lemon/cost_scaling.h
changeset 964 2b6bffe0e7e8
parent 877 141f9c0db4a3
child 932 773dd96ecdd8
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/cost_scaling.h	Tue Dec 20 18:15:14 2011 +0100
     1.3 @@ -0,0 +1,1316 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2010
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_COST_SCALING_H
    1.23 +#define LEMON_COST_SCALING_H
    1.24 +
    1.25 +/// \ingroup min_cost_flow_algs
    1.26 +/// \file
    1.27 +/// \brief Cost scaling algorithm for finding a minimum cost flow.
    1.28 +
    1.29 +#include <vector>
    1.30 +#include <deque>
    1.31 +#include <limits>
    1.32 +
    1.33 +#include <lemon/core.h>
    1.34 +#include <lemon/maps.h>
    1.35 +#include <lemon/math.h>
    1.36 +#include <lemon/static_graph.h>
    1.37 +#include <lemon/circulation.h>
    1.38 +#include <lemon/bellman_ford.h>
    1.39 +
    1.40 +namespace lemon {
    1.41 +
    1.42 +  /// \brief Default traits class of CostScaling algorithm.
    1.43 +  ///
    1.44 +  /// Default traits class of CostScaling algorithm.
    1.45 +  /// \tparam GR Digraph type.
    1.46 +  /// \tparam V The number type used for flow amounts, capacity bounds
    1.47 +  /// and supply values. By default it is \c int.
    1.48 +  /// \tparam C The number type used for costs and potentials.
    1.49 +  /// By default it is the same as \c V.
    1.50 +#ifdef DOXYGEN
    1.51 +  template <typename GR, typename V = int, typename C = V>
    1.52 +#else
    1.53 +  template < typename GR, typename V = int, typename C = V,
    1.54 +             bool integer = std::numeric_limits<C>::is_integer >
    1.55 +#endif
    1.56 +  struct CostScalingDefaultTraits
    1.57 +  {
    1.58 +    /// The type of the digraph
    1.59 +    typedef GR Digraph;
    1.60 +    /// The type of the flow amounts, capacity bounds and supply values
    1.61 +    typedef V Value;
    1.62 +    /// The type of the arc costs
    1.63 +    typedef C Cost;
    1.64 +
    1.65 +    /// \brief The large cost type used for internal computations
    1.66 +    ///
    1.67 +    /// The large cost type used for internal computations.
    1.68 +    /// It is \c long \c long if the \c Cost type is integer,
    1.69 +    /// otherwise it is \c double.
    1.70 +    /// \c Cost must be convertible to \c LargeCost.
    1.71 +    typedef double LargeCost;
    1.72 +  };
    1.73 +
    1.74 +  // Default traits class for integer cost types
    1.75 +  template <typename GR, typename V, typename C>
    1.76 +  struct CostScalingDefaultTraits<GR, V, C, true>
    1.77 +  {
    1.78 +    typedef GR Digraph;
    1.79 +    typedef V Value;
    1.80 +    typedef C Cost;
    1.81 +#ifdef LEMON_HAVE_LONG_LONG
    1.82 +    typedef long long LargeCost;
    1.83 +#else
    1.84 +    typedef long LargeCost;
    1.85 +#endif
    1.86 +  };
    1.87 +
    1.88 +
    1.89 +  /// \addtogroup min_cost_flow_algs
    1.90 +  /// @{
    1.91 +
    1.92 +  /// \brief Implementation of the Cost Scaling algorithm for
    1.93 +  /// finding a \ref min_cost_flow "minimum cost flow".
    1.94 +  ///
    1.95 +  /// \ref CostScaling implements a cost scaling algorithm that performs
    1.96 +  /// push/augment and relabel operations for finding a \ref min_cost_flow
    1.97 +  /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
    1.98 +  /// \ref goldberg97efficient, \ref bunnagel98efficient.
    1.99 +  /// It is a highly efficient primal-dual solution method, which
   1.100 +  /// can be viewed as the generalization of the \ref Preflow
   1.101 +  /// "preflow push-relabel" algorithm for the maximum flow problem.
   1.102 +  ///
   1.103 +  /// Most of the parameters of the problem (except for the digraph)
   1.104 +  /// can be given using separate functions, and the algorithm can be
   1.105 +  /// executed using the \ref run() function. If some parameters are not
   1.106 +  /// specified, then default values will be used.
   1.107 +  ///
   1.108 +  /// \tparam GR The digraph type the algorithm runs on.
   1.109 +  /// \tparam V The number type used for flow amounts, capacity bounds
   1.110 +  /// and supply values in the algorithm. By default, it is \c int.
   1.111 +  /// \tparam C The number type used for costs and potentials in the
   1.112 +  /// algorithm. By default, it is the same as \c V.
   1.113 +  /// \tparam TR The traits class that defines various types used by the
   1.114 +  /// algorithm. By default, it is \ref CostScalingDefaultTraits
   1.115 +  /// "CostScalingDefaultTraits<GR, V, C>".
   1.116 +  /// In most cases, this parameter should not be set directly,
   1.117 +  /// consider to use the named template parameters instead.
   1.118 +  ///
   1.119 +  /// \warning Both number types must be signed and all input data must
   1.120 +  /// be integer.
   1.121 +  /// \warning This algorithm does not support negative costs for such
   1.122 +  /// arcs that have infinite upper bound.
   1.123 +  ///
   1.124 +  /// \note %CostScaling provides three different internal methods,
   1.125 +  /// from which the most efficient one is used by default.
   1.126 +  /// For more information, see \ref Method.
   1.127 +#ifdef DOXYGEN
   1.128 +  template <typename GR, typename V, typename C, typename TR>
   1.129 +#else
   1.130 +  template < typename GR, typename V = int, typename C = V,
   1.131 +             typename TR = CostScalingDefaultTraits<GR, V, C> >
   1.132 +#endif
   1.133 +  class CostScaling
   1.134 +  {
   1.135 +  public:
   1.136 +
   1.137 +    /// The type of the digraph
   1.138 +    typedef typename TR::Digraph Digraph;
   1.139 +    /// The type of the flow amounts, capacity bounds and supply values
   1.140 +    typedef typename TR::Value Value;
   1.141 +    /// The type of the arc costs
   1.142 +    typedef typename TR::Cost Cost;
   1.143 +
   1.144 +    /// \brief The large cost type
   1.145 +    ///
   1.146 +    /// The large cost type used for internal computations.
   1.147 +    /// By default, it is \c long \c long if the \c Cost type is integer,
   1.148 +    /// otherwise it is \c double.
   1.149 +    typedef typename TR::LargeCost LargeCost;
   1.150 +
   1.151 +    /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
   1.152 +    typedef TR Traits;
   1.153 +
   1.154 +  public:
   1.155 +
   1.156 +    /// \brief Problem type constants for the \c run() function.
   1.157 +    ///
   1.158 +    /// Enum type containing the problem type constants that can be
   1.159 +    /// returned by the \ref run() function of the algorithm.
   1.160 +    enum ProblemType {
   1.161 +      /// The problem has no feasible solution (flow).
   1.162 +      INFEASIBLE,
   1.163 +      /// The problem has optimal solution (i.e. it is feasible and
   1.164 +      /// bounded), and the algorithm has found optimal flow and node
   1.165 +      /// potentials (primal and dual solutions).
