lemon/network_simplex.h
changeset 803 1b89e29c9fc7
parent 755 134852d7fb0a
parent 786 e20173729589
child 811 fe80a8145653
     1.1 --- a/lemon/network_simplex.h	Thu Dec 10 17:05:35 2009 +0100
     1.2 +++ b/lemon/network_simplex.h	Thu Dec 10 17:18:25 2009 +0100
     1.3 @@ -40,7 +40,9 @@
     1.4    /// for finding a \ref min_cost_flow "minimum cost flow".
     1.5    ///
     1.6    /// \ref NetworkSimplex implements the primal Network Simplex algorithm
     1.7 -  /// for finding a \ref min_cost_flow "minimum cost flow".
     1.8 +  /// for finding a \ref min_cost_flow "minimum cost flow"
     1.9 +  /// \ref amo93networkflows, \ref dantzig63linearprog,
    1.10 +  /// \ref kellyoneill91netsimplex.
    1.11    /// This algorithm is a specialized version of the linear programming
    1.12    /// simplex method directly for the minimum cost flow problem.
    1.13    /// It is one of the most efficient solution methods.
    1.14 @@ -48,7 +50,7 @@
    1.15    /// In general this class is the fastest implementation available
    1.16    /// in LEMON for the minimum cost flow problem.
    1.17    /// Moreover it supports both directions of the supply/demand inequality
    1.18 -  /// constraints. For more information see \ref SupplyType.
    1.19 +  /// constraints. For more information, see \ref SupplyType.
    1.20    ///
    1.21    /// Most of the parameters of the problem (except for the digraph)
    1.22    /// can be given using separate functions, and the algorithm can be
    1.23 @@ -57,16 +59,16 @@
    1.24    ///
    1.25    /// \tparam GR The digraph type the algorithm runs on.
    1.26    /// \tparam V The value type used for flow amounts, capacity bounds
    1.27 -  /// and supply values in the algorithm. By default it is \c int.
    1.28 +  /// and supply values in the algorithm. By default, it is \c int.
    1.29    /// \tparam C The value type used for costs and potentials in the
    1.30 -  /// algorithm. By default it is the same as \c V.
    1.31 +  /// algorithm. By default, it is the same as \c V.
    1.32    ///
    1.33    /// \warning Both value types must be signed and all input data must
    1.34    /// be integer.
    1.35    ///
    1.36    /// \note %NetworkSimplex provides five different pivot rule
    1.37    /// implementations, from which the most efficient one is used
    1.38 -  /// by default. For more information see \ref PivotRule.
    1.39 +  /// by default. For more information, see \ref PivotRule.
    1.40    template <typename GR, typename V = int, typename C = V>
    1.41    class NetworkSimplex
    1.42    {
    1.43 @@ -122,35 +124,35 @@
    1.44      /// \ref NetworkSimplex provides five different pivot rule
    1.45      /// implementations that significantly affect the running time
    1.46      /// of the algorithm.
    1.47 -    /// By default \ref BLOCK_SEARCH "Block Search" is used, which
    1.48 +    /// By default, \ref BLOCK_SEARCH "Block Search" is used, which
    1.49      /// proved to be the most efficient and the most robust on various
    1.50      /// test inputs according to our benchmark tests.
    1.51 -    /// However another pivot rule can be selected using the \ref run()
    1.52 +    /// However, another pivot rule can be selected using the \ref run()
    1.53      /// function with the proper parameter.
    1.54      enum PivotRule {
    1.55  
    1.56 -      /// The First Eligible pivot rule.
    1.57 +      /// The \e First \e Eligible pivot rule.
    1.58        /// The next eligible arc is selected in a wraparound fashion
    1.59        /// in every iteration.
    1.60        FIRST_ELIGIBLE,
    1.61  
    1.62 -      /// The Best Eligible pivot rule.
    1.63 +      /// The \e Best \e Eligible pivot rule.
