lemon/radix_heap.h
changeset 712 6d5f547e5bfb
parent 710 f1fe0ddad6f7
     1.1 --- a/lemon/radix_heap.h	Mon Aug 31 10:03:23 2009 +0200
     1.2 +++ b/lemon/radix_heap.h	Mon Aug 31 20:27:38 2009 +0200
     1.3 @@ -19,9 +19,9 @@
     1.4  #ifndef LEMON_RADIX_HEAP_H
     1.5  #define LEMON_RADIX_HEAP_H
     1.6  
     1.7 -///\ingroup auxdat
     1.8 +///\ingroup heaps
     1.9  ///\file
    1.10 -///\brief Radix Heap implementation.
    1.11 +///\brief Radix heap implementation.
    1.12  
    1.13  #include <vector>
    1.14  #include <lemon/error.h>
    1.15 @@ -29,56 +29,54 @@
    1.16  namespace lemon {
    1.17  
    1.18  
    1.19 -  /// \ingroup auxdata
    1.20 +  /// \ingroup heaps
    1.21    ///
    1.22 -  /// \brief A Radix Heap implementation.
    1.23 +  /// \brief Radix heap data structure.
    1.24    ///
    1.25 -  /// This class implements the \e radix \e heap data structure. A \e heap
    1.26 -  /// is a data structure for storing items with specified values called \e
    1.27 -  /// priorities in such a way that finding the item with minimum priority is
    1.28 -  /// efficient. This heap type can store only items with \e int priority.
    1.29 -  /// In a heap one can change the priority of an item, add or erase an
    1.30 -  /// item, but the priority cannot be decreased under the last removed
    1.31 -  /// item's priority.
    1.32 +  /// This class implements the \e radix \e heap data structure.
    1.33 +  /// It practically conforms to the \ref concepts::Heap "heap concept",
    1.34 +  /// but it has some limitations due its special implementation.
    1.35 +  /// The type of the priorities must be \c int and the priority of an
    1.36 +  /// item cannot be decreased under the priority of the last removed item.
    1.37    ///
    1.38 -  /// \param IM A read and writable Item int map, used internally
    1.39 -  /// to handle the cross references.
    1.40 -  ///
    1.41 -  /// \see BinHeap
    1.42 -  /// \see Dijkstra
    1.43 +  /// \tparam IM A read-writable item map with \c int values, used
    1.44 +  /// internally to handle the cross references.
    1.45    template <typename IM>
    1.46    class RadixHeap {
    1.47  
    1.48    public:
    1.49 -    typedef typename IM::Key Item;
    1.50 +
    1.51 +    /// Type of the item-int map.
    1.52 +    typedef IM ItemIntMap;
    1.53 +    /// Type of the priorities.
    1.54      typedef int Prio;
    1.55 -    typedef IM ItemIntMap;
    1.56 +    /// Type of the items stored in the heap.
    1.57 +    typedef typename ItemIntMap::Key Item;
    1.58  
    1.59      /// \brief Exception thrown by RadixHeap.
    1.60      ///
    1.61 -    /// This Exception is thrown when a smaller priority
    1.62 -    /// is inserted into the \e RadixHeap then the last time erased.
    1.63 +    /// This exception is thrown when an item is inserted into a
    1.64 +    /// RadixHeap with a priority smaller than the last erased one.
    1.65      /// \see RadixHeap
    1.66 -
    1.67 -    class UnderFlowPriorityError : public Exception {
    1.68 +    class PriorityUnderflowError : public Exception {
    1.69      public:
    1.70        virtual const char* what() const throw() {
    1.71 -        return "lemon::RadixHeap::UnderFlowPriorityError";
    1.72 +        return "lemon::RadixHeap::PriorityUnderflowError";
    1.73        }
    1.74      };
    1.75  
    1.76 -    /// \brief Type to represent the items states.
    1.77 +    /// \brief Type to represent the states of the items.