   1.166 +      OPTIMAL,
   1.167 +      /// The digraph contains an arc of negative cost and infinite
   1.168 +      /// upper bound. It means that the objective function is unbounded
   1.169 +      /// on that arc, however, note that it could actually be bounded
   1.170 +      /// over the feasible flows, but this algroithm cannot handle
   1.171 +      /// these cases.
   1.172 +      UNBOUNDED
   1.173 +    };
   1.174 +
   1.175 +    /// \brief Constants for selecting the internal method.
   1.176 +    ///
   1.177 +    /// Enum type containing constants for selecting the internal method
   1.178 +    /// for the \ref run() function.
   1.179 +    ///
   1.180 +    /// \ref CostScaling provides three internal methods that differ mainly
   1.181 +    /// in their base operations, which are used in conjunction with the
   1.182 +    /// relabel operation.
   1.183 +    /// By default, the so called \ref PARTIAL_AUGMENT
   1.184 +    /// "Partial Augment-Relabel" method is used, which proved to be
   1.185 +    /// the most efficient and the most robust on various test inputs.
   1.186 +    /// However, the other methods can be selected using the \ref run()
   1.187 +    /// function with the proper parameter.
   1.188 +    enum Method {
   1.189 +      /// Local push operations are used, i.e. flow is moved only on one
   1.190 +      /// admissible arc at once.
   1.191 +      PUSH,
   1.192 +      /// Augment operations are used, i.e. flow is moved on admissible
   1.193 +      /// paths from a node with excess to a node with deficit.
   1.194 +      AUGMENT,
   1.195 +      /// Partial augment operations are used, i.e. flow is moved on
   1.196 +      /// admissible paths started from a node with excess, but the
   1.197 +      /// lengths of these paths are limited. This method can be viewed
   1.198 +      /// as a combined version of the previous two operations.
   1.199 +      PARTIAL_AUGMENT
   1.200 +    };
   1.201 +
   1.202 +  private:
   1.203 +
   1.204 +    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   1.205 +
   1.206 +    typedef std::vector<int> IntVector;
   1.207 +    typedef std::vector<Value> ValueVector;
   1.208 +    typedef std::vector<Cost> CostVector;
   1.209 +    typedef std::vector<LargeCost> LargeCostVector;
   1.210 +    typedef std::vector<char> BoolVector;
   1.211 +    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   1.212 +
   1.213 +  private:
   1.214 +
   1.215 +    template <typename KT, typename VT>
   1.216 +    class StaticVectorMap {
   1.217 +    public:
   1.218 +      typedef KT Key;
   1.219 +      typedef VT Value;
   1.220 +
   1.221 +      StaticVectorMap(std::vector<Value>& v) : _v(v) {}
   1.222 +
   1.223 +      const Value& operator[](const Key& key) const {
   1.224 +        return _v[StaticDigraph::id(key)];
   1.225 +      }
   1.226 +
   1.227 +      Value& operator[](const Key& key) {
   1.228 +        return _v[StaticDigraph::id(key)];
   1.229 +      }
   1.230 +
   1.231 +      void set(const Key& key, const Value& val) {
   1.232 +        _v[StaticDigraph::id(key)] = val;
   1.233 +      }
   1.234 +
   1.235 +    private:
   1.236 +      std::vector<Value>& _v;
   1.237 +    };
   1.238 +
   1.239 +    typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
   1.240 +    typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
   1.241 +
   1.242 +  private:
   1.243 +
   1.244 +    // Data related to the underlying digraph
   1.245 +    const GR &_graph;
   1.246 +    int _node_num;
   1.247 +    int _arc_num;
   1.248 +    int _res_node_num;
   1.249 +    int _res_arc_num;
   1.250 +    int _root;
   1.251 +
   1.252 +    // Parameters of the problem
   1.253 +    bool _have_lower;
   1.254 +    Value _sum_supply;
   1.255 +    int _sup_node_num;
   1.256 +
   1.257 +    // Data structures for storing the digraph
   1.258 +    IntNodeMap _node_id;
   1.259 +    IntArcMap _arc_idf;
   1.260 +    IntArcMap _arc_idb;
   1.261 +    IntVector _first_out;
   1.262 +    BoolVector _forward;
   1.263 +    IntVector _source;
   1.264 +    IntVector _target;
   1.265 +    IntVector _reverse;
   1.266 +
   1.267 +    // Node and arc data
   1.268 +    ValueVector _lower;
   1.269 +    ValueVector _upper;
   1.270 +    CostVector _scost;
   1.271 +    ValueVector _supply;
   1.272 +
   1.273 +    ValueVector _res_cap;
   1.274 +    LargeCostVector _cost;
   1.275 +    LargeCostVector _pi;
   1.276 +    ValueVector _excess;
   1.277 +    IntVector _next_out;
   1.278 +    std::deque<int> _active_nodes;
   1.279 +
   1.280 +    // Data for scaling
   1.281 +    LargeCost _epsilon;
   1.282 +    int _alpha;
   1.283 +
   1.284 +    IntVector _buckets;
   1.285 +    IntVector _bucket_next;
   1.286 +    IntVector _bucket_prev;
   1.287 +    IntVector _rank;
   1.288 +    int _max_rank;
   1.289 +
   1.290 +    // Data for a StaticDigraph structure
   1.291 +    typedef std::pair<int, int> IntPair;
   1.292 +    StaticDigraph _sgr;
   1.293 +    std::vector<IntPair> _arc_vec;
   1.294 +    std::vector<LargeCost> _cost_vec;
   1.295 +    LargeCostArcMap _cost_map;
   1.296 +    LargeCostNodeMap _pi_map;
   1.297 +
   1.298 +  public:
   1.299 +
   1.300 +    /// \brief Constant for infinite upper bounds (capacities).
   1.301 +    ///
   1.302 +    /// Constant for infinite upper bounds (capacities).
   1.303 +    /// It is \c std::numeric_limits<Value>::infinity() if available,
   1.304 +    /// \c std::numeric_limits<Value>::max() otherwise.
   1.305 +    const Value INF;
   1.306 +
   1.307 +  public:
   1.308 +
   1.309 +    /// \name Named Template Parameters
   1.310 +    /// @{
   1.311 +
   1.312 +    template <typename T>
   1.313 +    struct SetLargeCostTraits : public Traits {
   1.314 +      typedef T LargeCost;
   1.315 +    };
   1.316 +
   1.317 +    /// \brief \ref named-templ-param "Named parameter" for setting
   1.318 +    /// \c LargeCost type.
   1.319 +    ///
   1.320 +    /// \ref named-templ-param "Named parameter" for setting \c LargeCost
   1.321 +    /// type, which is used for internal computations in the algorithm.
   1.322 +    /// \c Cost must be convertible to \c LargeCost.
   1.323 +    template <typename T>
   1.324 +    struct SetLargeCost
   1.325 +      : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
   1.326 +      typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
   1.327 +    };
   1.328 +
   1.329 +    /// @}
   1.330 +
   1.331 +  protected:
   1.332 +
   1.333 +    CostScaling() {}
   1.334 +
   1.335 +  public:
   1.336 +
   1.337 +    /// \brief Constructor.
   1.338 +    ///
   1.339 +    /// The constructor of the class.
   1.340 +    ///
   1.341 +    /// \param graph The digraph the algorithm runs on.
   1.342 +    CostScaling(const GR& graph) :
   1.343 +      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   1.344 +      _cost_map(_cost_vec), _pi_map(_pi),
   1.345 +      INF(std::numeric_limits<Value>::has_infinity ?
