doc/min_cost_flow.dox
changeset 1177 3c00344f49c9
parent 1053 1c978b5bcc65
     1.1 --- a/doc/min_cost_flow.dox	Mon Jul 16 16:21:40 2018 +0200
     1.2 +++ b/doc/min_cost_flow.dox	Wed Oct 17 19:14:07 2018 +0200
     1.3 @@ -2,7 +2,7 @@
     1.4   *
     1.5   * This file is a part of LEMON, a generic C++ optimization library.
     1.6   *
     1.7 - * Copyright (C) 2003-2010
     1.8 + * Copyright (C) 2003-2013
     1.9   * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10   * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11   *
    1.12 @@ -26,7 +26,7 @@
    1.13  The \e minimum \e cost \e flow \e problem is to find a feasible flow of
    1.14  minimum total cost from a set of supply nodes to a set of demand nodes
    1.15  in a network with capacity constraints (lower and upper bounds)
    1.16 -and arc costs \ref amo93networkflows.
    1.17 +and arc costs \cite amo93networkflows.
    1.18  
    1.19  Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
    1.20  \f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
    1.21 @@ -101,7 +101,7 @@
    1.22      sup(u) \quad \forall u\in V \f]
    1.23  \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
    1.24  
    1.25 -However if the sum of the supply values is zero, then these two problems
    1.26 +However, if the sum of the supply values is zero, then these two problems
    1.27  are equivalent.
    1.28  The \ref min_cost_flow_algs "algorithms" in LEMON support the general
    1.29  form, so if you need the equality form, you have to ensure this additional