    1.78      ///
    1.79 -    /// Each Item element have a state associated to it. It may be "in heap",
    1.80 -    /// "pre heap" or "post heap". The latter two are indifferent from the
    1.81 +    /// Each item has a state associated to it. It can be "in heap",
    1.82 +    /// "pre-heap" or "post-heap". The latter two are indifferent from the
    1.83      /// heap's point of view, but may be useful to the user.
    1.84      ///
    1.85 -    /// The ItemIntMap \e should be initialized in such way that it maps
    1.86 -    /// PRE_HEAP (-1) to any element to be put in the heap...
    1.87 +    /// The item-int map must be initialized in such way that it assigns
    1.88 +    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
    1.89      enum State {
    1.90 -      IN_HEAP = 0,
    1.91 -      PRE_HEAP = -1,
    1.92 -      POST_HEAP = -2
    1.93 +      IN_HEAP = 0,    ///< = 0.
    1.94 +      PRE_HEAP = -1,  ///< = -1.
    1.95 +      POST_HEAP = -2  ///< = -2.
    1.96      };
    1.97  
    1.98    private:
    1.99 @@ -96,52 +94,55 @@
   1.100        RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
   1.101      };
   1.102  
   1.103 -    std::vector<RadixItem> data;
   1.104 -    std::vector<RadixBox> boxes;
   1.105 +    std::vector<RadixItem> _data;
   1.106 +    std::vector<RadixBox> _boxes;
   1.107  
   1.108      ItemIntMap &_iim;
   1.109  
   1.110 +  public:
   1.111  
   1.112 -  public:
   1.113 -    /// \brief The constructor.
   1.114 +    /// \brief Constructor.
   1.115      ///
   1.116 -    /// The constructor.
   1.117 -    ///
   1.118 -    /// \param map It should be given to the constructor, since it is used
   1.119 -    /// internally to handle the cross references. The value of the map
   1.120 -    /// should be PRE_HEAP (-1) for each element.
   1.121 -    ///
   1.122 -    /// \param minimal The initial minimal value of the heap.
   1.123 -    /// \param capacity It determines the initial capacity of the heap.
   1.124 -    RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0)
   1.125 -      : _iim(map) {
   1.126 -      boxes.push_back(RadixBox(minimal, 1));
   1.127 -      boxes.push_back(RadixBox(minimal + 1, 1));
   1.128 -      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
   1.129 +    /// Constructor.
   1.130 +    /// \param map A map that assigns \c int values to the items.
   1.131 +    /// It is used internally to handle the cross references.
   1.132 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   1.133 +    /// \param minimum The initial minimum value of the heap.
   1.134 +    /// \param capacity The initial capacity of the heap.
   1.135 +    RadixHeap(ItemIntMap &map, int minimum = 0, int capacity = 0)
   1.136 +      : _iim(map)
   1.137 +    {
   1.138 +      _boxes.push_back(RadixBox(minimum, 1));
   1.139 +      _boxes.push_back(RadixBox(minimum + 1, 1));
   1.140 +      while (lower(_boxes.size() - 1, capacity + minimum - 1)) {
   1.141          extend();
   1.142        }
   1.143      }
   1.144  
   1.145 -    /// The number of items stored in the heap.
   1.146 +    /// \brief The number of items stored in the heap.
   1.147      ///
   1.148 -    /// \brief Returns the number of items stored in the heap.
   1.149 -    int size() const { return data.size(); }
   1.150 -    /// \brief Checks if the heap stores no items.
   1.151 +    /// This function returns the number of items stored in the heap.
   1.152 +    int size() const { return _data.size(); }
   1.153 +
   1.154 +    /// \brief Check if the heap is empty.
   1.155      ///
   1.156 -    /// Returns \c true if and only if the heap stores no items.
   1.157 -    bool empty() const { return data.empty(); }
   1.158 +    /// This function returns \c true if the heap is empty.
