lemon/bellman_ford.h
changeset 964 2b6bffe0e7e8
parent 844 a6eb9698c321
child 880 b89e46862dc2
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/bellman_ford.h	Tue Dec 20 18:15:14 2011 +0100
     1.3 @@ -0,0 +1,1165 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2010
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_BELLMAN_FORD_H
    1.23 +#define LEMON_BELLMAN_FORD_H
    1.24 +
    1.25 +/// \ingroup shortest_path
    1.26 +/// \file
    1.27 +/// \brief Bellman-Ford algorithm.
    1.28 +
    1.29 +#include <lemon/list_graph.h>
    1.30 +#include <lemon/bits/path_dump.h>
    1.31 +#include <lemon/core.h>
    1.32 +#include <lemon/error.h>
    1.33 +#include <lemon/maps.h>
    1.34 +#include <lemon/tolerance.h>
    1.35 +#include <lemon/path.h>
    1.36 +
    1.37 +#include <limits>
    1.38 +
    1.39 +namespace lemon {
    1.40 +
    1.41 +  /// \brief Default operation traits for the BellmanFord algorithm class.
    1.42 +  ///
    1.43 +  /// This operation traits class defines all computational operations
    1.44 +  /// and constants that are used in the Bellman-Ford algorithm.
    1.45 +  /// The default implementation is based on the \c numeric_limits class.
    1.46 +  /// If the numeric type does not have infinity value, then the maximum
    1.47 +  /// value is used as extremal infinity value.
    1.48 +  ///
    1.49 +  /// \see BellmanFordToleranceOperationTraits
    1.50 +  template <
    1.51 +    typename V,
    1.52 +    bool has_inf = std::numeric_limits<V>::has_infinity>
    1.53 +  struct BellmanFordDefaultOperationTraits {
    1.54 +    /// \brief Value type for the algorithm.
    1.55 +    typedef V Value;
    1.56 +    /// \brief Gives back the zero value of the type.
    1.57 +    static Value zero() {
    1.58 +      return static_cast<Value>(0);
    1.59 +    }
    1.60 +    /// \brief Gives back the positive infinity value of the type.
    1.61 +    static Value infinity() {
    1.62 +      return std::numeric_limits<Value>::infinity();
    1.63 +    }
    1.64 +    /// \brief Gives back the sum of the given two elements.
    1.65 +    static Value plus(const Value& left, const Value& right) {
    1.66 +      return left + right;
    1.67 +    }
    1.68 +    /// \brief Gives back \c true only if the first value is less than
    1.69 +    /// the second.
    1.70 +    static bool less(const Value& left, const Value& right) {
    1.71 +      return left < right;
    1.72 +    }
    1.73 +  };
    1.74 +
    1.75 +  template <typename V>
    1.76 +  struct BellmanFordDefaultOperationTraits<V, false> {
    1.77 +    typedef V Value;
    1.78 +    static Value zero() {
    1.79 +      return static_cast<Value>(0);
    1.80 +    }
    1.81 +    static Value infinity() {
    1.82 +      return std::numeric_limits<Value>::max();
    1.83 +    }
    1.84 +    static Value plus(const Value& left, const Value& right) {
    1.85 +      if (left == infinity() || right == infinity()) return infinity();
    1.86 +      return left + right;
    1.87 +    }
    1.88 +    static bool less(const Value& left, const Value& right) {
    1.89 +      return left < right;
    1.90 +    }
    1.91 +  };
    1.92 +
    1.93 +  /// \brief Operation traits for the BellmanFord algorithm class
    1.94 +  /// using tolerance.
    1.95 +  ///
    1.96 +  /// This operation traits class defines all computational operations
    1.97 +  /// and constants that are used in the Bellman-Ford algorithm.
    1.98 +  /// The only difference between this implementation and
    1.99 +  /// \ref BellmanFordDefaultOperationTraits is that this class uses
   1.100 +  /// the \ref Tolerance "tolerance technique" in its \ref less()
   1.101 +  /// function.
   1.102 +  ///
   1.103 +  /// \tparam V The value type.
   1.104 +  /// \tparam eps The epsilon value for the \ref less() function.
   1.105 +  /// By default, it is the epsilon value used by \ref Tolerance
   1.106 +  /// "Tolerance<V>".
   1.107 +  ///
   1.108 +  /// \see BellmanFordDefaultOperationTraits
   1.109 +#ifdef DOXYGEN
   1.110 +  template <typename V, V eps>
   1.111 +#else
   1.112 +  template <
   1.113 +    typename V,
   1.114 +    V eps = Tolerance<V>::def_epsilon>
   1.115 +#endif
   1.116 +  struct BellmanFordToleranceOperationTraits {
   1.117 +    /// \brief Value type for the algorithm.
   1.118 +    typedef V Value;
   1.119 +    /// \brief Gives back the zero value of the type.
   1.120 +    static Value zero() {
   1.121 +      return static_cast<Value>(0);
   1.122 +    }
   1.123 +    /// \brief Gives back the positive infinity value of the type.
   1.124 +    static Value infinity() {
   1.125 +      return std::numeric_limits<Value>::infinity();
   1.126 +    }
   1.127 +    /// \brief Gives back the sum of the given two elements.
   1.128 +    static Value plus(const Value& left, const Value& right) {
   1.129 +      return left + right;
   1.130 +    }
   1.131 +    /// \brief Gives back \c true only if the first value is less than
   1.132 +    /// the second.
   1.133 +    static bool less(const Value& left, const Value& right) {
   1.134 +      return left + eps < right;
   1.135 +    }
   1.136 +  };
   1.137 +
   1.138 +  /// \brief Default traits class of BellmanFord class.
   1.139 +  ///
   1.140 +  /// Default traits class of BellmanFord class.
   1.141 +  /// \param GR The type of the digraph.
   1.142 +  /// \param LEN The type of the length map.
   1.143 +  template<typename GR, typename LEN>
   1.144 +  struct BellmanFordDefaultTraits {
   1.145 +    /// The type of the digraph the algorithm runs on.
   1.146 +    typedef GR Digraph;
   1.147 +
   1.148 +    /// \brief The type of the map that stores the arc lengths.
   1.149 +    ///
   1.150 +    /// The type of the map that stores the arc lengths.
   1.151 +    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
   1.152 +    typedef LEN LengthMap;
   1.153 +
   1.154 +    /// The type of the arc lengths.
   1.155 +    typedef typename LEN::Value Value;
   1.156 +
   1.157 +    /// \brief Operation traits for Bellman-Ford algorithm.
   1.158 +    ///
   1.159 +    /// It defines the used operations and the infinity value for the
   1.160 +    /// given \c Value type.