   1.346 +          std::numeric_limits<Value>::infinity() :
   1.347 +          std::numeric_limits<Value>::max())
   1.348 +    {
   1.349 +      // Check the number types
   1.350 +      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   1.351 +        "The flow type of CostScaling must be signed");
   1.352 +      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   1.353 +        "The cost type of CostScaling must be signed");
   1.354 +
   1.355 +      // Reset data structures
   1.356 +      reset();
   1.357 +    }
   1.358 +
   1.359 +    /// \name Parameters
   1.360 +    /// The parameters of the algorithm can be specified using these
   1.361 +    /// functions.
   1.362 +
   1.363 +    /// @{
   1.364 +
   1.365 +    /// \brief Set the lower bounds on the arcs.
   1.366 +    ///
   1.367 +    /// This function sets the lower bounds on the arcs.
   1.368 +    /// If it is not used before calling \ref run(), the lower bounds
   1.369 +    /// will be set to zero on all arcs.
   1.370 +    ///
   1.371 +    /// \param map An arc map storing the lower bounds.
   1.372 +    /// Its \c Value type must be convertible to the \c Value type
   1.373 +    /// of the algorithm.
   1.374 +    ///
   1.375 +    /// \return <tt>(*this)</tt>
   1.376 +    template <typename LowerMap>
   1.377 +    CostScaling& lowerMap(const LowerMap& map) {
   1.378 +      _have_lower = true;
   1.379 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.380 +        _lower[_arc_idf[a]] = map[a];
   1.381 +        _lower[_arc_idb[a]] = map[a];
   1.382 +      }
   1.383 +      return *this;
   1.384 +    }
   1.385 +
   1.386 +    /// \brief Set the upper bounds (capacities) on the arcs.
   1.387 +    ///
   1.388 +    /// This function sets the upper bounds (capacities) on the arcs.
   1.389 +    /// If it is not used before calling \ref run(), the upper bounds
   1.390 +    /// will be set to \ref INF on all arcs (i.e. the flow value will be
   1.391 +    /// unbounded from above).
   1.392 +    ///
   1.393 +    /// \param map An arc map storing the upper bounds.
   1.394 +    /// Its \c Value type must be convertible to the \c Value type
   1.395 +    /// of the algorithm.
   1.396 +    ///
   1.397 +    /// \return <tt>(*this)</tt>
   1.398 +    template<typename UpperMap>
   1.399 +    CostScaling& upperMap(const UpperMap& map) {
   1.400 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.401 +        _upper[_arc_idf[a]] = map[a];
   1.402 +      }
   1.403 +      return *this;
   1.404 +    }
   1.405 +
   1.406 +    /// \brief Set the costs of the arcs.
   1.407 +    ///
   1.408 +    /// This function sets the costs of the arcs.
   1.409 +    /// If it is not used before calling \ref run(), the costs
   1.410 +    /// will be set to \c 1 on all arcs.
   1.411 +    ///
   1.412 +    /// \param map An arc map storing the costs.
   1.413 +    /// Its \c Value type must be convertible to the \c Cost type
   1.414 +    /// of the algorithm.
   1.415 +    ///
   1.416 +    /// \return <tt>(*this)</tt>
   1.417 +    template<typename CostMap>
   1.418 +    CostScaling& costMap(const CostMap& map) {
   1.419 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.420 +        _scost[_arc_idf[a]] =  map[a];
   1.421 +        _scost[_arc_idb[a]] = -map[a];
   1.422 +      }
   1.423 +      return *this;
   1.424 +    }
   1.425 +
   1.426 +    /// \brief Set the supply values of the nodes.
   1.427 +    ///
   1.428 +    /// This function sets the supply values of the nodes.
   1.429 +    /// If neither this function nor \ref stSupply() is used before
   1.430 +    /// calling \ref run(), the supply of each node will be set to zero.
   1.431 +    ///
   1.432 +    /// \param map A node map storing the supply values.
   1.433 +    /// Its \c Value type must be convertible to the \c Value type
   1.434 +    /// of the algorithm.
   1.435 +    ///
   1.436 +    /// \return <tt>(*this)</tt>
   1.437 +    template<typename SupplyMap>
   1.438 +    CostScaling& supplyMap(const SupplyMap& map) {
   1.439 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.440 +        _supply[_node_id[n]] = map[n];
   1.441 +      }
   1.442 +      return *this;
   1.443 +    }
   1.444 +
   1.445 +    /// \brief Set single source and target nodes and a supply value.
   1.446 +    ///
   1.447 +    /// This function sets a single source node and a single target node
   1.448 +    /// and the required flow value.
   1.449 +    /// If neither this function nor \ref supplyMap() is used before
   1.450 +    /// calling \ref run(), the supply of each node will be set to zero.
   1.451 +    ///
   1.452 +    /// Using this function has the same effect as using \ref supplyMap()
   1.453 +    /// with such a map in which \c k is assigned to \c s, \c -k is
   1.454 +    /// assigned to \c t and all other nodes have zero supply value.
   1.455 +    ///
   1.456 +    /// \param s The source node.
   1.457 +    /// \param t The target node.
   1.458 +    /// \param k The required amount of flow from node \c s to node \c t
   1.459 +    /// (i.e. the supply of \c s and the demand of \c t).
   1.460 +    ///
   1.461 +    /// \return <tt>(*this)</tt>
   1.462 +    CostScaling& stSupply(const Node& s, const Node& t, Value k) {
   1.463 +      for (int i = 0; i != _res_node_num; ++i) {
   1.464 +        _supply[i] = 0;
   1.465 +      }
   1.466 +      _supply[_node_id[s]] =  k;
   1.467 +      _supply[_node_id[t]] = -k;
   1.468 +      return *this;
   1.469 +    }
   1.470 +
   1.471 +    /// @}
   1.472 +
   1.473 +    /// \name Execution control
   1.474 +    /// The algorithm can be executed using \ref run().
   1.475 +
   1.476 +    /// @{
   1.477 +
   1.478 +    /// \brief Run the algorithm.
   1.479 +    ///
   1.480 +    /// This function runs the algorithm.
   1.481 +    /// The paramters can be specified using functions \ref lowerMap(),
   1.482 +    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   1.483 +    /// For example,
   1.484 +    /// \code
   1.485 +    ///   CostScaling<ListDigraph> cs(graph);
   1.486 +    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   1.487 +    ///     .supplyMap(sup).run();
   1.488 +    /// \endcode
   1.489 +    ///
   1.490 +    /// This function can be called more than once. All the given parameters
   1.491 +    /// are kept for the next call, unless \ref resetParams() or \ref reset()
   1.492 +    /// is used, thus only the modified parameters have to be set again.
   1.493 +    /// If the underlying digraph was also modified after the construction
   1.494 +    /// of the class (or the last \ref reset() call), then the \ref reset()
   1.495 +    /// function must be called.
   1.496 +    ///
   1.497 +    /// \param method The internal method that will be used in the
   1.498 +    /// algorithm. For more information, see \ref Method.
   1.499 +    /// \param factor The cost scaling factor. It must be larger than one.
   1.500 +    ///
   1.501 +    /// \return \c INFEASIBLE if no feasible flow exists,
   1.502 +    /// \n \c OPTIMAL if the problem has optimal solution
   1.503 +    /// (i.e. it is feasible and bounded), and the algorithm has found
   1.504 +    /// optimal flow and node potentials (primal and dual solutions),
   1.505 +    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   1.506 +    /// and infinite upper bound. It means that the objective function
   1.507 +    /// is unbounded on that arc, however, note that it could actually be
   1.508 +    /// bounded over the feasible flows, but this algroithm cannot handle
   1.509 +    /// these cases.