   1.159 +    bool empty() const { return _data.empty(); }
   1.160  
   1.161 -    /// \brief Make empty this heap.
   1.162 +    /// \brief Make the heap empty.
   1.163      ///
   1.164 -    /// Make empty this heap. It does not change the cross reference
   1.165 -    /// map.  If you want to reuse a heap what is not surely empty you
   1.166 -    /// should first clear the heap and after that you should set the
   1.167 -    /// cross reference map for each item to \c PRE_HEAP.
   1.168 -    void clear(int minimal = 0, int capacity = 0) {
   1.169 -      data.clear(); boxes.clear();
   1.170 -      boxes.push_back(RadixBox(minimal, 1));
   1.171 -      boxes.push_back(RadixBox(minimal + 1, 1));
   1.172 -      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
   1.173 +    /// This functon makes the heap empty.
   1.174 +    /// It does not change the cross reference map. If you want to reuse
   1.175 +    /// a heap that is not surely empty, you should first clear it and
   1.176 +    /// then you should set the cross reference map to \c PRE_HEAP
   1.177 +    /// for each item.
   1.178 +    /// \param minimum The minimum value of the heap.
   1.179 +    /// \param capacity The capacity of the heap.
   1.180 +    void clear(int minimum = 0, int capacity = 0) {
   1.181 +      _data.clear(); _boxes.clear();
   1.182 +      _boxes.push_back(RadixBox(minimum, 1));
   1.183 +      _boxes.push_back(RadixBox(minimum + 1, 1));
   1.184 +      while (lower(_boxes.size() - 1, capacity + minimum - 1)) {
   1.185          extend();
   1.186        }
   1.187      }
   1.188 @@ -149,255 +150,259 @@
   1.189    private:
   1.190  
   1.191      bool upper(int box, Prio pr) {
   1.192 -      return pr < boxes[box].min;
   1.193 +      return pr < _boxes[box].min;
   1.194      }
   1.195  
   1.196      bool lower(int box, Prio pr) {
   1.197 -      return pr >= boxes[box].min + boxes[box].size;
   1.198 +      return pr >= _boxes[box].min + _boxes[box].size;
   1.199      }
   1.200  
   1.201 -    /// \brief Remove item from the box list.
   1.202 +    // Remove item from the box list
   1.203      void remove(int index) {
   1.204 -      if (data[index].prev >= 0) {
   1.205 -        data[data[index].prev].next = data[index].next;
   1.206 +      if (_data[index].prev >= 0) {
   1.207 +        _data[_data[index].prev].next = _data[index].next;
   1.208        } else {
   1.209 -        boxes[data[index].box].first = data[index].next;
   1.210 +        _boxes[_data[index].box].first = _data[index].next;
   1.211        }
   1.212 -      if (data[index].next >= 0) {
   1.213 -        data[data[index].next].prev = data[index].prev;
   1.214 +      if (_data[index].next >= 0) {
   1.215 +        _data[_data[index].next].prev = _data[index].prev;
   1.216        }
   1.217      }
   1.218  
   1.219 -    /// \brief Insert item into the box list.
   1.220 +    // Insert item into the box list
   1.221      void insert(int box, int index) {
   1.222 -      if (boxes[box].first == -1) {
   1.223 -        boxes[box].first = index;
   1.224 -        data[index].next = data[index].prev = -1;
   1.225 +      if (_boxes[box].first == -1) {
   1.226 +        _boxes[box].first = index;
   1.227 +        _data[index].next = _data[index].prev = -1;
   1.228        } else {
   1.229 -        data[index].next = boxes[box].first;
   1.230 -        data[boxes[box].first].prev = index;
   1.231 -        data[index].prev = -1;
   1.232 -        boxes[box].first = index;
   1.233 +        _data[index].next = _boxes[box].first;
   1.234 +        _data[_boxes[box].first].prev = index;
   1.235 +        _data[index].prev = -1;
   1.236 +        _boxes[box].first = index;
   1.237        }
   1.238 -      data[index].box = box;
   1.239 +      _data[index].box = box;
   1.240      }
   1.241  
   1.242 -    /// \brief Add a new box to the box list.
