lemon/preflow.h
changeset 802 994c7df296c9
parent 611 85cb3aa71cce
child 688 1f08e846df29
child 713 4ac30454f1c1
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/preflow.h	Thu Dec 10 17:05:35 2009 +0100
     1.3 @@ -0,0 +1,965 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2009
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_PREFLOW_H
    1.23 +#define LEMON_PREFLOW_H
    1.24 +
    1.25 +#include <lemon/tolerance.h>
    1.26 +#include <lemon/elevator.h>
    1.27 +
    1.28 +/// \file
    1.29 +/// \ingroup max_flow
    1.30 +/// \brief Implementation of the preflow algorithm.
    1.31 +
    1.32 +namespace lemon {
    1.33 +
    1.34 +  /// \brief Default traits class of Preflow class.
    1.35 +  ///
    1.36 +  /// Default traits class of Preflow class.
    1.37 +  /// \tparam GR Digraph type.
    1.38 +  /// \tparam CAP Capacity map type.
    1.39 +  template <typename GR, typename CAP>
    1.40 +  struct PreflowDefaultTraits {
    1.41 +
    1.42 +    /// \brief The type of the digraph the algorithm runs on.
    1.43 +    typedef GR Digraph;
    1.44 +
    1.45 +    /// \brief The type of the map that stores the arc capacities.
    1.46 +    ///
    1.47 +    /// The type of the map that stores the arc capacities.
    1.48 +    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
    1.49 +    typedef CAP CapacityMap;
    1.50 +
    1.51 +    /// \brief The type of the flow values.
    1.52 +    typedef typename CapacityMap::Value Value;
    1.53 +
    1.54 +    /// \brief The type of the map that stores the flow values.
    1.55 +    ///
    1.56 +    /// The type of the map that stores the flow values.
    1.57 +    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    1.58 +    typedef typename Digraph::template ArcMap<Value> FlowMap;
    1.59 +
    1.60 +    /// \brief Instantiates a FlowMap.
    1.61 +    ///
    1.62 +    /// This function instantiates a \ref FlowMap.
    1.63 +    /// \param digraph The digraph for which we would like to define
    1.64 +    /// the flow map.
    1.65 +    static FlowMap* createFlowMap(const Digraph& digraph) {
    1.66 +      return new FlowMap(digraph);
    1.67 +    }
    1.68 +
    1.69 +    /// \brief The elevator type used by Preflow algorithm.
    1.70 +    ///
    1.71 +    /// The elevator type used by Preflow algorithm.
    1.72 +    ///
    1.73 +    /// \sa Elevator
    1.74 +    /// \sa LinkedElevator
    1.75 +    typedef LinkedElevator<Digraph, typename Digraph::Node> Elevator;
    1.76 +
    1.77 +    /// \brief Instantiates an Elevator.
    1.78 +    ///
    1.79 +    /// This function instantiates an \ref Elevator.
    1.80 +    /// \param digraph The digraph for which we would like to define
    1.81 +    /// the elevator.
    1.82 +    /// \param max_level The maximum level of the elevator.
    1.83 +    static Elevator* createElevator(const Digraph& digraph, int max_level) {
    1.84 +      return new Elevator(digraph, max_level);
    1.85 +    }
    1.86 +
    1.87 +    /// \brief The tolerance used by the algorithm
    1.88 +    ///
    1.89 +    /// The tolerance used by the algorithm to handle inexact computation.
    1.90 +    typedef lemon::Tolerance<Value> Tolerance;
    1.91 +
    1.92 +  };
    1.93 +
    1.94 +
    1.95 +  /// \ingroup max_flow
    1.96 +  ///
    1.97 +  /// \brief %Preflow algorithm class.
    1.98 +  ///
    1.99 +  /// This class provides an implementation of Goldberg-Tarjan's \e preflow
   1.100 +  /// \e push-relabel algorithm producing a \ref max_flow
   1.101 +  /// "flow of maximum value" in a digraph.
   1.102 +  /// The preflow algorithms are the fastest known maximum
   1.103 +  /// flow algorithms. The current implementation use a mixture of the
   1.104 +  /// \e "highest label" and the \e "bound decrease" heuristics.
   1.105 +  /// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
   1.106 +  ///
   1.107 +  /// The algorithm consists of two phases. After the first phase
   1.108 +  /// the maximum flow value and the minimum cut is obtained. The
   1.109 +  /// second phase constructs a feasible maximum flow on each arc.
   1.110 +  ///
   1.111 +  /// \tparam GR The type of the digraph the algorithm runs on.