   1.510 +    ///
   1.511 +    /// \see ProblemType, Method
   1.512 +    /// \see resetParams(), reset()
   1.513 +    ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
   1.514 +      _alpha = factor;
   1.515 +      ProblemType pt = init();
   1.516 +      if (pt != OPTIMAL) return pt;
   1.517 +      start(method);
   1.518 +      return OPTIMAL;
   1.519 +    }
   1.520 +
   1.521 +    /// \brief Reset all the parameters that have been given before.
   1.522 +    ///
   1.523 +    /// This function resets all the paramaters that have been given
   1.524 +    /// before using functions \ref lowerMap(), \ref upperMap(),
   1.525 +    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   1.526 +    ///
   1.527 +    /// It is useful for multiple \ref run() calls. Basically, all the given
   1.528 +    /// parameters are kept for the next \ref run() call, unless
   1.529 +    /// \ref resetParams() or \ref reset() is used.
   1.530 +    /// If the underlying digraph was also modified after the construction
   1.531 +    /// of the class or the last \ref reset() call, then the \ref reset()
   1.532 +    /// function must be used, otherwise \ref resetParams() is sufficient.
   1.533 +    ///
   1.534 +    /// For example,
   1.535 +    /// \code
   1.536 +    ///   CostScaling<ListDigraph> cs(graph);
   1.537 +    ///
   1.538 +    ///   // First run
   1.539 +    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   1.540 +    ///     .supplyMap(sup).run();
   1.541 +    ///
   1.542 +    ///   // Run again with modified cost map (resetParams() is not called,
   1.543 +    ///   // so only the cost map have to be set again)
   1.544 +    ///   cost[e] += 100;
   1.545 +    ///   cs.costMap(cost).run();
   1.546 +    ///
   1.547 +    ///   // Run again from scratch using resetParams()
   1.548 +    ///   // (the lower bounds will be set to zero on all arcs)
   1.549 +    ///   cs.resetParams();
   1.550 +    ///   cs.upperMap(capacity).costMap(cost)
   1.551 +    ///     .supplyMap(sup).run();
   1.552 +    /// \endcode
   1.553 +    ///
   1.554 +    /// \return <tt>(*this)</tt>
   1.555 +    ///
   1.556 +    /// \see reset(), run()
   1.557 +    CostScaling& resetParams() {
   1.558 +      for (int i = 0; i != _res_node_num; ++i) {
   1.559 +        _supply[i] = 0;
   1.560 +      }
   1.561 +      int limit = _first_out[_root];
   1.562 +      for (int j = 0; j != limit; ++j) {
   1.563 +        _lower[j] = 0;
   1.564 +        _upper[j] = INF;
   1.565 +        _scost[j] = _forward[j] ? 1 : -1;
   1.566 +      }
   1.567 +      for (int j = limit; j != _res_arc_num; ++j) {
   1.568 +        _lower[j] = 0;
   1.569 +        _upper[j] = INF;
   1.570 +        _scost[j] = 0;
   1.571 +        _scost[_reverse[j]] = 0;
   1.572 +      }
   1.573 +      _have_lower = false;
   1.574 +      return *this;
   1.575 +    }
   1.576 +
   1.577 +    /// \brief Reset all the parameters that have been given before.
   1.578 +    ///
   1.579 +    /// This function resets all the paramaters that have been given
   1.580 +    /// before using functions \ref lowerMap(), \ref upperMap(),
   1.581 +    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   1.582 +    ///
   1.583 +    /// It is useful for multiple run() calls. If this function is not
   1.584 +    /// used, all the parameters given before are kept for the next
   1.585 +    /// \ref run() call.
   1.586 +    /// However, the underlying digraph must not be modified after this
   1.587 +    /// class have been constructed, since it copies and extends the graph.
   1.588 +    /// \return <tt>(*this)</tt>
   1.589 +    CostScaling& reset() {
   1.590 +      // Resize vectors
   1.591 +      _node_num = countNodes(_graph);
   1.592 +      _arc_num = countArcs(_graph);
   1.593 +      _res_node_num = _node_num + 1;
   1.594 +      _res_arc_num = 2 * (_arc_num + _node_num);
   1.595 +      _root = _node_num;
   1.596 +
   1.597 +      _first_out.resize(_res_node_num + 1);
   1.598 +      _forward.resize(_res_arc_num);
   1.599 +      _source.resize(_res_arc_num);
   1.600 +      _target.resize(_res_arc_num);
   1.601 +      _reverse.resize(_res_arc_num);
   1.602 +
   1.603 +      _lower.resize(_res_arc_num);
   1.604 +      _upper.resize(_res_arc_num);
   1.605 +      _scost.resize(_res_arc_num);
   1.606 +      _supply.resize(_res_node_num);
   1.607 +
   1.608 +      _res_cap.resize(_res_arc_num);
   1.609 +      _cost.resize(_res_arc_num);
   1.610 +      _pi.resize(_res_node_num);
   1.611 +      _excess.resize(_res_node_num);
   1.612 +      _next_out.resize(_res_node_num);
   1.613 +
   1.614 +      _arc_vec.reserve(_res_arc_num);
   1.615 +      _cost_vec.reserve(_res_arc_num);
   1.616 +
   1.617 +      // Copy the graph
   1.618 +      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
   1.619 +      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   1.620 +        _node_id[n] = i;
   1.621 +      }
   1.622 +      i = 0;
   1.623 +      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   1.624 +        _first_out[i] = j;
   1.625 +        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   1.626 +          _arc_idf[a] = j;
   1.627 +          _forward[j] = true;
   1.628 +          _source[j] = i;
   1.629 +          _target[j] = _node_id[_graph.runningNode(a)];
   1.630 +        }
   1.631 +        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   1.632 +          _arc_idb[a] = j;
   1.633 +          _forward[j] = false;
   1.634 +          _source[j] = i;
   1.635 +          _target[j] = _node_id[_graph.runningNode(a)];
   1.636 +        }
   1.637 +        _forward[j] = false;
   1.638 +        _source[j] = i;
   1.639 +        _target[j] = _root;
   1.640 +        _reverse[j] = k;
   1.641 +        _forward[k] = true;
   1.642 +        _source[k] = _root;
   1.643 +        _target[k] = i;
   1.644 +        _reverse[k] = j;
   1.645 +        ++j; ++k;
   1.646 +      }
   1.647 +      _first_out[i] = j;
   1.648 +      _first_out[_res_node_num] = k;
   1.649 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.650 +        int fi = _arc_idf[a];
   1.651 +        int bi = _arc_idb[a];
   1.652 +        _reverse[fi] = bi;
   1.653 +        _reverse[bi] = fi;
   1.654 +      }
   1.655 +
   1.656 +      // Reset parameters
   1.657 +      resetParams();
   1.658 +      return *this;
   1.659 +    }
   1.660 +
   1.661 +    /// @}
   1.662 +
   1.663 +    /// \name Query Functions
   1.664 +    /// The results of the algorithm can be obtained using these
   1.665 +    /// functions.\n
   1.666 +    /// The \ref run() function must be called before using them.
   1.667 +
   1.668 +    /// @{
   1.669 +
   1.670 +    /// \brief Return the total cost of the found flow.
   1.671 +    ///
   1.672 +    /// This function returns the total cost of the found flow.