   1.243 +    // Add a new box to the box list
   1.244      void extend() {
   1.245 -      int min = boxes.back().min + boxes.back().size;
   1.246 -      int bs = 2 * boxes.back().size;
   1.247 -      boxes.push_back(RadixBox(min, bs));
   1.248 +      int min = _boxes.back().min + _boxes.back().size;
   1.249 +      int bs = 2 * _boxes.back().size;
   1.250 +      _boxes.push_back(RadixBox(min, bs));
   1.251      }
   1.252  
   1.253 -    /// \brief Move an item up into the proper box.
   1.254 -    void bubble_up(int index) {
   1.255 -      if (!lower(data[index].box, data[index].prio)) return;
   1.256 +    // Move an item up into the proper box.
   1.257 +    void bubbleUp(int index) {
   1.258 +      if (!lower(_data[index].box, _data[index].prio)) return;
   1.259        remove(index);
   1.260 -      int box = findUp(data[index].box, data[index].prio);
   1.261 +      int box = findUp(_data[index].box, _data[index].prio);
   1.262        insert(box, index);
   1.263      }
   1.264  
   1.265 -    /// \brief Find up the proper box for the item with the given prio.
   1.266 +    // Find up the proper box for the item with the given priority
   1.267      int findUp(int start, int pr) {
   1.268        while (lower(start, pr)) {
   1.269 -        if (++start == int(boxes.size())) {
   1.270 +        if (++start == int(_boxes.size())) {
   1.271            extend();
   1.272          }
   1.273        }
   1.274        return start;
   1.275      }
   1.276  
   1.277 -    /// \brief Move an item down into the proper box.
   1.278 -    void bubble_down(int index) {
   1.279 -      if (!upper(data[index].box, data[index].prio)) return;
   1.280 +    // Move an item down into the proper box
   1.281 +    void bubbleDown(int index) {
   1.282 +      if (!upper(_data[index].box, _data[index].prio)) return;
   1.283        remove(index);
   1.284 -      int box = findDown(data[index].box, data[index].prio);
   1.285 +      int box = findDown(_data[index].box, _data[index].prio);
   1.286        insert(box, index);
   1.287      }
   1.288  
   1.289 -    /// \brief Find up the proper box for the item with the given prio.
   1.290 +    // Find down the proper box for the item with the given priority
   1.291      int findDown(int start, int pr) {
   1.292        while (upper(start, pr)) {
   1.293 -        if (--start < 0) throw UnderFlowPriorityError();
   1.294 +        if (--start < 0) throw PriorityUnderflowError();
   1.295        }
   1.296        return start;
   1.297      }
   1.298  
   1.299 -    /// \brief Find the first not empty box.
   1.300 +    // Find the first non-empty box
   1.301      int findFirst() {
   1.302        int first = 0;
   1.303 -      while (boxes[first].first == -1) ++first;
   1.304 +      while (_boxes[first].first == -1) ++first;
   1.305        return first;
   1.306      }
   1.307  
   1.308 -    /// \brief Gives back the minimal prio of the box.
   1.309 +    // Gives back the minimum priority of the given box
   1.310      int minValue(int box) {
   1.311 -      int min = data[boxes[box].first].prio;
   1.312 -      for (int k = boxes[box].first; k != -1; k = data[k].next) {
   1.313 -        if (data[k].prio < min) min = data[k].prio;
   1.314 +      int min = _data[_boxes[box].first].prio;
   1.315 +      for (int k = _boxes[box].first; k != -1; k = _data[k].next) {
   1.316 +        if (_data[k].prio < min) min = _data[k].prio;
   1.317        }
   1.318        return min;
   1.319      }
   1.320  
   1.321 -    /// \brief Rearrange the items of the heap and makes the
   1.322 -    /// first box not empty.