   1.161 +    /// \see BellmanFordDefaultOperationTraits,
   1.162 +    /// BellmanFordToleranceOperationTraits
   1.163 +    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
   1.164 +
   1.165 +    /// \brief The type of the map that stores the last arcs of the
   1.166 +    /// shortest paths.
   1.167 +    ///
   1.168 +    /// The type of the map that stores the last
   1.169 +    /// arcs of the shortest paths.
   1.170 +    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   1.171 +    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
   1.172 +
   1.173 +    /// \brief Instantiates a \c PredMap.
   1.174 +    ///
   1.175 +    /// This function instantiates a \ref PredMap.
   1.176 +    /// \param g is the digraph to which we would like to define the
   1.177 +    /// \ref PredMap.
   1.178 +    static PredMap *createPredMap(const GR& g) {
   1.179 +      return new PredMap(g);
   1.180 +    }
   1.181 +
   1.182 +    /// \brief The type of the map that stores the distances of the nodes.
   1.183 +    ///
   1.184 +    /// The type of the map that stores the distances of the nodes.
   1.185 +    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   1.186 +    typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
   1.187 +
   1.188 +    /// \brief Instantiates a \c DistMap.
   1.189 +    ///
   1.190 +    /// This function instantiates a \ref DistMap.
   1.191 +    /// \param g is the digraph to which we would like to define the
   1.192 +    /// \ref DistMap.
   1.193 +    static DistMap *createDistMap(const GR& g) {
   1.194 +      return new DistMap(g);
   1.195 +    }
   1.196 +
   1.197 +  };
   1.198 +
   1.199 +  /// \brief %BellmanFord algorithm class.
   1.200 +  ///
   1.201 +  /// \ingroup shortest_path
   1.202 +  /// This class provides an efficient implementation of the Bellman-Ford
   1.203 +  /// algorithm. The maximum time complexity of the algorithm is
   1.204 +  /// <tt>O(ne)</tt>.
   1.205 +  ///
   1.206 +  /// The Bellman-Ford algorithm solves the single-source shortest path
   1.207 +  /// problem when the arcs can have negative lengths, but the digraph
   1.208 +  /// should not contain directed cycles with negative total length.
   1.209 +  /// If all arc costs are non-negative, consider to use the Dijkstra
   1.210 +  /// algorithm instead, since it is more efficient.
   1.211 +  ///
   1.212 +  /// The arc lengths are passed to the algorithm using a
   1.213 +  /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
   1.214 +  /// kind of length. The type of the length values is determined by the
   1.215 +  /// \ref concepts::ReadMap::Value "Value" type of the length map.
   1.216 +  ///
   1.217 +  /// There is also a \ref bellmanFord() "function-type interface" for the
   1.218 +  /// Bellman-Ford algorithm, which is convenient in the simplier cases and
   1.219 +  /// it can be used easier.
   1.220 +  ///
   1.221 +  /// \tparam GR The type of the digraph the algorithm runs on.
   1.222 +  /// The default type is \ref ListDigraph.
   1.223 +  /// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
   1.224 +  /// the lengths of the arcs. The default map type is
   1.225 +  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   1.226 +  /// \tparam TR The traits class that defines various types used by the
   1.227 +  /// algorithm. By default, it is \ref BellmanFordDefaultTraits
   1.228 +  /// "BellmanFordDefaultTraits<GR, LEN>".
   1.229 +  /// In most cases, this parameter should not be set directly,
   1.230 +  /// consider to use the named template parameters instead.
   1.231 +#ifdef DOXYGEN
   1.232 +  template <typename GR, typename LEN, typename TR>
   1.233 +#else
   1.234 +  template <typename GR=ListDigraph,
   1.235 +            typename LEN=typename GR::template ArcMap<int>,
   1.236 +            typename TR=BellmanFordDefaultTraits<GR,LEN> >
   1.237 +#endif
   1.238 +  class BellmanFord {
   1.239 +  public:
   1.240 +
   1.241 +    ///The type of the underlying digraph.
   1.242 +    typedef typename TR::Digraph Digraph;
   1.243 +
   1.244 +    /// \brief The type of the arc lengths.
   1.245 +    typedef typename TR::LengthMap::Value Value;
   1.246 +    /// \brief The type of the map that stores the arc lengths.
   1.247 +    typedef typename TR::LengthMap LengthMap;
   1.248 +    /// \brief The type of the map that stores the last
   1.249 +    /// arcs of the shortest paths.
   1.250 +    typedef typename TR::PredMap PredMap;
   1.251 +    /// \brief The type of the map that stores the distances of the nodes.
   1.252 +    typedef typename TR::DistMap DistMap;
   1.253 +    /// The type of the paths.
   1.254 +    typedef PredMapPath<Digraph, PredMap> Path;
   1.255 +    ///\brief The \ref BellmanFordDefaultOperationTraits
   1.256 +    /// "operation traits class" of the algorithm.
   1.257 +    typedef typename TR::OperationTraits OperationTraits;
   1.258 +
   1.259 +    ///The \ref BellmanFordDefaultTraits "traits class" of the algorithm.
   1.260 +    typedef TR Traits;
   1.261 +
   1.262 +  private:
   1.263 +
   1.264 +    typedef typename Digraph::Node Node;
   1.265 +    typedef typename Digraph::NodeIt NodeIt;
   1.266 +    typedef typename Digraph::Arc Arc;
   1.267 +    typedef typename Digraph::OutArcIt OutArcIt;
   1.268 +
   1.269 +    // Pointer to the underlying digraph.
   1.270 +    const Digraph *_gr;
   1.271 +    // Pointer to the length map
   1.272 +    const LengthMap *_length;
   1.273 +    // Pointer to the map of predecessors arcs.
   1.274 +    PredMap *_pred;
   1.275 +    // Indicates if _pred is locally allocated (true) or not.
   1.276 +    bool _local_pred;
   1.277 +    // Pointer to the map of distances.
   1.278 +    DistMap *_dist;
   1.279 +    // Indicates if _dist is locally allocated (true) or not.
   1.280 +    bool _local_dist;
   1.281 +
   1.282 +    typedef typename Digraph::template NodeMap<bool> MaskMap;
   1.283 +    MaskMap *_mask;
   1.284 +
   1.285 +    std::vector<Node> _process;
   1.286 +
   1.287 +    // Creates the maps if necessary.