   1.673 +    /// Its complexity is O(e).
   1.674 +    ///
   1.675 +    /// \note The return type of the function can be specified as a
   1.676 +    /// template parameter. For example,
   1.677 +    /// \code
   1.678 +    ///   cs.totalCost<double>();
   1.679 +    /// \endcode
   1.680 +    /// It is useful if the total cost cannot be stored in the \c Cost
   1.681 +    /// type of the algorithm, which is the default return type of the
   1.682 +    /// function.
   1.683 +    ///
   1.684 +    /// \pre \ref run() must be called before using this function.
   1.685 +    template <typename Number>
   1.686 +    Number totalCost() const {
   1.687 +      Number c = 0;
   1.688 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.689 +        int i = _arc_idb[a];
   1.690 +        c += static_cast<Number>(_res_cap[i]) *
   1.691 +             (-static_cast<Number>(_scost[i]));
   1.692 +      }
   1.693 +      return c;
   1.694 +    }
   1.695 +
   1.696 +#ifndef DOXYGEN
   1.697 +    Cost totalCost() const {
   1.698 +      return totalCost<Cost>();
   1.699 +    }
   1.700 +#endif
   1.701 +
   1.702 +    /// \brief Return the flow on the given arc.
   1.703 +    ///
   1.704 +    /// This function returns the flow on the given arc.
   1.705 +    ///
   1.706 +    /// \pre \ref run() must be called before using this function.
   1.707 +    Value flow(const Arc& a) const {
   1.708 +      return _res_cap[_arc_idb[a]];
   1.709 +    }
   1.710 +
   1.711 +    /// \brief Return the flow map (the primal solution).
   1.712 +    ///
   1.713 +    /// This function copies the flow value on each arc into the given
   1.714 +    /// map. The \c Value type of the algorithm must be convertible to
   1.715 +    /// the \c Value type of the map.
   1.716 +    ///
   1.717 +    /// \pre \ref run() must be called before using this function.
   1.718 +    template <typename FlowMap>
   1.719 +    void flowMap(FlowMap &map) const {
   1.720 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.721 +        map.set(a, _res_cap[_arc_idb[a]]);
   1.722 +      }
   1.723 +    }
   1.724 +
   1.725 +    /// \brief Return the potential (dual value) of the given node.
   1.726 +    ///
   1.727 +    /// This function returns the potential (dual value) of the
   1.728 +    /// given node.
   1.729 +    ///
   1.730 +    /// \pre \ref run() must be called before using this function.
   1.731 +    Cost potential(const Node& n) const {
   1.732 +      return static_cast<Cost>(_pi[_node_id[n]]);
   1.733 +    }
   1.734 +
   1.735 +    /// \brief Return the potential map (the dual solution).
   1.736 +    ///
   1.737 +    /// This function copies the potential (dual value) of each node
   1.738 +    /// into the given map.
   1.739 +    /// The \c Cost type of the algorithm must be convertible to the
   1.740 +    /// \c Value type of the map.
   1.741 +    ///
   1.742 +    /// \pre \ref run() must be called before using this function.
   1.743 +    template <typename PotentialMap>
   1.744 +    void potentialMap(PotentialMap &map) const {
   1.745 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.746 +        map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
   1.747 +      }
   1.748 +    }
   1.749 +
   1.750 +    /// @}
   1.751 +
   1.752 +  private:
   1.753 +
   1.754 +    // Initialize the algorithm
   1.755 +    ProblemType init() {
   1.756 +      if (_res_node_num <= 1) return INFEASIBLE;
   1.757 +
   1.758 +      // Check the sum of supply values
   1.759 +      _sum_supply = 0;
   1.760 +      for (int i = 0; i != _root; ++i) {
   1.761 +        _sum_supply += _supply[i];
   1.762 +      }
   1.763 +      if (_sum_supply > 0) return INFEASIBLE;
   1.764 +
   1.765 +
   1.766 +      // Initialize vectors
   1.767 +      for (int i = 0; i != _res_node_num; ++i) {
   1.768 +        _pi[i] = 0;
   1.769 +        _excess[i] = _supply[i];
   1.770 +      }
   1.771 +
   1.772 +      // Remove infinite upper bounds and check negative arcs
   1.773 +      const Value MAX = std::numeric_limits<Value>::max();
   1.774 +      int last_out;
   1.775 +      if (_have_lower) {
   1.776 +        for (int i = 0; i != _root; ++i) {
   1.777 +          last_out = _first_out[i+1];
   1.778 +          for (int j = _first_out[i]; j != last_out; ++j) {
   1.779 +            if (_forward[j]) {
   1.780 +              Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
   1.781 +              if (c >= MAX) return UNBOUNDED;
   1.782 +              _excess[i] -= c;
   1.783 +              _excess[_target[j]] += c;
   1.784 +            }
   1.785 +          }
   1.786 +        }
   1.787 +      } else {
   1.788 +        for (int i = 0; i != _root; ++i) {
   1.789 +          last_out = _first_out[i+1];
   1.790 +          for (int j = _first_out[i]; j != last_out; ++j) {
   1.791 +            if (_forward[j] && _scost[j] < 0) {
   1.792 +              Value c = _upper[j];
   1.793 +              if (c >= MAX) return UNBOUNDED;
   1.794 +              _excess[i] -= c;
   1.795 +              _excess[_target[j]] += c;
   1.796 +            }
   1.797 +          }
   1.798 +        }
   1.799 +      }
   1.800 +      Value ex, max_cap = 0;
   1.801 +      for (int i = 0; i != _res_node_num; ++i) {
   1.802 +        ex = _excess[i];
   1.803 +        _excess[i] = 0;
   1.804 +        if (ex < 0) max_cap -= ex;
   1.805 +      }
   1.806 +      for (int j = 0; j != _res_arc_num; ++j) {
   1.807 +        if (_upper[j] >= MAX) _upper[j] = max_cap;
   1.808 +      }
   1.809 +
   1.810 +      // Initialize the large cost vector and the epsilon parameter
   1.811 +      _epsilon = 0;
   1.812 +      LargeCost lc;
   1.813 +      for (int i = 0; i != _root; ++i) {
   1.814 +        last_out = _first_out[i+1];
   1.815 +        for (int j = _first_out[i]; j != last_out; ++j) {
   1.816 +          lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
   1.817 +          _cost[j] = lc;
   1.818 +          if (lc > _epsilon) _epsilon = lc;
   1.819 +        }
   1.820 +      }
   1.821 +      _epsilon /= _alpha;
   1.822 +
   1.823 +      // Initialize maps for Circulation and remove non-zero lower bounds
   1.824 +      ConstMap<Arc, Value> low(0);
   1.825 +      typedef typename Digraph::template ArcMap<Value> ValueArcMap;
   1.826 +      typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
   1.827 +      ValueArcMap cap(_graph), flow(_graph);
   1.828 +      ValueNodeMap sup(_graph);
   1.829 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.830 +        sup[n] = _supply[_node_id[n]];
   1.831 +      }
   1.832 +      if (_have_lower) {
   1.833 +        for (ArcIt a(_graph); a != INVALID; ++a) {
   1.834 +          int j = _arc_idf[a];
   1.835 +          Value c = _lower[j];
   1.836 +          cap[a] = _upper[j] - c;