   1.323 +    // Rearrange the items of the heap and make the first box non-empty
   1.324      void moveDown() {
   1.325        int box = findFirst();
   1.326        if (box == 0) return;
   1.327        int min = minValue(box);
   1.328        for (int i = 0; i <= box; ++i) {
   1.329 -        boxes[i].min = min;
   1.330 -        min += boxes[i].size;
   1.331 +        _boxes[i].min = min;
   1.332 +        min += _boxes[i].size;
   1.333        }
   1.334 -      int curr = boxes[box].first, next;
   1.335 +      int curr = _boxes[box].first, next;
   1.336        while (curr != -1) {
   1.337 -        next = data[curr].next;
   1.338 -        bubble_down(curr);
   1.339 +        next = _data[curr].next;
   1.340 +        bubbleDown(curr);
   1.341          curr = next;
   1.342        }
   1.343      }
   1.344  
   1.345 -    void relocate_last(int index) {
   1.346 -      if (index != int(data.size()) - 1) {
   1.347 -        data[index] = data.back();
   1.348 -        if (data[index].prev != -1) {
   1.349 -          data[data[index].prev].next = index;
   1.350 +    void relocateLast(int index) {
   1.351 +      if (index != int(_data.size()) - 1) {
   1.352 +        _data[index] = _data.back();
   1.353 +        if (_data[index].prev != -1) {
   1.354 +          _data[_data[index].prev].next = index;
   1.355          } else {
   1.356 -          boxes[data[index].box].first = index;
   1.357 +          _boxes[_data[index].box].first = index;
   1.358          }
   1.359 -        if (data[index].next != -1) {
   1.360 -          data[data[index].next].prev = index;
   1.361 +        if (_data[index].next != -1) {
   1.362 +          _data[_data[index].next].prev = index;
   1.363          }
   1.364 -        _iim[data[index].item] = index;
   1.365 +        _iim[_data[index].item] = index;
   1.366        }
   1.367 -      data.pop_back();
   1.368 +      _data.pop_back();
   1.369      }
   1.370  
   1.371    public:
   1.372  
   1.373      /// \brief Insert an item into the heap with the given priority.
   1.374      ///
   1.375 -    /// Adds \c i to the heap with priority \c p.
   1.376 +    /// This function inserts the given item into the heap with the
   1.377 +    /// given priority.
   1.378      /// \param i The item to insert.
   1.379      /// \param p The priority of the item.
   1.380 +    /// \pre \e i must not be stored in the heap.
   1.381 +    /// \warning This method may throw an \c UnderFlowPriorityException.
   1.382      void push(const Item &i, const Prio &p) {
   1.383 -      int n = data.size();
   1.384 +      int n = _data.size();
   1.385        _iim.set(i, n);
   1.386 -      data.push_back(RadixItem(i, p));
   1.387 -      while (lower(boxes.size() - 1, p)) {
   1.388 +      _data.push_back(RadixItem(i, p));
   1.389 +      while (lower(_boxes.size() - 1, p)) {
   1.390          extend();
   1.391        }
   1.392 -      int box = findDown(boxes.size() - 1, p);
   1.393 +      int box = findDown(_boxes.size() - 1, p);
   1.394        insert(box, n);
   1.395      }
   1.396  
   1.397 -    /// \brief Returns the item with minimum priority.
   1.398 +    /// \brief Return the item having minimum priority.
   1.399      ///
   1.400 -    /// This method returns the item with minimum priority.
   1.401 -    /// \pre The heap must be nonempty.
   1.402 +    /// This function returns the item having minimum priority.
   1.403 +    /// \pre The heap must be non-empty.
   1.404      Item top() const {
   1.405        const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
   1.406 -      return data[boxes[0].first].item;
   1.407 +      return _data[_boxes[0].first].item;
   1.408      }
   1.409  
   1.410 -    /// \brief Returns the minimum priority.