    1.64        /// The best eligible arc is selected in every iteration.
    1.65        BEST_ELIGIBLE,
    1.66  
    1.67 -      /// The Block Search pivot rule.
    1.68 +      /// The \e Block \e Search pivot rule.
    1.69        /// A specified number of arcs are examined in every iteration
    1.70        /// in a wraparound fashion and the best eligible arc is selected
    1.71        /// from this block.
    1.72        BLOCK_SEARCH,
    1.73  
    1.74 -      /// The Candidate List pivot rule.
    1.75 +      /// The \e Candidate \e List pivot rule.
    1.76        /// In a major iteration a candidate list is built from eligible arcs
    1.77        /// in a wraparound fashion and in the following minor iterations
    1.78        /// the best eligible arc is selected from this list.
    1.79        CANDIDATE_LIST,
    1.80  
    1.81 -      /// The Altering Candidate List pivot rule.
    1.82 +      /// The \e Altering \e Candidate \e List pivot rule.
    1.83        /// It is a modified version of the Candidate List method.
    1.84        /// It keeps only the several best eligible arcs from the former
    1.85        /// candidate list and extends this list in every iteration.
    1.86 @@ -161,8 +163,6 @@
    1.87  
    1.88      TEMPLATE_DIGRAPH_TYPEDEFS(GR);
    1.89  
    1.90 -    typedef std::vector<Arc> ArcVector;
    1.91 -    typedef std::vector<Node> NodeVector;
    1.92      typedef std::vector<int> IntVector;
    1.93      typedef std::vector<bool> BoolVector;
    1.94      typedef std::vector<Value> ValueVector;
    1.95 @@ -364,33 +364,32 @@
    1.96        bool findEnteringArc() {
    1.97          Cost c, min = 0;
    1.98          int cnt = _block_size;
    1.99 -        int e, min_arc = _next_arc;
   1.100 +        int e;
   1.101          for (e = _next_arc; e < _search_arc_num; ++e) {
   1.102            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.103            if (c < min) {
   1.104              min = c;
   1.105 -            min_arc = e;
   1.106 +            _in_arc = e;
   1.107            }
   1.108            if (--cnt == 0) {
   1.109 -            if (min < 0) break;
   1.110 +            if (min < 0) goto search_end;
   1.111              cnt = _block_size;
   1.112            }
   1.113          }
   1.114 -        if (min == 0 || cnt > 0) {
   1.115 -          for (e = 0; e < _next_arc; ++e) {
   1.116 -            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.117 -            if (c < min) {
   1.118 -              min = c;
   1.119 -              min_arc = e;
   1.120 -            }
   1.121 -            if (--cnt == 0) {
   1.122 -              if (min < 0) break;
   1.123 -              cnt = _block_size;
   1.124 -            }
   1.125 +        for (e = 0; e < _next_arc; ++e) {
   1.126 +          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.127 +          if (c < min) {
   1.128 +            min = c;
   1.129 +            _in_arc = e;
   1.130 +          }
   1.131 +          if (--cnt == 0) {
   1.132 +            if (min < 0) goto search_end;
   1.133 +            cnt = _block_size;
   1.134            }
   1.135          }
   1.136          if (min >= 0) return false;
   1.137 -        _in_arc = min_arc;
   1.138 +
   1.139 +      search_end:
   1.140          _next_arc = e;
   1.141          return true;
   1.142        }
   1.143 @@ -428,7 +427,7 @@
   1.144          _next_arc(0)
   1.145        {
   1.146          // The main parameters of the pivot rule
   1.147 -        const double LIST_LENGTH_FACTOR = 1.0;
   1.148 +        const double LIST_LENGTH_FACTOR = 0.25;
   1.149          const int MIN_LIST_LENGTH = 10;
   1.150          const double MINOR_LIMIT_FACTOR = 0.1;
   1.151          const int MIN_MINOR_LIMIT = 3;
   1.152 @@ -445,7 +444,7 @@
   1.153        /// Find next entering arc
