +
   1.355 +  Digraph negs_gr;
   1.356 +  Digraph::NodeMap<int> negs_s(negs_gr);
   1.357 +  Digraph::ArcMap<int> negs_c(negs_gr);
   1.358 +  ConstMap<Arc, int> negs_l(0), negs_u(1000);
   1.359 +  n1 = negs_gr.addNode();
   1.360 +  n2 = negs_gr.addNode();
   1.361 +  negs_s[n1] = 100;
   1.362 +  negs_s[n2] = -300;
   1.363 +  negs_c[negs_gr.addArc(n1, n2)] = -1;
   1.364 +
   1.365 +
   1.366 +  // A. Test NetworkSimplex with the default pivot rule
   1.367 +  {
   1.368 +    NetworkSimplex<Digraph> mcf(gr);
   1.369 +
   1.370 +    // Check the equality form
   1.371 +    mcf.upperMap(u).costMap(c);
   1.372 +    checkMcf(mcf, mcf.supplyMap(s1).run(),
   1.373 +             gr, l1, u, c, s1, mcf.OPTIMAL, true,   5240, "#A1");
   1.374 +    checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
   1.375 +             gr, l1, u, c, s2, mcf.OPTIMAL, true,   7620, "#A2");
   1.376 +    mcf.lowerMap(l2);
   1.377 +    checkMcf(mcf, mcf.supplyMap(s1).run(),
   1.378 +             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#A3");
   1.379 +    checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
   1.380 +             gr, l2, u, c, s2, mcf.OPTIMAL, true,   8010, "#A4");
   1.381 +    mcf.reset();
   1.382 +    checkMcf(mcf, mcf.supplyMap(s1).run(),
   1.383 +             gr, l1, cu, cc, s1, mcf.OPTIMAL, true,   74, "#A5");
   1.384 +    checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(),
   1.385 +             gr, l2, cu, cc, s2, mcf.OPTIMAL, true,   94, "#A6");
   1.386 +    mcf.reset();
   1.387 +    checkMcf(mcf, mcf.run(),
   1.388 +             gr, l1, cu, cc, s3, mcf.OPTIMAL, true,    0, "#A7");
   1.389 +    checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(),
   1.390 +             gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8");
   1.391 +    mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4);
   1.392 +    checkMcf(mcf, mcf.run(),
   1.393 +             gr, l3, u, c, s4, mcf.OPTIMAL, true,   6360, "#A9");
   1.394 +
   1.395 +    // Check the GEQ form
   1.396 +    mcf.reset().upperMap(u).costMap(c).supplyMap(s5);
   1.397 +    checkMcf(mcf, mcf.run(),
   1.398 +             gr, l1, u, c, s5, mcf.OPTIMAL, true,   3530, "#A10", GEQ);
   1.399 +    mcf.supplyType(mcf.GEQ);
   1.400 +    checkMcf(mcf, mcf.lowerMap(l2).run(),
   1.401 +             gr, l2, u, c, s5, mcf.OPTIMAL, true,   4540, "#A11", GEQ);
   1.402 +    mcf.supplyMap(s6);
   1.403 +    checkMcf(mcf, mcf.run(),
   1.404 +             gr, l2, u, c, s6, mcf.INFEASIBLE, false,  0, "#A12", GEQ);
   1.405 +
   1.406 +    // Check the LEQ form
   1.407 +    mcf.reset().supplyType(mcf.LEQ);
   1.408 +    mcf.upperMap(u).costMap(c).supplyMap(s6);
   1.409 +    checkMcf(mcf, mcf.run(),
   1.410 +             gr, l1, u, c, s6, mcf.OPTIMAL, true,   5080, "#A13", LEQ);
   1.411 +    checkMcf(mcf, mcf.lowerMap(l2).run(),
   1.412 +             gr, l2, u, c, s6, mcf.OPTIMAL, true,   5930, "#A14", LEQ);
   1.413 +    mcf.supplyMap(s5);
   1.414 +    checkMcf(mcf, mcf.run(),
   1.415 +             gr, l2, u, c, s5, mcf.INFEASIBLE, false,  0, "#A15", LEQ);
   1.416 +
   1.417 +    // Check negative costs
   1.418 +    NetworkSimplex<Digraph> neg_mcf(neg_gr);
   1.419 +    neg_mcf.lowerMap(neg_l1).costMap(neg_c).supplyMap(neg_s);
   1.420 +    checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u1,
   1.421 +      neg_c, neg_s, neg_mcf.UNBOUNDED, false,    0, "#A16");
   1.422 +    neg_mcf.upperMap(neg_u2);
   1.423 +    checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u2,
   1.424 +      neg_c, neg_s, neg_mcf.OPTIMAL, true,  -40000, "#A17");
   1.425 +    neg_mcf.reset().lowerMap(neg_l2).costMap(neg_c).supplyMap(neg_s);
   1.426 +    checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l2, neg_u1,
   1.427 +      neg_c, neg_s, neg_mcf.UNBOUNDED, false,    0, "#A18");
   1.428 +      
   1.429 +    NetworkSimplex<Digraph> negs_mcf(negs_gr);
   1.430 +    negs_mcf.costMap(negs_c).supplyMap(negs_s);
   1.431 +    checkMcf(negs_mcf, negs_mcf.run(), negs_gr, negs_l, negs_u,
   1.432 +      negs_c, negs_s, negs_mcf.OPTIMAL, true, -300, "#A19", GEQ);
   1.433 +  }
   1.434 +
   1.435 +  // B. Test NetworkSimplex with each pivot rule
   1.436 +  {
   1.437 +    NetworkSimplex<Digraph> mcf(gr);
   1.438 +    mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2);
   1.439 +
   1.440 +    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE),
   1.441 +             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B1");
   1.442 +    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE),
   1.443 +             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B2");
   1.444 +    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH),
   1.445 +             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B3");
   1.446 +    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST),
   1.447 +             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B4");
   1.448 +    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST),
   1.449 +             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B5");
   1.450 +  }
   1.451 +
   1.452 +  return 0;
   1.453 +}