   1.288 +    void create_maps() {
   1.289 +      if(!_pred) {
   1.290 +        _local_pred = true;
   1.291 +        _pred = Traits::createPredMap(*_gr);
   1.292 +      }
   1.293 +      if(!_dist) {
   1.294 +        _local_dist = true;
   1.295 +        _dist = Traits::createDistMap(*_gr);
   1.296 +      }
   1.297 +      if(!_mask) {
   1.298 +        _mask = new MaskMap(*_gr);
   1.299 +      }
   1.300 +    }
   1.301 +
   1.302 +  public :
   1.303 +
   1.304 +    typedef BellmanFord Create;
   1.305 +
   1.306 +    /// \name Named Template Parameters
   1.307 +
   1.308 +    ///@{
   1.309 +
   1.310 +    template <class T>
   1.311 +    struct SetPredMapTraits : public Traits {
   1.312 +      typedef T PredMap;
   1.313 +      static PredMap *createPredMap(const Digraph&) {
   1.314 +        LEMON_ASSERT(false, "PredMap is not initialized");
   1.315 +        return 0; // ignore warnings
   1.316 +      }
   1.317 +    };
   1.318 +
   1.319 +    /// \brief \ref named-templ-param "Named parameter" for setting
   1.320 +    /// \c PredMap type.
   1.321 +    ///
   1.322 +    /// \ref named-templ-param "Named parameter" for setting
   1.323 +    /// \c PredMap type.
   1.324 +    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   1.325 +    template <class T>
   1.326 +    struct SetPredMap
   1.327 +      : public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
   1.328 +      typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
   1.329 +    };
   1.330 +
   1.331 +    template <class T>
   1.332 +    struct SetDistMapTraits : public Traits {
   1.333 +      typedef T DistMap;
   1.334 +      static DistMap *createDistMap(const Digraph&) {
   1.335 +        LEMON_ASSERT(false, "DistMap is not initialized");
   1.336 +        return 0; // ignore warnings
   1.337 +      }
   1.338 +    };
   1.339 +
   1.340 +    /// \brief \ref named-templ-param "Named parameter" for setting
   1.341 +    /// \c DistMap type.
   1.342 +    ///
   1.343 +    /// \ref named-templ-param "Named parameter" for setting
   1.344 +    /// \c DistMap type.
   1.345 +    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   1.346 +    template <class T>
   1.347 +    struct SetDistMap
   1.348 +      : public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
   1.349 +      typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
   1.350 +    };
   1.351 +
   1.352 +    template <class T>
   1.353 +    struct SetOperationTraitsTraits : public Traits {
   1.354 +      typedef T OperationTraits;
   1.355 +    };
   1.356 +
   1.357 +    /// \brief \ref named-templ-param "Named parameter" for setting
   1.358 +    /// \c OperationTraits type.
   1.359 +    ///
   1.360 +    /// \ref named-templ-param "Named parameter" for setting
   1.361 +    /// \c OperationTraits type.
   1.362 +    /// For more information, see \ref BellmanFordDefaultOperationTraits.
   1.363 +    template <class T>
   1.364 +    struct SetOperationTraits
   1.365 +      : public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
   1.366 +      typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
   1.367 +      Create;
   1.368 +    };
   1.369 +
   1.370 +    ///@}
   1.371 +
   1.372 +  protected:
   1.373 +
   1.374 +    BellmanFord() {}
   1.375 +
   1.376 +  public:
   1.377 +
   1.378 +    /// \brief Constructor.
   1.379 +    ///
   1.380 +    /// Constructor.
   1.381 +    /// \param g The digraph the algorithm runs on.
   1.382 +    /// \param length The length map used by the algorithm.
   1.383 +    BellmanFord(const Digraph& g, const LengthMap& length) :
   1.384 +      _gr(&g), _length(&length),
   1.385 +      _pred(0), _local_pred(false),
   1.386 +      _dist(0), _local_dist(false), _mask(0) {}
   1.387 +
   1.388 +    ///Destructor.
   1.389 +    ~BellmanFord() {
   1.390 +      if(_local_pred) delete _pred;
   1.391 +      if(_local_dist) delete _dist;
   1.392 +      if(_mask) delete _mask;
   1.393 +    }
   1.394 +
   1.395 +    /// \brief Sets the length map.
   1.396 +    ///
   1.397 +    /// Sets the length map.
   1.398 +    /// \return <tt>(*this)</tt>
   1.399 +    BellmanFord &lengthMap(const LengthMap &map) {
   1.400 +      _length = &map;
   1.401 +      return *this;
   1.402 +    }
   1.403 +
   1.404 +    /// \brief Sets the map that stores the predecessor arcs.
   1.405 +    ///
   1.406 +    /// Sets the map that stores the predecessor arcs.
   1.407 +    /// If you don't use this function before calling \ref run()
   1.408 +    /// or \ref init(), an instance will be allocated automatically.
   1.409 +    /// The destructor deallocates this automatically allocated map,
   1.410 +    /// of course.
   1.411 +    /// \return <tt>(*this)</tt>
   1.412 +    BellmanFord &predMap(PredMap &map) {
   1.413 +      if(_local_pred) {
   1.414 +        delete _pred;
   1.415 +        _local_pred=false;
   1.416 +      }
   1.417 +      _pred = &map;
   1.418 +      return *this;
   1.419 +    }
   1.420 +
   1.421 +    /// \brief Sets the map that stores the distances of the nodes.
   1.422 +    ///
   1.423 +    /// Sets the map that stores the distances of the nodes calculated
   1.424 +    /// by the algorithm.
   1.425 +    /// If you don't use this function before calling \ref run()
   1.426 +    /// or \ref init(), an instance will be allocated automatically.
   1.427 +    /// The destructor deallocates this automatically allocated map,
   1.428 +    /// of course.
   1.429 +    /// \return <tt>(*this)</tt>
   1.430 +    BellmanFord &distMap(DistMap &map) {
   1.431 +      if(_local_dist) {
   1.432 +        delete _dist;
   1.433 +        _local_dist=false;
   1.434 +      }
   1.435 +      _dist = &map;
   1.436 +      return *this;
   1.437 +    }
   1.438 +
   1.439 +    /// \name Execution Control
   1.440 +    /// The simplest way to execute the Bellman-Ford algorithm is to use
   1.441 +    /// one of the member functions called \ref run().\n
   1.442 +    /// If you need better control on the execution, you have to call
   1.443 +    /// \ref init() first, then you can add several source nodes
   1.444 +    /// with \ref addSource(). Finally the actual path computation can be
   1.445 +    /// performed with \ref start(), \ref checkedStart() or
   1.446 +    /// \ref limitedStart().
   1.447 +
   1.448 +    ///@{
   1.449 +
   1.450 +    /// \brief Initializes the internal data structures.
   1.451 +    ///
   1.452 +    /// Initializes the internal data structures. The optional parameter
   1.453 +    /// is the initial distance of each node.