   1.154        bool findEnteringArc() {
   1.155          Cost min, c;
   1.156 -        int e, min_arc = _next_arc;
   1.157 +        int e;
   1.158          if (_curr_length > 0 && _minor_count < _minor_limit) {
   1.159            // Minor iteration: select the best eligible arc from the
   1.160            // current candidate list
   1.161 @@ -456,16 +455,13 @@
   1.162              c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.163              if (c < min) {
   1.164                min = c;
   1.165 -              min_arc = e;
   1.166 +              _in_arc = e;
   1.167              }
   1.168 -            if (c >= 0) {
   1.169 +            else if (c >= 0) {
   1.170                _candidates[i--] = _candidates[--_curr_length];
   1.171              }
   1.172            }
   1.173 -          if (min < 0) {
   1.174 -            _in_arc = min_arc;
   1.175 -            return true;
   1.176 -          }
   1.177 +          if (min < 0) return true;
   1.178          }
   1.179  
   1.180          // Major iteration: build a new candidate list
   1.181 @@ -477,27 +473,26 @@
   1.182              _candidates[_curr_length++] = e;
   1.183              if (c < min) {
   1.184                min = c;
   1.185 -              min_arc = e;
   1.186 +              _in_arc = e;
   1.187              }
   1.188 -            if (_curr_length == _list_length) break;
   1.189 +            if (_curr_length == _list_length) goto search_end;
   1.190            }
   1.191          }
   1.192 -        if (_curr_length < _list_length) {
   1.193 -          for (e = 0; e < _next_arc; ++e) {
   1.194 -            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.195 -            if (c < 0) {
   1.196 -              _candidates[_curr_length++] = e;
   1.197 -              if (c < min) {
   1.198 -                min = c;
   1.199 -                min_arc = e;
   1.200 -              }
   1.201 -              if (_curr_length == _list_length) break;
   1.202 +        for (e = 0; e < _next_arc; ++e) {
   1.203 +          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.204 +          if (c < 0) {
   1.205 +            _candidates[_curr_length++] = e;
   1.206 +            if (c < min) {
   1.207 +              min = c;
   1.208 +              _in_arc = e;
   1.209              }
   1.210 +            if (_curr_length == _list_length) goto search_end;
   1.211            }
   1.212          }
   1.213          if (_curr_length == 0) return false;
   1.214 +      
   1.215 +      search_end:        
   1.216          _minor_count = 1;
   1.217 -        _in_arc = min_arc;
   1.218          _next_arc = e;
   1.219          return true;
   1.220        }
   1.221 @@ -549,7 +544,7 @@
   1.222          _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
   1.223        {
   1.224          // The main parameters of the pivot rule
   1.225 -        const double BLOCK_SIZE_FACTOR = 1.5;
   1.226 +        const double BLOCK_SIZE_FACTOR = 1.0;
   1.227          const int MIN_BLOCK_SIZE = 10;
   1.228          const double HEAD_LENGTH_FACTOR = 0.1;
   1.229          const int MIN_HEAD_LENGTH = 3;
   1.230 @@ -578,39 +573,35 @@
   1.231  
   1.232          // Extend the list
   1.233          int cnt = _block_size;
   1.234 -        int last_arc = 0;
   1.235          int limit = _head_length;
   1.236  
   1.237 -        for (int e = _next_arc; e < _search_arc_num; ++e) {
   1.238 +        for (e = _next_arc; e < _search_arc_num; ++e) {
   1.239            _cand_cost[e] = _state[e] *
   1.240              (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.241            if (_cand_cost[e] < 0) {
   1.242              _candidates[_curr_length++] = e;
   1.243 -            last_arc = e;
   1.244            }
   1.245            if (--cnt == 0) {
   1.246 -            if (_curr_length > limit) break;