   1.837 +          sup[_graph.source(a)] -= c;
   1.838 +          sup[_graph.target(a)] += c;
   1.839 +        }
   1.840 +      } else {
   1.841 +        for (ArcIt a(_graph); a != INVALID; ++a) {
   1.842 +          cap[a] = _upper[_arc_idf[a]];
   1.843 +        }
   1.844 +      }
   1.845 +
   1.846 +      _sup_node_num = 0;
   1.847 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.848 +        if (sup[n] > 0) ++_sup_node_num;
   1.849 +      }
   1.850 +
   1.851 +      // Find a feasible flow using Circulation
   1.852 +      Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
   1.853 +        circ(_graph, low, cap, sup);
   1.854 +      if (!circ.flowMap(flow).run()) return INFEASIBLE;
   1.855 +
   1.856 +      // Set residual capacities and handle GEQ supply type
   1.857 +      if (_sum_supply < 0) {
   1.858 +        for (ArcIt a(_graph); a != INVALID; ++a) {
   1.859 +          Value fa = flow[a];
   1.860 +          _res_cap[_arc_idf[a]] = cap[a] - fa;
   1.861 +          _res_cap[_arc_idb[a]] = fa;
   1.862 +          sup[_graph.source(a)] -= fa;
   1.863 +          sup[_graph.target(a)] += fa;
   1.864 +        }
   1.865 +        for (NodeIt n(_graph); n != INVALID; ++n) {
   1.866 +          _excess[_node_id[n]] = sup[n];
   1.867 +        }
   1.868 +        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   1.869 +          int u = _target[a];
   1.870 +          int ra = _reverse[a];
   1.871 +          _res_cap[a] = -_sum_supply + 1;
   1.872 +          _res_cap[ra] = -_excess[u];
   1.873 +          _cost[a] = 0;
   1.874 +          _cost[ra] = 0;
   1.875 +          _excess[u] = 0;
   1.876 +        }
   1.877 +      } else {
   1.878 +        for (ArcIt a(_graph); a != INVALID; ++a) {
   1.879 +          Value fa = flow[a];
   1.880 +          _res_cap[_arc_idf[a]] = cap[a] - fa;
   1.881 +          _res_cap[_arc_idb[a]] = fa;
   1.882 +        }
   1.883 +        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   1.884 +          int ra = _reverse[a];
   1.885 +          _res_cap[a] = 0;
   1.886 +          _res_cap[ra] = 0;
   1.887 +          _cost[a] = 0;
   1.888 +          _cost[ra] = 0;
   1.889 +        }
   1.890 +      }
   1.891 +
   1.892 +      return OPTIMAL;
   1.893 +    }
   1.894 +
   1.895 +    // Execute the algorithm and transform the results
   1.896 +    void start(Method method) {
   1.897 +      // Maximum path length for partial augment
   1.898 +      const int MAX_PATH_LENGTH = 4;
   1.899 +
   1.900 +      // Initialize data structures for buckets
   1.901 +      _max_rank = _alpha * _res_node_num;
   1.902 +      _buckets.resize(_max_rank);
   1.903 +      _bucket_next.resize(_res_node_num + 1);
   1.904 +      _bucket_prev.resize(_res_node_num + 1);
   1.905 +      _rank.resize(_res_node_num + 1);
   1.906 +
   1.907 +      // Execute the algorithm
   1.908 +      switch (method) {
   1.909 +        case PUSH:
   1.910 +          startPush();
   1.911 +          break;
   1.912 +        case AUGMENT:
   1.913 +          startAugment(_res_node_num - 1);
   1.914 +          break;
   1.915 +        case PARTIAL_AUGMENT:
   1.916 +          startAugment(MAX_PATH_LENGTH);
   1.917 +          break;
   1.918 +      }
   1.919 +
   1.920 +      // Compute node potentials for the original costs
   1.921 +      _arc_vec.clear();
   1.922 +      _cost_vec.clear();
   1.923 +      for (int j = 0; j != _res_arc_num; ++j) {
   1.924 +        if (_res_cap[j] > 0) {
   1.925 +          _arc_vec.push_back(IntPair(_source[j], _target[j]));
   1.926 +          _cost_vec.push_back(_scost[j]);
   1.927 +        }
   1.928 +      }
   1.929 +      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   1.930 +
   1.931 +      typename BellmanFord<StaticDigraph, LargeCostArcMap>
   1.932 +        ::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map);
   1.933 +      bf.distMap(_pi_map);
   1.934 +      bf.init(0);
   1.935 +      bf.start();
   1.936 +
   1.937 +      // Handle non-zero lower bounds
   1.938 +      if (_have_lower) {
   1.939 +        int limit = _first_out[_root];
   1.940 +        for (int j = 0; j != limit; ++j) {
   1.941 +          if (!_forward[j]) _res_cap[j] += _lower[j];
   1.942 +        }
   1.943 +      }
   1.944 +    }
   1.945 +
   1.946 +    // Initialize a cost scaling phase
   1.947 +    void initPhase() {
   1.948 +      // Saturate arcs not satisfying the optimality condition
   1.949 +      for (int u = 0; u != _res_node_num; ++u) {
   1.950 +        int last_out = _first_out[u+1];
   1.951 +        LargeCost pi_u = _pi[u];
   1.952 +        for (int a = _first_out[u]; a != last_out; ++a) {
   1.953 +          int v = _target[a];
   1.954 +          if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) {
   1.955 +            Value delta = _res_cap[a];
   1.956 +            _excess[u] -= delta;
   1.957 +            _excess[v] += delta;
   1.958 +            _res_cap[a] = 0;
   1.959 +            _res_cap[_reverse[a]] += delta;
   1.960 +          }
   1.961 +        }
   1.962 +      }
   1.963 +
   1.964 +      // Find active nodes (i.e. nodes with positive excess)
   1.965 +      for (int u = 0; u != _res_node_num; ++u) {
   1.966 +        if (_excess[u] > 0) _active_nodes.push_back(u);
   1.967 +      }
   1.968 +
   1.969 +      // Initialize the next arcs
   1.970 +      for (int u = 0; u != _res_node_num; ++u) {
   1.971 +        _next_out[u] = _first_out[u];
   1.972 +      }
   1.973 +    }
   1.974 +
   1.975 +    // Early termination heuristic
   1.976 +    bool earlyTermination() {
   1.977 +      const double EARLY_TERM_FACTOR = 3.0;
   1.978 +
   1.979 +      // Build a static residual graph
   1.980 +      _arc_vec.clear();
   1.981 +      _cost_vec.clear();
   1.982 +      for (int j = 0; j != _res_arc_num; ++j) {
   1.983 +        if (_res_cap[j] > 0) {
   1.984 +          _arc_vec.push_back(IntPair(_source[j], _target[j]));
   1.985 +          _cost_vec.push_back(_cost[j] + 1);
   1.986 +        }
   1.987 +      }
   1.988 +      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   1.989 +
   1.990 +      // Run Bellman-Ford algorithm to check if the current flow is optimal
   1.991 +      BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
   1.992 +      bf.init(0);
   1.993 +      bool done = false;
   1.994 +      int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num)));
   1.995 +      for (int i = 0; i < K && !done; ++i) {
   1.996 +        done = bf.processNextWeakRound();
   1.997 +      }
   1.998 +      return done;
   1.999 +    }
  1.1000 +
  1.1001 +    // Global potential update heuristic
  1.1002 +    void globalUpdate() {
  1.1003 +      int bucket_end = _root + 1;
  1.1004 +
  1.1005 +      // Initialize buckets