   1.454 +    void init(const Value value = OperationTraits::infinity()) {
   1.455 +      create_maps();
   1.456 +      for (NodeIt it(*_gr); it != INVALID; ++it) {
   1.457 +        _pred->set(it, INVALID);
   1.458 +        _dist->set(it, value);
   1.459 +      }
   1.460 +      _process.clear();
   1.461 +      if (OperationTraits::less(value, OperationTraits::infinity())) {
   1.462 +        for (NodeIt it(*_gr); it != INVALID; ++it) {
   1.463 +          _process.push_back(it);
   1.464 +          _mask->set(it, true);
   1.465 +        }
   1.466 +      } else {
   1.467 +        for (NodeIt it(*_gr); it != INVALID; ++it) {
   1.468 +          _mask->set(it, false);
   1.469 +        }
   1.470 +      }
   1.471 +    }
   1.472 +
   1.473 +    /// \brief Adds a new source node.
   1.474 +    ///
   1.475 +    /// This function adds a new source node. The optional second parameter
   1.476 +    /// is the initial distance of the node.
   1.477 +    void addSource(Node source, Value dst = OperationTraits::zero()) {
   1.478 +      _dist->set(source, dst);
   1.479 +      if (!(*_mask)[source]) {
   1.480 +        _process.push_back(source);
   1.481 +        _mask->set(source, true);
   1.482 +      }
   1.483 +    }
   1.484 +
   1.485 +    /// \brief Executes one round from the Bellman-Ford algorithm.
   1.486 +    ///
   1.487 +    /// If the algoritm calculated the distances in the previous round
   1.488 +    /// exactly for the paths of at most \c k arcs, then this function
   1.489 +    /// will calculate the distances exactly for the paths of at most
   1.490 +    /// <tt>k+1</tt> arcs. Performing \c k iterations using this function
   1.491 +    /// calculates the shortest path distances exactly for the paths
   1.492 +    /// consisting of at most \c k arcs.
   1.493 +    ///
   1.494 +    /// \warning The paths with limited arc number cannot be retrieved
   1.495 +    /// easily with \ref path() or \ref predArc() functions. If you also
   1.496 +    /// need the shortest paths and not only the distances, you should
   1.497 +    /// store the \ref predMap() "predecessor map" after each iteration
   1.498 +    /// and build the path manually.
   1.499 +    ///
   1.500 +    /// \return \c true when the algorithm have not found more shorter
   1.501 +    /// paths.
   1.502 +    ///
   1.503 +    /// \see ActiveIt
   1.504 +    bool processNextRound() {
   1.505 +      for (int i = 0; i < int(_process.size()); ++i) {
   1.506 +        _mask->set(_process[i], false);
   1.507 +      }
   1.508 +      std::vector<Node> nextProcess;
   1.509 +      std::vector<Value> values(_process.size());
   1.510 +      for (int i = 0; i < int(_process.size()); ++i) {
   1.511 +        values[i] = (*_dist)[_process[i]];
   1.512 +      }
   1.513 +      for (int i = 0; i < int(_process.size()); ++i) {
   1.514 +        for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
   1.515 +          Node target = _gr->target(it);
   1.516 +          Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
   1.517 +          if (OperationTraits::less(relaxed, (*_dist)[target])) {
   1.518 +            _pred->set(target, it);
   1.519 +            _dist->set(target, relaxed);
   1.520 +            if (!(*_mask)[target]) {
   1.521 +              _mask->set(target, true);
   1.522 +              nextProcess.push_back(target);
   1.523 +            }
   1.524 +          }
   1.525 +        }
   1.526 +      }
   1.527 +      _process.swap(nextProcess);
   1.528 +      return _process.empty();
   1.529 +    }
   1.530 +
   1.531 +    /// \brief Executes one weak round from the Bellman-Ford algorithm.
   1.532 +    ///
   1.533 +    /// If the algorithm calculated the distances in the previous round
   1.534 +    /// at least for the paths of at most \c k arcs, then this function
   1.535 +    /// will calculate the distances at least for the paths of at most
   1.536 +    /// <tt>k+1</tt> arcs.
   1.537 +    /// This function does not make it possible to calculate the shortest
   1.538 +    /// path distances exactly for paths consisting of at most \c k arcs,
   1.539 +    /// this is why it is called weak round.
   1.540 +    ///
   1.541 +    /// \return \c true when the algorithm have not found more shorter
   1.542 +    /// paths.
   1.543 +    ///
   1.544 +    /// \see ActiveIt
   1.545 +    bool processNextWeakRound() {
   1.546 +      for (int i = 0; i < int(_process.size()); ++i) {
   1.547 +        _mask->set(_process[i], false);
   1.548 +      }
   1.549 +      std::vector<Node> nextProcess;
   1.550 +      for (int i = 0; i < int(_process.size()); ++i) {
   1.551 +        for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
   1.552 +          Node target = _gr->target(it);
   1.553 +          Value relaxed =
   1.554 +            OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
   1.555 +          if (OperationTraits::less(relaxed, (*_dist)[target])) {
   1.556 +            _pred->set(target, it);
   1.557 +            _dist->set(target, relaxed);
   1.558 +            if (!(*_mask)[target]) {
   1.559 +              _mask->set(target, true);
   1.560 +              nextProcess.push_back(target);
   1.561 +            }
   1.562 +          }
   1.563 +        }
   1.564 +      }
   1.565 +      _process.swap(nextProcess);
   1.566 +      return _process.empty();
   1.567 +    }
   1.568 +
   1.569 +    /// \brief Executes the algorithm.
   1.570 +    ///
   1.571 +    /// Executes the algorithm.
   1.572 +    ///
   1.573 +    /// This method runs the Bellman-Ford algorithm from the root node(s)
   1.574 +    /// in order to compute the shortest path to each node.
   1.575 +    ///
   1.576 +    /// The algorithm computes
   1.577 +    /// - the shortest path tree (forest),
   1.578 +    /// - the distance of each node from the root(s).
   1.579 +    ///
   1.580 +    /// \pre init() must be called and at least one root node should be
   1.581 +    /// added with addSource() before using this function.
   1.582 +    void start() {
   1.583 +      int num = countNodes(*_gr) - 1;
   1.584 +      for (int i = 0; i < num; ++i) {
   1.585 +        if (processNextWeakRound()) break;
   1.586 +      }
   1.587 +    }
   1.588 +
   1.589 +    /// \brief Executes the algorithm and checks the negative cycles.
   1.590 +    ///
   1.591 +    /// Executes the algorithm and checks the negative cycles.
   1.592 +    ///
   1.593 +    /// This method runs the Bellman-Ford algorithm from the root node(s)
   1.594 +    /// in order to compute the shortest path to each node and also checks
   1.595 +    /// if the digraph contains cycles with negative total length.