   1.247 +            if (_curr_length > limit) goto search_end;
   1.248              limit = 0;
   1.249              cnt = _block_size;
   1.250            }
   1.251          }
   1.252 -        if (_curr_length <= limit) {
   1.253 -          for (int e = 0; e < _next_arc; ++e) {
   1.254 -            _cand_cost[e] = _state[e] *
   1.255 -              (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.256 -            if (_cand_cost[e] < 0) {
   1.257 -              _candidates[_curr_length++] = e;
   1.258 -              last_arc = e;
   1.259 -            }
   1.260 -            if (--cnt == 0) {
   1.261 -              if (_curr_length > limit) break;
   1.262 -              limit = 0;
   1.263 -              cnt = _block_size;
   1.264 -            }
   1.265 +        for (e = 0; e < _next_arc; ++e) {
   1.266 +          _cand_cost[e] = _state[e] *
   1.267 +            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   1.268 +          if (_cand_cost[e] < 0) {
   1.269 +            _candidates[_curr_length++] = e;
   1.270 +          }
   1.271 +          if (--cnt == 0) {
   1.272 +            if (_curr_length > limit) goto search_end;
   1.273 +            limit = 0;
   1.274 +            cnt = _block_size;
   1.275            }
   1.276          }
   1.277          if (_curr_length == 0) return false;
   1.278 -        _next_arc = last_arc + 1;
   1.279 +        
   1.280 +      search_end:
   1.281  
   1.282          // Make heap of the candidate list (approximating a partial sort)
   1.283          make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   1.284 @@ -618,6 +609,7 @@
   1.285  
   1.286          // Pop the first element of the heap
   1.287          _in_arc = _candidates[0];
   1.288 +        _next_arc = e;
   1.289          pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   1.290                    _sort_func );
   1.291          _curr_length = std::min(_head_length, _curr_length - 1);
   1.292 @@ -633,7 +625,11 @@
   1.293      /// The constructor of the class.
   1.294      ///
   1.295      /// \param graph The digraph the algorithm runs on.
   1.296 -    NetworkSimplex(const GR& graph) :
   1.297 +    /// \param arc_mixing Indicate if the arcs have to be stored in a
   1.298 +    /// mixed order in the internal data structure. 
   1.299 +    /// In special cases, it could lead to better overall performance,
   1.300 +    /// but it is usually slower. Therefore it is disabled by default.
   1.301 +    NetworkSimplex(const GR& graph, bool arc_mixing = false) :
   1.302        _graph(graph), _node_id(graph), _arc_id(graph),
   1.303        INF(std::numeric_limits<Value>::has_infinity ?
   1.304            std::numeric_limits<Value>::infinity() :
   1.305 @@ -671,31 +667,33 @@
   1.306        _last_succ.resize(all_node_num);
   1.307        _state.resize(max_arc_num);
   1.308  
   1.309 -      // Copy the graph (store the arcs in a mixed order)
   1.310 +      // Copy the graph
   1.311        int i = 0;
   1.312        for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   1.313          _node_id[n] = i;
   1.314        }
   1.315 -      int k = std::max(int(std::sqrt(double(_arc_num))), 10);
   1.316 -      i = 0;
   1.317 -      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.318 -        _arc_id[a] = i;
   1.319 -        _source[i] = _node_id[_graph.source(a)];
   1.320 -        _target[i] = _node_id[_graph.target(a)];
   1.321 -        if ((i += k) >= _arc_num) i = (i % k) + 1;
   1.322 +      if (arc_mixing) {
   1.323 +        // Store the arcs in a mixed order
   1.324 +        int k = std::max(int(std::sqrt(double(_arc_num))), 10);
   1.325 +        int i = 0, j = 0;
   1.326 +        for (ArcIt a(_graph); a != INVALID; ++a) {
   1.327 +          _arc_id[a] = i;
   1.328 +          _source[i] = _node_id[_graph.source(a)];