   1.411 +    /// \brief The minimum priority.
   1.412      ///
   1.413 -    /// It returns the minimum priority.
   1.414 -    /// \pre The heap must be nonempty.
   1.415 +    /// This function returns the minimum priority.
   1.416 +    /// \pre The heap must be non-empty.
   1.417      Prio prio() const {
   1.418        const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
   1.419 -      return data[boxes[0].first].prio;
   1.420 +      return _data[_boxes[0].first].prio;
   1.421       }
   1.422  
   1.423 -    /// \brief Deletes the item with minimum priority.
   1.424 +    /// \brief Remove the item having minimum priority.
   1.425      ///
   1.426 -    /// This method deletes the item with minimum priority.
   1.427 +    /// This function removes the item having minimum priority.
   1.428      /// \pre The heap must be non-empty.
   1.429      void pop() {
   1.430        moveDown();
   1.431 -      int index = boxes[0].first;
   1.432 -      _iim[data[index].item] = POST_HEAP;
   1.433 +      int index = _boxes[0].first;
   1.434 +      _iim[_data[index].item] = POST_HEAP;
   1.435        remove(index);
   1.436 -      relocate_last(index);
   1.437 +      relocateLast(index);
   1.438      }
   1.439  
   1.440 -    /// \brief Deletes \c i from the heap.
   1.441 +    /// \brief Remove the given item from the heap.
   1.442      ///
   1.443 -    /// This method deletes item \c i from the heap, if \c i was
   1.444 -    /// already stored in the heap.
   1.445 -    /// \param i The item to erase.
   1.446 +    /// This function removes the given item from the heap if it is
   1.447 +    /// already stored.
   1.448 +    /// \param i The item to delete.
   1.449 +    /// \pre \e i must be in the heap.
   1.450      void erase(const Item &i) {
   1.451        int index = _iim[i];
   1.452        _iim[i] = POST_HEAP;
   1.453        remove(index);
   1.454 -      relocate_last(index);
   1.455 +      relocateLast(index);
   1.456     }
   1.457  
   1.458 -    /// \brief Returns the priority of \c i.
   1.459 +    /// \brief The priority of the given item.
   1.460      ///
   1.461 -    /// This function returns the priority of item \c i.
   1.462 -    /// \pre \c i must be in the heap.
   1.463 +    /// This function returns the priority of the given item.
   1.464      /// \param i The item.
   1.465 +    /// \pre \e i must be in the heap.
   1.466      Prio operator[](const Item &i) const {
   1.467        int idx = _iim[i];
   1.468 -      return data[idx].prio;
   1.469 +      return _data[idx].prio;
   1.470      }
   1.471  
   1.472 -    /// \brief \c i gets to the heap with priority \c p independently
   1.473 -    /// if \c i was already there.
   1.474 +    /// \brief Set the priority of an item or insert it, if it is
   1.475 +    /// not stored in the heap.
   1.476      ///
   1.477 -    /// This method calls \ref push(\c i, \c p) if \c i is not stored
   1.478 -    /// in the heap and sets the priority of \c i to \c p otherwise.
   1.479 -    /// It may throw an \e UnderFlowPriorityException.
   1.480 +    /// This method sets the priority of the given item if it is
   1.481 +    /// already stored in the heap. Otherwise it inserts the given
   1.482 +    /// item into the heap with the given priority.
   1.483      /// \param i The item.
   1.484      /// \param p The priority.
   1.485 +    /// \pre \e i must be in the heap.
   1.486 +    /// \warning This method may throw an \c UnderFlowPriorityException.