   1.596 +    ///
   1.597 +    /// The algorithm computes
   1.598 +    /// - the shortest path tree (forest),
   1.599 +    /// - the distance of each node from the root(s).
   1.600 +    ///
   1.601 +    /// \return \c false if there is a negative cycle in the digraph.
   1.602 +    ///
   1.603 +    /// \pre init() must be called and at least one root node should be
   1.604 +    /// added with addSource() before using this function.
   1.605 +    bool checkedStart() {
   1.606 +      int num = countNodes(*_gr);
   1.607 +      for (int i = 0; i < num; ++i) {
   1.608 +        if (processNextWeakRound()) return true;
   1.609 +      }
   1.610 +      return _process.empty();
   1.611 +    }
   1.612 +
   1.613 +    /// \brief Executes the algorithm with arc number limit.
   1.614 +    ///
   1.615 +    /// Executes the algorithm with arc number limit.
   1.616 +    ///
   1.617 +    /// This method runs the Bellman-Ford algorithm from the root node(s)
   1.618 +    /// in order to compute the shortest path distance for each node
   1.619 +    /// using only the paths consisting of at most \c num arcs.
   1.620 +    ///
   1.621 +    /// The algorithm computes
   1.622 +    /// - the limited distance of each node from the root(s),
   1.623 +    /// - the predecessor arc for each node.
   1.624 +    ///
   1.625 +    /// \warning The paths with limited arc number cannot be retrieved
   1.626 +    /// easily with \ref path() or \ref predArc() functions. If you also
   1.627 +    /// need the shortest paths and not only the distances, you should
   1.628 +    /// store the \ref predMap() "predecessor map" after each iteration
   1.629 +    /// and build the path manually.
   1.630 +    ///
   1.631 +    /// \pre init() must be called and at least one root node should be
   1.632 +    /// added with addSource() before using this function.
   1.633 +    void limitedStart(int num) {
   1.634 +      for (int i = 0; i < num; ++i) {
   1.635 +        if (processNextRound()) break;
   1.636 +      }
   1.637 +    }
   1.638 +
   1.639 +    /// \brief Runs the algorithm from the given root node.
   1.640 +    ///
   1.641 +    /// This method runs the Bellman-Ford algorithm from the given root
   1.642 +    /// node \c s in order to compute the shortest path to each node.
   1.643 +    ///
   1.644 +    /// The algorithm computes
   1.645 +    /// - the shortest path tree (forest),
   1.646 +    /// - the distance of each node from the root(s).
   1.647 +    ///
   1.648 +    /// \note bf.run(s) is just a shortcut of the following code.
   1.649 +    /// \code
   1.650 +    ///   bf.init();
   1.651 +    ///   bf.addSource(s);
   1.652 +    ///   bf.start();
   1.653 +    /// \endcode
   1.654 +    void run(Node s) {
   1.655 +      init();
   1.656 +      addSource(s);
   1.657 +      start();
   1.658 +    }
   1.659 +
   1.660 +    /// \brief Runs the algorithm from the given root node with arc
   1.661 +    /// number limit.
   1.662 +    ///
   1.663 +    /// This method runs the Bellman-Ford algorithm from the given root
   1.664 +    /// node \c s in order to compute the shortest path distance for each
   1.665 +    /// node using only the paths consisting of at most \c num arcs.
   1.666 +    ///
   1.667 +    /// The algorithm computes
   1.668 +    /// - the limited distance of each node from the root(s),
   1.669 +    /// - the predecessor arc for each node.
   1.670 +    ///
   1.671 +    /// \warning The paths with limited arc number cannot be retrieved
   1.672 +    /// easily with \ref path() or \ref predArc() functions. If you also
   1.673 +    /// need the shortest paths and not only the distances, you should
   1.674 +    /// store the \ref predMap() "predecessor map" after each iteration
   1.675 +    /// and build the path manually.
   1.676 +    ///
   1.677 +    /// \note bf.run(s, num) is just a shortcut of the following code.
   1.678 +    /// \code
   1.679 +    ///   bf.init();
   1.680 +    ///   bf.addSource(s);
   1.681 +    ///   bf.limitedStart(num);
   1.682 +    /// \endcode
   1.683 +    void run(Node s, int num) {
   1.684 +      init();
   1.685 +      addSource(s);
   1.686 +      limitedStart(num);
   1.687 +    }
   1.688 +
   1.689 +    ///@}
   1.690 +
   1.691 +    /// \brief LEMON iterator for getting the active nodes.
   1.692 +    ///
   1.693 +    /// This class provides a common style LEMON iterator that traverses
   1.694 +    /// the active nodes of the Bellman-Ford algorithm after the last
   1.695 +    /// phase. These nodes should be checked in the next phase to
   1.696 +    /// find augmenting arcs outgoing from them.
   1.697 +    class ActiveIt {
   1.698 +    public:
   1.699 +
   1.700 +      /// \brief Constructor.
   1.701 +      ///
   1.702 +      /// Constructor for getting the active nodes of the given BellmanFord
   1.703 +      /// instance.
   1.704 +      ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
   1.705 +      {
   1.706 +        _index = _algorithm->_process.size() - 1;
   1.707 +      }
   1.708 +
   1.709 +      /// \brief Invalid constructor.
   1.710 +      ///
   1.711 +      /// Invalid constructor.
   1.712 +      ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
   1.713 +
   1.714 +      /// \brief Conversion to \c Node.
   1.715 +      ///
   1.716 +      /// Conversion to \c Node.
   1.717 +      operator Node() const {
   1.718 +        return _index >= 0 ? _algorithm->_process[_index] : INVALID;
   1.719 +      }
   1.720 +
   1.721 +      /// \brief Increment operator.
   1.722 +      ///
   1.723 +      /// Increment operator.
   1.724 +      ActiveIt& operator++() {
   1.725 +        --_index;
   1.726 +        return *this;
   1.727 +      }
   1.728 +
   1.729 +      bool operator==(const ActiveIt& it) const {
   1.730 +        return static_cast<Node>(*this) == static_cast<Node>(it);
   1.731 +      }
   1.732 +      bool operator!=(const ActiveIt& it) const {
   1.733 +        return static_cast<Node>(*this) != static_cast<Node>(it);
   1.734 +      }
   1.735 +      bool operator<(const ActiveIt& it) const {
   1.736 +        return static_cast<Node>(*this) < static_cast<Node>(it);
   1.737 +      }
   1.738 +
   1.739 +    private:
   1.740 +      const BellmanFord* _algorithm;
   1.741 +      int _index;
   1.742 +    };
   1.743 +
   1.744 +    /// \name Query Functions
   1.745 +    /// The result of the Bellman-Ford algorithm can be obtained using these
   1.746 +    /// functions.\n
   1.747 +    /// Either \ref run() or \ref init() should be called before using them.