  1.1006 +      for (int r = 0; r != _max_rank; ++r) {
  1.1007 +        _buckets[r] = bucket_end;
  1.1008 +      }
  1.1009 +      Value total_excess = 0;
  1.1010 +      for (int i = 0; i != _res_node_num; ++i) {
  1.1011 +        if (_excess[i] < 0) {
  1.1012 +          _rank[i] = 0;
  1.1013 +          _bucket_next[i] = _buckets[0];
  1.1014 +          _bucket_prev[_buckets[0]] = i;
  1.1015 +          _buckets[0] = i;
  1.1016 +        } else {
  1.1017 +          total_excess += _excess[i];
  1.1018 +          _rank[i] = _max_rank;
  1.1019 +        }
  1.1020 +      }
  1.1021 +      if (total_excess == 0) return;
  1.1022 +
  1.1023 +      // Search the buckets
  1.1024 +      int r = 0;
  1.1025 +      for ( ; r != _max_rank; ++r) {
  1.1026 +        while (_buckets[r] != bucket_end) {
  1.1027 +          // Remove the first node from the current bucket
  1.1028 +          int u = _buckets[r];
  1.1029 +          _buckets[r] = _bucket_next[u];
  1.1030 +
  1.1031 +          // Search the incomming arcs of u
  1.1032 +          LargeCost pi_u = _pi[u];
  1.1033 +          int last_out = _first_out[u+1];
  1.1034 +          for (int a = _first_out[u]; a != last_out; ++a) {
  1.1035 +            int ra = _reverse[a];
  1.1036 +            if (_res_cap[ra] > 0) {
  1.1037 +              int v = _source[ra];
  1.1038 +              int old_rank_v = _rank[v];
  1.1039 +              if (r < old_rank_v) {
  1.1040 +                // Compute the new rank of v
  1.1041 +                LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
  1.1042 +                int new_rank_v = old_rank_v;
  1.1043 +                if (nrc < LargeCost(_max_rank))
  1.1044 +                  new_rank_v = r + 1 + int(nrc);
  1.1045 +
  1.1046 +                // Change the rank of v
  1.1047 +                if (new_rank_v < old_rank_v) {
  1.1048 +                  _rank[v] = new_rank_v;
  1.1049 +                  _next_out[v] = _first_out[v];
  1.1050 +
  1.1051 +                  // Remove v from its old bucket
  1.1052 +                  if (old_rank_v < _max_rank) {
  1.1053 +                    if (_buckets[old_rank_v] == v) {
  1.1054 +                      _buckets[old_rank_v] = _bucket_next[v];
  1.1055 +                    } else {
  1.1056 +                      _bucket_next[_bucket_prev[v]] = _bucket_next[v];
  1.1057 +                      _bucket_prev[_bucket_next[v]] = _bucket_prev[v];
  1.1058 +                    }
  1.1059 +                  }
  1.1060 +
  1.1061 +                  // Insert v to its new bucket
  1.1062 +                  _bucket_next[v] = _buckets[new_rank_v];
  1.1063 +                  _bucket_prev[_buckets[new_rank_v]] = v;
  1.1064 +                  _buckets[new_rank_v] = v;
  1.1065 +                }
  1.1066 +              }
  1.1067 +            }
  1.1068 +          }
  1.1069 +
  1.1070 +          // Finish search if there are no more active nodes
  1.1071 +          if (_excess[u] > 0) {
  1.1072 +            total_excess -= _excess[u];
  1.1073 +            if (total_excess <= 0) break;
  1.1074 +          }
  1.1075 +        }
  1.1076 +        if (total_excess <= 0) break;
  1.1077 +      }
  1.1078 +
  1.1079 +      // Relabel nodes
  1.1080 +      for (int u = 0; u != _res_node_num; ++u) {
  1.1081 +        int k = std::min(_rank[u], r);
  1.1082 +        if (k > 0) {
  1.1083 +          _pi[u] -= _epsilon * k;
  1.1084 +          _next_out[u] = _first_out[u];
  1.1085 +        }
  1.1086 +      }
  1.1087 +    }
  1.1088 +
  1.1089 +    /// Execute the algorithm performing augment and relabel operations
  1.1090 +    void startAugment(int max_length) {
  1.1091 +      // Paramters for heuristics
  1.1092 +      const int EARLY_TERM_EPSILON_LIMIT = 1000;
  1.1093 +      const double GLOBAL_UPDATE_FACTOR = 3.0;
  1.1094 +
  1.1095 +      const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
  1.1096 +        (_res_node_num + _sup_node_num * _sup_node_num));
  1.1097 +      int next_update_limit = global_update_freq;
  1.1098 +
  1.1099 +      int relabel_cnt = 0;
  1.1100 +
  1.1101 +      // Perform cost scaling phases
  1.1102 +      std::vector<int> path;
  1.1103 +      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1.1104 +                                        1 : _epsilon / _alpha )
  1.1105 +      {
  1.1106 +        // Early termination heuristic
  1.1107 +        if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
  1.1108 +          if (earlyTermination()) break;
  1.1109 +        }
  1.1110 +
  1.1111 +        // Initialize current phase
  1.1112 +        initPhase();
  1.1113 +
  1.1114 +        // Perform partial augment and relabel operations
  1.1115 +        while (true) {
  1.1116 +          // Select an active node (FIFO selection)
  1.1117 +          while (_active_nodes.size() > 0 &&
  1.1118 +                 _excess[_active_nodes.front()] <= 0) {
  1.1119 +            _active_nodes.pop_front();
  1.1120 +          }
  1.1121 +          if (_active_nodes.size() == 0) break;
  1.1122 +          int start = _active_nodes.front();
  1.1123 +
  1.1124 +          // Find an augmenting path from the start node
  1.1125 +          path.clear();
  1.1126 +          int tip = start;
  1.1127 +          while (_excess[tip] >= 0 && int(path.size()) < max_length) {
  1.1128 +            int u;
  1.1129 +            LargeCost min_red_cost, rc, pi_tip = _pi[tip];
  1.1130 +            int last_out = _first_out[tip+1];
  1.1131 +            for (int a = _next_out[tip]; a != last_out; ++a) {
  1.1132 +              u = _target[a];
  1.1133 +              if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
  1.1134 +                path.push_back(a);
  1.1135 +                _next_out[tip] = a;
  1.1136 +                tip = u;
  1.1137 +                goto next_step;
  1.1138 +              }
  1.1139 +            }
  1.1140 +
  1.1141 +            // Relabel tip node
  1.1142 +            min_red_cost = std::numeric_limits<LargeCost>::max();
  1.1143 +            if (tip != start) {
  1.1144 +              int ra = _reverse[path.back()];
  1.1145 +              min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]];
  1.1146 +            }
  1.1147 +            for (int a = _first_out[tip]; a != last_out; ++a) {
  1.1148 +              rc = _cost[a] + pi_tip - _pi[_target[a]];
  1.1149 +              if (_res_cap[a] > 0 && rc < min_red_cost) {
  1.1150 +                min_red_cost = rc;
  1.1151 +              }
  1.1152 +            }
  1.1153 +            _pi[tip] -= min_red_cost + _epsilon;
  1.1154 +            _next_out[tip] = _first_out[tip];
  1.1155 +            ++relabel_cnt;
  1.1156 +
  1.1157 +            // Step back
  1.1158 +            if (tip != start) {
  1.1159 +              tip = _source[path.back()];
  1.1160 +              path.pop_back();