   1.487      void set(const Item &i, const Prio &p) {
   1.488        int idx = _iim[i];
   1.489        if( idx < 0 ) {
   1.490          push(i, p);
   1.491        }
   1.492 -      else if( p >= data[idx].prio ) {
   1.493 -        data[idx].prio = p;
   1.494 -        bubble_up(idx);
   1.495 +      else if( p >= _data[idx].prio ) {
   1.496 +        _data[idx].prio = p;
   1.497 +        bubbleUp(idx);
   1.498        } else {
   1.499 -        data[idx].prio = p;
   1.500 -        bubble_down(idx);
   1.501 +        _data[idx].prio = p;
   1.502 +        bubbleDown(idx);
   1.503        }
   1.504      }
   1.505  
   1.506 -
   1.507 -    /// \brief Decreases the priority of \c i to \c p.
   1.508 +    /// \brief Decrease the priority of an item to the given value.
   1.509      ///
   1.510 -    /// This method decreases the priority of item \c i to \c p.
   1.511 -    /// \pre \c i must be stored in the heap with priority at least \c p, and
   1.512 -    /// \c should be greater or equal to the last removed item's priority.
   1.513 +    /// This function decreases the priority of an item to the given value.
   1.514      /// \param i The item.
   1.515      /// \param p The priority.
   1.516 +    /// \pre \e i must be stored in the heap with priority at least \e p.
   1.517 +    /// \warning This method may throw an \c UnderFlowPriorityException.
   1.518      void decrease(const Item &i, const Prio &p) {
   1.519        int idx = _iim[i];
   1.520 -      data[idx].prio = p;
   1.521 -      bubble_down(idx);
   1.522 +      _data[idx].prio = p;
   1.523 +      bubbleDown(idx);
   1.524      }
   1.525  
   1.526 -    /// \brief Increases the priority of \c i to \c p.
   1.527 +    /// \brief Increase the priority of an item to the given value.
   1.528      ///
   1.529 -    /// This method sets the priority of item \c i to \c p.
   1.530 -    /// \pre \c i must be stored in the heap with priority at most \c p
   1.531 +    /// This function increases the priority of an item to the given value.
   1.532      /// \param i The item.
   1.533      /// \param p The priority.
   1.534 +    /// \pre \e i must be stored in the heap with priority at most \e p.
   1.535      void increase(const Item &i, const Prio &p) {
   1.536        int idx = _iim[i];
   1.537 -      data[idx].prio = p;
   1.538 -      bubble_up(idx);
   1.539 +      _data[idx].prio = p;
   1.540 +      bubbleUp(idx);
   1.541      }
   1.542  
   1.543 -    /// \brief Returns if \c item is in, has already been in, or has
   1.544 -    /// never been in the heap.
   1.545 +    /// \brief Return the state of an item.
   1.546      ///
   1.547 -    /// This method returns PRE_HEAP if \c item has never been in the
   1.548 -    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   1.549 -    /// otherwise. In the latter case it is possible that \c item will
   1.550 -    /// get back to the heap again.
   1.551 +    /// This method returns \c PRE_HEAP if the given item has never
   1.552 +    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
   1.553 +    /// and \c POST_HEAP otherwise.
   1.554 +    /// In the latter case it is possible that the item will get back
   1.555 +    /// to the heap again.
   1.556      /// \param i The item.
   1.557      State state(const Item &i) const {
   1.558        int s = _iim[i];
   1.559 @@ -405,11 +410,11 @@
   1.560        return State(s);
   1.561      }
   1.562  
   1.563 -    /// \brief Sets the state of the \c item in the heap.
   1.564 +    /// \brief Set the state of an item in the heap.
   1.565      ///
   1.566 -    /// Sets the state of the \c item in the heap. It can be used to
   1.567 -    /// manually clear the heap when it is important to achive the
   1.568 -    /// better time complexity.
   1.569 +    /// This function sets the state of the given item in the heap.
   1.570 +    /// It can be used to manually clear the heap when it is important
   1.571 +    /// to achive better time complexity.
   1.572      /// \param i The item.
   1.573      /// \param st The state. It should not be \c IN_HEAP.
   1.574      void state(const Item& i, State st) {