   1.748 +
   1.749 +    ///@{
   1.750 +
   1.751 +    /// \brief The shortest path to the given node.
   1.752 +    ///
   1.753 +    /// Gives back the shortest path to the given node from the root(s).
   1.754 +    ///
   1.755 +    /// \warning \c t should be reached from the root(s).
   1.756 +    ///
   1.757 +    /// \pre Either \ref run() or \ref init() must be called before
   1.758 +    /// using this function.
   1.759 +    Path path(Node t) const
   1.760 +    {
   1.761 +      return Path(*_gr, *_pred, t);
   1.762 +    }
   1.763 +
   1.764 +    /// \brief The distance of the given node from the root(s).
   1.765 +    ///
   1.766 +    /// Returns the distance of the given node from the root(s).
   1.767 +    ///
   1.768 +    /// \warning If node \c v is not reached from the root(s), then
   1.769 +    /// the return value of this function is undefined.
   1.770 +    ///
   1.771 +    /// \pre Either \ref run() or \ref init() must be called before
   1.772 +    /// using this function.
   1.773 +    Value dist(Node v) const { return (*_dist)[v]; }
   1.774 +
   1.775 +    /// \brief Returns the 'previous arc' of the shortest path tree for
   1.776 +    /// the given node.
   1.777 +    ///
   1.778 +    /// This function returns the 'previous arc' of the shortest path
   1.779 +    /// tree for node \c v, i.e. it returns the last arc of a
   1.780 +    /// shortest path from a root to \c v. It is \c INVALID if \c v
   1.781 +    /// is not reached from the root(s) or if \c v is a root.
   1.782 +    ///
   1.783 +    /// The shortest path tree used here is equal to the shortest path
   1.784 +    /// tree used in \ref predNode() and \ref predMap().
   1.785 +    ///
   1.786 +    /// \pre Either \ref run() or \ref init() must be called before
   1.787 +    /// using this function.
   1.788 +    Arc predArc(Node v) const { return (*_pred)[v]; }
   1.789 +
   1.790 +    /// \brief Returns the 'previous node' of the shortest path tree for
   1.791 +    /// the given node.
   1.792 +    ///
   1.793 +    /// This function returns the 'previous node' of the shortest path
   1.794 +    /// tree for node \c v, i.e. it returns the last but one node of
   1.795 +    /// a shortest path from a root to \c v. It is \c INVALID if \c v
   1.796 +    /// is not reached from the root(s) or if \c v is a root.
   1.797 +    ///
   1.798 +    /// The shortest path tree used here is equal to the shortest path
   1.799 +    /// tree used in \ref predArc() and \ref predMap().
   1.800 +    ///
   1.801 +    /// \pre Either \ref run() or \ref init() must be called before
   1.802 +    /// using this function.
   1.803 +    Node predNode(Node v) const {
   1.804 +      return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]);
   1.805 +    }
   1.806 +
   1.807 +    /// \brief Returns a const reference to the node map that stores the
   1.808 +    /// distances of the nodes.
   1.809 +    ///
   1.810 +    /// Returns a const reference to the node map that stores the distances
   1.811 +    /// of the nodes calculated by the algorithm.
   1.812 +    ///
   1.813 +    /// \pre Either \ref run() or \ref init() must be called before
   1.814 +    /// using this function.
   1.815 +    const DistMap &distMap() const { return *_dist;}
   1.816 +
   1.817 +    /// \brief Returns a const reference to the node map that stores the
   1.818 +    /// predecessor arcs.
   1.819 +    ///
   1.820 +    /// Returns a const reference to the node map that stores the predecessor
   1.821 +    /// arcs, which form the shortest path tree (forest).
   1.822 +    ///
   1.823 +    /// \pre Either \ref run() or \ref init() must be called before
   1.824 +    /// using this function.
   1.825 +    const PredMap &predMap() const { return *_pred; }
   1.826 +
   1.827 +    /// \brief Checks if a node is reached from the root(s).
   1.828 +    ///
   1.829 +    /// Returns \c true if \c v is reached from the root(s).
   1.830 +    ///
   1.831 +    /// \pre Either \ref run() or \ref init() must be called before
   1.832 +    /// using this function.
   1.833 +    bool reached(Node v) const {
   1.834 +      return (*_dist)[v] != OperationTraits::infinity();
   1.835 +    }
   1.836 +
   1.837 +    /// \brief Gives back a negative cycle.
   1.838 +    ///
   1.839 +    /// This function gives back a directed cycle with negative total
   1.840 +    /// length if the algorithm has already found one.
   1.841 +    /// Otherwise it gives back an empty path.
   1.842 +    lemon::Path<Digraph> negativeCycle() const {
   1.843 +      typename Digraph::template NodeMap<int> state(*_gr, -1);
   1.844 +      lemon::Path<Digraph> cycle;
   1.845 +      for (int i = 0; i < int(_process.size()); ++i) {
   1.846 +        if (state[_process[i]] != -1) continue;
   1.847 +        for (Node v = _process[i]; (*_pred)[v] != INVALID;
   1.848 +             v = _gr->source((*_pred)[v])) {
   1.849 +          if (state[v] == i) {
   1.850 +            cycle.addFront((*_pred)[v]);
   1.851 +            for (Node u = _gr->source((*_pred)[v]); u != v;
   1.852 +                 u = _gr->source((*_pred)[u])) {
   1.853 +              cycle.addFront((*_pred)[u]);
   1.854 +            }
   1.855 +            return cycle;
   1.856 +          }
   1.857 +          else if (state[v] >= 0) {
   1.858 +            break;
   1.859 +          }
   1.860 +          state[v] = i;
   1.861 +        }
   1.862 +      }
   1.863 +      return cycle;
   1.864 +    }
   1.865 +
   1.866 +    ///@}
   1.867 +  };
   1.868 +
   1.869 +  /// \brief Default traits class of bellmanFord() function.
   1.870 +  ///
   1.871 +  /// Default traits class of bellmanFord() function.
   1.872 +  /// \tparam GR The type of the digraph.
   1.873 +  /// \tparam LEN The type of the length map.
   1.874 +  template <typename GR, typename LEN>
   1.875 +  struct BellmanFordWizardDefaultTraits {
   1.876 +    /// The type of the digraph the algorithm runs on.
   1.877 +    typedef GR Digraph;
   1.878 +
   1.879 +    /// \brief The type of the map that stores the arc lengths.
   1.880 +    ///
   1.881 +    /// The type of the map that stores the arc lengths.
   1.882 +    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
   1.883 +    typedef LEN LengthMap;
   1.884 +
   1.885 +    /// The type of the arc lengths.