  1.1161 +            }
  1.1162 +
  1.1163 +          next_step: ;
  1.1164 +          }
  1.1165 +
  1.1166 +          // Augment along the found path (as much flow as possible)
  1.1167 +          Value delta;
  1.1168 +          int pa, u, v = start;
  1.1169 +          for (int i = 0; i != int(path.size()); ++i) {
  1.1170 +            pa = path[i];
  1.1171 +            u = v;
  1.1172 +            v = _target[pa];
  1.1173 +            delta = std::min(_res_cap[pa], _excess[u]);
  1.1174 +            _res_cap[pa] -= delta;
  1.1175 +            _res_cap[_reverse[pa]] += delta;
  1.1176 +            _excess[u] -= delta;
  1.1177 +            _excess[v] += delta;
  1.1178 +            if (_excess[v] > 0 && _excess[v] <= delta)
  1.1179 +              _active_nodes.push_back(v);
  1.1180 +          }
  1.1181 +
  1.1182 +          // Global update heuristic
  1.1183 +          if (relabel_cnt >= next_update_limit) {
  1.1184 +            globalUpdate();
  1.1185 +            next_update_limit += global_update_freq;
  1.1186 +          }
  1.1187 +        }
  1.1188 +      }
  1.1189 +    }
  1.1190 +
  1.1191 +    /// Execute the algorithm performing push and relabel operations
  1.1192 +    void startPush() {
  1.1193 +      // Paramters for heuristics
  1.1194 +      const int EARLY_TERM_EPSILON_LIMIT = 1000;
  1.1195 +      const double GLOBAL_UPDATE_FACTOR = 2.0;
  1.1196 +
  1.1197 +      const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
  1.1198 +        (_res_node_num + _sup_node_num * _sup_node_num));
  1.1199 +      int next_update_limit = global_update_freq;
  1.1200 +
  1.1201 +      int relabel_cnt = 0;
  1.1202 +
  1.1203 +      // Perform cost scaling phases
  1.1204 +      BoolVector hyper(_res_node_num, false);
  1.1205 +      LargeCostVector hyper_cost(_res_node_num);
  1.1206 +      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1.1207 +                                        1 : _epsilon / _alpha )
  1.1208 +      {
  1.1209 +        // Early termination heuristic
  1.1210 +        if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
  1.1211 +          if (earlyTermination()) break;
  1.1212 +        }
  1.1213 +
  1.1214 +        // Initialize current phase
  1.1215 +        initPhase();
  1.1216 +
  1.1217 +        // Perform push and relabel operations
  1.1218 +        while (_active_nodes.size() > 0) {
  1.1219 +          LargeCost min_red_cost, rc, pi_n;
  1.1220 +          Value delta;
  1.1221 +          int n, t, a, last_out = _res_arc_num;
  1.1222 +
  1.1223 +        next_node:
  1.1224 +          // Select an active node (FIFO selection)
  1.1225 +          n = _active_nodes.front();
  1.1226 +          last_out = _first_out[n+1];
  1.1227 +          pi_n = _pi[n];
  1.1228 +
  1.1229 +          // Perform push operations if there are admissible arcs
  1.1230 +          if (_excess[n] > 0) {
  1.1231 +            for (a = _next_out[n]; a != last_out; ++a) {
  1.1232 +              if (_res_cap[a] > 0 &&
  1.1233 +                  _cost[a] + pi_n - _pi[_target[a]] < 0) {
  1.1234 +                delta = std::min(_res_cap[a], _excess[n]);
  1.1235 +                t = _target[a];
  1.1236 +
  1.1237 +                // Push-look-ahead heuristic
  1.1238 +                Value ahead = -_excess[t];
  1.1239 +                int last_out_t = _first_out[t+1];
  1.1240 +                LargeCost pi_t = _pi[t];
  1.1241 +                for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
  1.1242 +                  if (_res_cap[ta] > 0 &&
  1.1243 +                      _cost[ta] + pi_t - _pi[_target[ta]] < 0)
  1.1244 +                    ahead += _res_cap[ta];
  1.1245 +                  if (ahead >= delta) break;
  1.1246 +                }
  1.1247 +                if (ahead < 0) ahead = 0;
  1.1248 +
  1.1249 +                // Push flow along the arc
  1.1250 +                if (ahead < delta && !hyper[t]) {
  1.1251 +                  _res_cap[a] -= ahead;
  1.1252 +                  _res_cap[_reverse[a]] += ahead;
  1.1253 +                  _excess[n] -= ahead;
  1.1254 +                  _excess[t] += ahead;
  1.1255 +                  _active_nodes.push_front(t);
  1.1256 +                  hyper[t] = true;
  1.1257 +                  hyper_cost[t] = _cost[a] + pi_n - pi_t;
  1.1258 +                  _next_out[n] = a;
  1.1259 +                  goto next_node;
  1.1260 +                } else {
  1.1261 +                  _res_cap[a] -= delta;
  1.1262 +                  _res_cap[_reverse[a]] += delta;
  1.1263 +                  _excess[n] -= delta;
  1.1264 +                  _excess[t] += delta;
  1.1265 +                  if (_excess[t] > 0 && _excess[t] <= delta)
  1.1266 +                    _active_nodes.push_back(t);
  1.1267 +                }
  1.1268 +
  1.1269 +                if (_excess[n] == 0) {
  1.1270 +                  _next_out[n] = a;
  1.1271 +                  goto remove_nodes;
  1.1272 +                }
  1.1273 +              }
  1.1274 +            }
  1.1275 +            _next_out[n] = a;
  1.1276 +          }
  1.1277 +
  1.1278 +          // Relabel the node if it is still active (or hyper)
  1.1279 +          if (_excess[n] > 0 || hyper[n]) {
  1.1280 +             min_red_cost = hyper[n] ? -hyper_cost[n] :
  1.1281 +               std::numeric_limits<LargeCost>::max();
  1.1282 +            for (int a = _first_out[n]; a != last_out; ++a) {
  1.1283 +              rc = _cost[a] + pi_n - _pi[_target[a]];
  1.1284 +              if (_res_cap[a] > 0 && rc < min_red_cost) {
  1.1285 +                min_red_cost = rc;
  1.1286 +              }
  1.1287 +            }
  1.1288 +            _pi[n] -= min_red_cost + _epsilon;
  1.1289 +            _next_out[n] = _first_out[n];
  1.1290 +            hyper[n] = false;
  1.1291 +            ++relabel_cnt;
  1.1292 +          }
  1.1293 +
  1.1294 +          // Remove nodes that are not active nor hyper
  1.1295 +        remove_nodes:
  1.1296 +          while ( _active_nodes.size() > 0 &&
  1.1297 +                  _excess[_active_nodes.front()] <= 0 &&
  1.1298 +                  !hyper[_active_nodes.front()] ) {
  1.1299 +            _active_nodes.pop_front();
  1.1300 +          }
  1.1301 +
  1.1302 +          // Global update heuristic
  1.1303 +          if (relabel_cnt >= next_update_limit) {
  1.1304 +            globalUpdate();
  1.1305 +            for (int u = 0; u != _res_node_num; ++u)
  1.1306 +              hyper[u] = false;
  1.1307 +            next_update_limit += global_update_freq;
  1.1308 +          }
  1.1309 +        }
  1.1310 +      }
  1.1311 +    }
  1.1312 +
  1.1313 +  }; //class CostScaling
  1.1314 +
  1.1315 +  ///@}
  1.1316 +
  1.1317 +} //namespace lemon
  1.1318 +
  1.1319 +#endif //LEMON_COST_SCALING_H