   1.329 +          _target[i] = _node_id[_graph.target(a)];
   1.330 +          if ((i += k) >= _arc_num) i = ++j;
   1.331 +        }
   1.332 +      } else {
   1.333 +        // Store the arcs in the original order
   1.334 +        int i = 0;
   1.335 +        for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
   1.336 +          _arc_id[a] = i;
   1.337 +          _source[i] = _node_id[_graph.source(a)];
   1.338 +          _target[i] = _node_id[_graph.target(a)];
   1.339 +        }
   1.340        }
   1.341        
   1.342 -      // Initialize maps
   1.343 -      for (int i = 0; i != _node_num; ++i) {
   1.344 -        _supply[i] = 0;
   1.345 -      }
   1.346 -      for (int i = 0; i != _arc_num; ++i) {
   1.347 -        _lower[i] = 0;
   1.348 -        _upper[i] = INF;
   1.349 -        _cost[i] = 1;
   1.350 -      }
   1.351 -      _have_lower = false;
   1.352 -      _stype = GEQ;
   1.353 +      // Reset parameters
   1.354 +      reset();
   1.355      }
   1.356  
   1.357      /// \name Parameters
   1.358 @@ -768,7 +766,6 @@
   1.359      /// This function sets the supply values of the nodes.
   1.360      /// If neither this function nor \ref stSupply() is used before
   1.361      /// calling \ref run(), the supply of each node will be set to zero.
   1.362 -    /// (It makes sense only if non-zero lower bounds are given.)
   1.363      ///
   1.364      /// \param map A node map storing the supply values.
   1.365      /// Its \c Value type must be convertible to the \c Value type
   1.366 @@ -789,7 +786,6 @@
   1.367      /// and the required flow value.
   1.368      /// If neither this function nor \ref supplyMap() is used before
   1.369      /// calling \ref run(), the supply of each node will be set to zero.
   1.370 -    /// (It makes sense only if non-zero lower bounds are given.)
   1.371      ///
   1.372      /// Using this function has the same effect as using \ref supplyMap()
   1.373      /// with such a map in which \c k is assigned to \c s, \c -k is
   1.374 @@ -816,7 +812,7 @@
   1.375      /// If it is not used before calling \ref run(), the \ref GEQ supply
   1.376      /// type will be used.
   1.377      ///
   1.378 -    /// For more information see \ref SupplyType.
   1.379 +    /// For more information, see \ref SupplyType.
   1.380      ///
   1.381      /// \return <tt>(*this)</tt>
   1.382      NetworkSimplex& supplyType(SupplyType supply_type) {
   1.383 @@ -848,11 +844,11 @@
   1.384      /// that have been given are kept for the next call, unless
   1.385      /// \ref reset() is called, thus only the modified parameters
   1.386      /// have to be set again. See \ref reset() for examples.
   1.387 -    /// However the underlying digraph must not be modified after this
   1.388 +    /// However, the underlying digraph must not be modified after this
   1.389      /// class have been constructed, since it copies and extends the graph.
   1.390      ///
   1.391      /// \param pivot_rule The pivot rule that will be used during the
   1.392 -    /// algorithm. For more information see \ref PivotRule.
   1.393 +    /// algorithm. For more information, see \ref PivotRule.
   1.394      ///
   1.395      /// \return \c INFEASIBLE if no feasible flow exists,
   1.396      /// \n \c OPTIMAL if the problem has optimal solution
   1.397 @@ -877,7 +873,7 @@
   1.398      /// It is useful for multiple run() calls. If this function is not
   1.399      /// used, all the parameters given before are kept for the next
   1.400      /// \ref run() call.
   1.401 -    /// However the underlying digraph must not be modified after this
   1.402 +    /// However, the underlying digraph must not be modified after this
   1.403      /// class have been constructed, since it copies and extends the graph.
   1.404      ///
   1.405      /// For example,