   1.886 +    typedef typename LEN::Value Value;
   1.887 +
   1.888 +    /// \brief Operation traits for Bellman-Ford algorithm.
   1.889 +    ///
   1.890 +    /// It defines the used operations and the infinity value for the
   1.891 +    /// given \c Value type.
   1.892 +    /// \see BellmanFordDefaultOperationTraits,
   1.893 +    /// BellmanFordToleranceOperationTraits
   1.894 +    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
   1.895 +
   1.896 +    /// \brief The type of the map that stores the last
   1.897 +    /// arcs of the shortest paths.
   1.898 +    ///
   1.899 +    /// The type of the map that stores the last arcs of the shortest paths.
   1.900 +    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   1.901 +    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
   1.902 +
   1.903 +    /// \brief Instantiates a \c PredMap.
   1.904 +    ///
   1.905 +    /// This function instantiates a \ref PredMap.
   1.906 +    /// \param g is the digraph to which we would like to define the
   1.907 +    /// \ref PredMap.
   1.908 +    static PredMap *createPredMap(const GR &g) {
   1.909 +      return new PredMap(g);
   1.910 +    }
   1.911 +
   1.912 +    /// \brief The type of the map that stores the distances of the nodes.
   1.913 +    ///
   1.914 +    /// The type of the map that stores the distances of the nodes.
   1.915 +    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   1.916 +    typedef typename GR::template NodeMap<Value> DistMap;
   1.917 +
   1.918 +    /// \brief Instantiates a \c DistMap.
   1.919 +    ///
   1.920 +    /// This function instantiates a \ref DistMap.
   1.921 +    /// \param g is the digraph to which we would like to define the
   1.922 +    /// \ref DistMap.
   1.923 +    static DistMap *createDistMap(const GR &g) {
   1.924 +      return new DistMap(g);
   1.925 +    }
   1.926 +
   1.927 +    ///The type of the shortest paths.
   1.928 +
   1.929 +    ///The type of the shortest paths.
   1.930 +    ///It must meet the \ref concepts::Path "Path" concept.
   1.931 +    typedef lemon::Path<Digraph> Path;
   1.932 +  };
   1.933 +
   1.934 +  /// \brief Default traits class used by BellmanFordWizard.
   1.935 +  ///
   1.936 +  /// Default traits class used by BellmanFordWizard.
   1.937 +  /// \tparam GR The type of the digraph.
   1.938 +  /// \tparam LEN The type of the length map.
   1.939 +  template <typename GR, typename LEN>
   1.940 +  class BellmanFordWizardBase
   1.941 +    : public BellmanFordWizardDefaultTraits<GR, LEN> {
   1.942 +
   1.943 +    typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
   1.944 +  protected:
   1.945 +    // Type of the nodes in the digraph.
   1.946 +    typedef typename Base::Digraph::Node Node;
   1.947 +
   1.948 +    // Pointer to the underlying digraph.
   1.949 +    void *_graph;
   1.950 +    // Pointer to the length map
   1.951 +    void *_length;
   1.952 +    // Pointer to the map of predecessors arcs.
   1.953 +    void *_pred;
   1.954 +    // Pointer to the map of distances.
   1.955 +    void *_dist;
   1.956 +    //Pointer to the shortest path to the target node.
   1.957 +    void *_path;
   1.958 +    //Pointer to the distance of the target node.
   1.959 +    void *_di;
   1.960 +
   1.961 +    public:
   1.962 +    /// Constructor.
   1.963 +
   1.964 +    /// This constructor does not require parameters, it initiates
   1.965 +    /// all of the attributes to default values \c 0.
   1.966 +    BellmanFordWizardBase() :
   1.967 +      _graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
   1.968 +
   1.969 +    /// Constructor.
   1.970 +
   1.971 +    /// This constructor requires two parameters,
   1.972 +    /// others are initiated to \c 0.
   1.973 +    /// \param gr The digraph the algorithm runs on.
   1.974 +    /// \param len The length map.
   1.975 +    BellmanFordWizardBase(const GR& gr,
   1.976 +                          const LEN& len) :
   1.977 +      _graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))),
   1.978 +      _length(reinterpret_cast<void*>(const_cast<LEN*>(&len))),
   1.979 +      _pred(0), _dist(0), _path(0), _di(0) {}
   1.980 +
   1.981 +  };
   1.982 +
   1.983 +  /// \brief Auxiliary class for the function-type interface of the
   1.984 +  /// \ref BellmanFord "Bellman-Ford" algorithm.
   1.985 +  ///
   1.986 +  /// This auxiliary class is created to implement the
   1.987 +  /// \ref bellmanFord() "function-type interface" of the
   1.988 +  /// \ref BellmanFord "Bellman-Ford" algorithm.
   1.989 +  /// It does not have own \ref run() method, it uses the
   1.990 +  /// functions and features of the plain \ref BellmanFord.
   1.991 +  ///
   1.992 +  /// This class should only be used through the \ref bellmanFord()
   1.993 +  /// function, which makes it easier to use the algorithm.
   1.994 +  ///
   1.995 +  /// \tparam TR The traits class that defines various types used by the
   1.996 +  /// algorithm.
   1.997 +  template<class TR>
   1.998 +  class BellmanFordWizard : public TR {
   1.999 +    typedef TR Base;
  1.1000 +
  1.1001 +    typedef typename TR::Digraph Digraph;
  1.1002 +
  1.1003 +    typedef typename Digraph::Node Node;
  1.1004 +    typedef typename Digraph::NodeIt NodeIt;
  1.1005 +    typedef typename Digraph::Arc Arc;
  1.1006 +    typedef typename Digraph::OutArcIt ArcIt;
  1.1007 +
  1.1008 +    typedef typename TR::LengthMap LengthMap;
  1.1009 +    typedef typename LengthMap::Value Value;
  1.1010 +    typedef typename TR::PredMap PredMap;
  1.1011 +    typedef typename TR::DistMap DistMap;
  1.1012 +    typedef typename TR::Path Path;
  1.1013 +
  1.1014 +  public:
  1.1015 +    /// Constructor.
  1.1016 +    BellmanFordWizard() : TR() {}
  1.1017 +
  1.1018 +    /// \brief Constructor that requires parameters.
  1.1019 +    ///
  1.1020 +    /// Constructor that requires parameters.
  1.1021 +    /// These parameters will be the default values for the traits class.
  1.1022 +    /// \param gr The digraph the algorithm runs on.
  1.1023 +    /// \param len The length map.
  1.1024 +    BellmanFordWizard(const Digraph& gr, const LengthMap& len)
  1.1025 +      : TR(gr, len) {}
  1.1026 +
  1.1027 +    /// \brief Copy constructor
  1.1028 +    BellmanFordWizard(const TR &b) : TR(b) {}
  1.1029 +
  1.1030 +    ~BellmanFordWizard() {}
  1.1031 +
  1.1032 +    /// \brief Runs the Bellman-Ford algorithm from the given source node.
  1.1033 +    ///
  1.1034 +    /// This method runs the Bellman-Ford algorithm from the given source
  1.1035 +    /// node in order to compute the shortest path to each node.
  1.1036 +    void run(Node s) {
  1.1037 +      BellmanFord<Digraph,LengthMap,TR>
  1.1038 +        bf(*reinterpret_cast<const Digraph*>(Base::_graph),
  1.1039 +           *reinterpret_cast<const LengthMap*>(Base::_length));
  1.1040 +      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
  1.1041 +      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
  1.1042 +      bf.run(s);
  1.1043 +    }
  1.1044 +
  1.1045 +    /// \brief Runs the Bellman-Ford algorithm to find the shortest path
  1.1046 +    /// between \c s and \c t.
  1.1047 +    ///
  1.1048 +    /// This method runs the Bellman-Ford algorithm from node \c s
  1.1049 +    /// in order to compute the shortest path to node \c t.
  1.1050 +    /// Actually, it computes the shortest path to each node, but using
  1.1051 +    /// this function you can retrieve the distance and the shortest path
  1.1052 +    /// for a single target node easier.
  1.1053 +    ///
  1.1054 +    /// \return \c true if \c t is reachable form \c s.
  1.1055 +    bool run(Node s, Node t) {
  1.1056 +      BellmanFord<Digraph,LengthMap,TR>
  1.1057 +        bf(*reinterpret_cast<const Digraph*>(Base::_graph),
  1.1058 +           *reinterpret_cast<const LengthMap*>(Base::_length));
  1.1059 +      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
  1.1060 +      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
  1.1061 +      bf.run(s);
  1.1062 +      if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);
  1.1063 +      if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);
  1.1064 +      return bf.reached(t);
  1.1065 +    }
  1.1066 +
  1.1067 +    template<class T>
  1.1068 +    struct SetPredMapBase : public Base {
  1.1069 +      typedef T PredMap;
  1.1070 +      static PredMap *createPredMap(const Digraph &) { return 0; };
  1.1071 +      SetPredMapBase(const TR &b) : TR(b) {}
  1.1072 +    };
  1.1073 +
  1.1074 +    /// \brief \ref named-templ-param "Named parameter" for setting
  1.1075 +    /// the predecessor map.
  1.1076 +    ///
  1.1077 +    /// \ref named-templ-param "Named parameter" for setting
  1.1078 +    /// the map that stores the predecessor arcs of the nodes.
  1.1079 +    template<class T>
  1.1080 +    BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
  1.1081 +      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
  1.1082 +      return BellmanFordWizard<SetPredMapBase<T> >(*this);
  1.1083 +    }
  1.1084 +
  1.1085 +    template<class T>
  1.1086 +    struct SetDistMapBase : public Base {
  1.1087 +      typedef T DistMap;
  1.1088 +      static DistMap *createDistMap(const Digraph &) { return 0; };
  1.1089 +      SetDistMapBase(const TR &b) : TR(b) {}
  1.1090 +    };
  1.1091 +
  1.1092 +    /// \brief \ref named-templ-param "Named parameter" for setting
  1.1093 +    /// the distance map.
  1.1094 +    ///
  1.1095 +    /// \ref named-templ-param "Named parameter" for setting
  1.1096 +    /// the map that stores the distances of the nodes calculated
  1.1097 +    /// by the algorithm.
  1.1098 +    template<class T>
  1.1099 +    BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
  1.1100 +      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
  1.1101 +      return BellmanFordWizard<SetDistMapBase<T> >(*this);
  1.1102 +    }
  1.1103 +
  1.1104 +    template<class T>
  1.1105 +    struct SetPathBase : public Base {
  1.1106 +      typedef T Path;
  1.1107 +      SetPathBase(const TR &b) : TR(b) {}
  1.1108 +    };
  1.1109 +
  1.1110 +    /// \brief \ref named-func-param "Named parameter" for getting
  1.1111 +    /// the shortest path to the target node.
  1.1112 +    ///
  1.1113 +    /// \ref named-func-param "Named parameter" for getting
  1.1114 +    /// the shortest path to the target node.
  1.1115 +    template<class T>
  1.1116 +    BellmanFordWizard<SetPathBase<T> > path(const T &t)
  1.1117 +    {
  1.1118 +      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
  1.1119 +      return BellmanFordWizard<SetPathBase<T> >(*this);
  1.1120 +    }
  1.1121 +
  1.1122 +    /// \brief \ref named-func-param "Named parameter" for getting
  1.1123 +    /// the distance of the target node.
  1.1124 +    ///
  1.1125 +    /// \ref named-func-param "Named parameter" for getting
  1.1126 +    /// the distance of the target node.
  1.1127 +    BellmanFordWizard dist(const Value &d)
  1.1128 +    {
  1.1129 +      Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
  1.1130 +      return *this;
  1.1131 +    }
  1.1132 +
  1.1133 +  };
  1.1134 +
  1.1135 +  /// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"
  1.1136 +  /// algorithm.
  1.1137 +  ///
  1.1138 +  /// \ingroup shortest_path
  1.1139 +  /// Function type interface for the \ref BellmanFord "Bellman-Ford"
  1.1140 +  /// algorithm.
  1.1141 +  ///
  1.1142 +  /// This function also has several \ref named-templ-func-param
  1.1143 +  /// "named parameters", they are declared as the members of class
  1.1144 +  /// \ref BellmanFordWizard.
  1.1145 +  /// The following examples show how to use these parameters.
  1.1146 +  /// \code
  1.1147 +  ///   // Compute shortest path from node s to each node
  1.1148 +  ///   bellmanFord(g,length).predMap(preds).distMap(dists).run(s);
  1.1149 +  ///
  1.1150 +  ///   // Compute shortest path from s to t
  1.1151 +  ///   bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);
  1.1152 +  /// \endcode
  1.1153 +  /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
  1.1154 +  /// to the end of the parameter list.
  1.1155 +  /// \sa BellmanFordWizard
  1.1156 +  /// \sa BellmanFord
  1.1157 +  template<typename GR, typename LEN>
  1.1158 +  BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >
  1.1159 +  bellmanFord(const GR& digraph,
  1.1160 +              const LEN& length)
  1.1161 +  {
  1.1162 +    return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);
  1.1163 +  }
  1.1164 +
  1.1165 +} //END OF NAMESPACE LEMON
  1.1166 +
  1.1167 +#endif
  1.1168 +