   1.112 +  /// \tparam CAP The type of the capacity map. The default map
   1.113 +  /// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   1.114 +#ifdef DOXYGEN
   1.115 +  template <typename GR, typename CAP, typename TR>
   1.116 +#else
   1.117 +  template <typename GR,
   1.118 +            typename CAP = typename GR::template ArcMap<int>,
   1.119 +            typename TR = PreflowDefaultTraits<GR, CAP> >
   1.120 +#endif
   1.121 +  class Preflow {
   1.122 +  public:
   1.123 +
   1.124 +    ///The \ref PreflowDefaultTraits "traits class" of the algorithm.
   1.125 +    typedef TR Traits;
   1.126 +    ///The type of the digraph the algorithm runs on.
   1.127 +    typedef typename Traits::Digraph Digraph;
   1.128 +    ///The type of the capacity map.
   1.129 +    typedef typename Traits::CapacityMap CapacityMap;
   1.130 +    ///The type of the flow values.
   1.131 +    typedef typename Traits::Value Value;
   1.132 +
   1.133 +    ///The type of the flow map.
   1.134 +    typedef typename Traits::FlowMap FlowMap;
   1.135 +    ///The type of the elevator.
   1.136 +    typedef typename Traits::Elevator Elevator;
   1.137 +    ///The type of the tolerance.
   1.138 +    typedef typename Traits::Tolerance Tolerance;
   1.139 +
   1.140 +  private:
   1.141 +
   1.142 +    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   1.143 +
   1.144 +    const Digraph& _graph;
   1.145 +    const CapacityMap* _capacity;
   1.146 +
   1.147 +    int _node_num;
   1.148 +
   1.149 +    Node _source, _target;
   1.150 +
   1.151 +    FlowMap* _flow;
   1.152 +    bool _local_flow;
   1.153 +
   1.154 +    Elevator* _level;
   1.155 +    bool _local_level;
   1.156 +
   1.157 +    typedef typename Digraph::template NodeMap<Value> ExcessMap;
   1.158 +    ExcessMap* _excess;
   1.159 +
   1.160 +    Tolerance _tolerance;
   1.161 +
   1.162 +    bool _phase;
   1.163 +
   1.164 +
   1.165 +    void createStructures() {
   1.166 +      _node_num = countNodes(_graph);
   1.167 +
   1.168 +      if (!_flow) {
   1.169 +        _flow = Traits::createFlowMap(_graph);
   1.170 +        _local_flow = true;
   1.171 +      }
   1.172 +      if (!_level) {
   1.173 +        _level = Traits::createElevator(_graph, _node_num);
   1.174 +        _local_level = true;
   1.175 +      }
   1.176 +      if (!_excess) {
   1.177 +        _excess = new ExcessMap(_graph);
   1.178 +      }
   1.179 +    }
   1.180 +
   1.181 +    void destroyStructures() {
   1.182 +      if (_local_flow) {
   1.183 +        delete _flow;
   1.184 +      }
   1.185 +      if (_local_level) {
   1.186 +        delete _level;
   1.187 +      }
   1.188 +      if (_excess) {
   1.189 +        delete _excess;
   1.190 +      }
   1.191 +    }
   1.192 +
   1.193 +  public:
   1.194 +
   1.195 +    typedef Preflow Create;
   1.196 +
   1.197 +    ///\name Named Template Parameters
   1.198 +
   1.199 +    ///@{
   1.200 +
   1.201 +    template <typename T>
   1.202 +    struct SetFlowMapTraits : public Traits {
   1.203 +      typedef T FlowMap;
   1.204 +      static FlowMap *createFlowMap(const Digraph&) {
   1.205 +        LEMON_ASSERT(false, "FlowMap is not initialized");
   1.206 +        return 0; // ignore warnings
   1.207 +      }
   1.208 +    };
   1.209 +
   1.210 +    /// \brief \ref named-templ-param "Named parameter" for setting
   1.211 +    /// FlowMap type
   1.212 +    ///
   1.213 +    /// \ref named-templ-param "Named parameter" for setting FlowMap
   1.214 +    /// type.
   1.215 +    template <typename T>
   1.216 +    struct SetFlowMap
   1.217 +      : public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > {
   1.218 +      typedef Preflow<Digraph, CapacityMap,
   1.219 +                      SetFlowMapTraits<T> > Create;
   1.220 +    };
   1.221 +
   1.222 +    template <typename T>
   1.223 +    struct SetElevatorTraits : public Traits {
   1.224 +      typedef T Elevator;
   1.225 +      static Elevator *createElevator(const Digraph&, int) {
   1.226 +        LEMON_ASSERT(false, "Elevator is not initialized");
   1.227 +        return 0; // ignore warnings
   1.228 +      }
   1.229 +    };
   1.230 +
   1.231 +    /// \brief \ref named-templ-param "Named parameter" for setting
   1.232 +    /// Elevator type
   1.233 +    ///
   1.234 +    /// \ref named-templ-param "Named parameter" for setting Elevator
   1.235 +    /// type. If this named parameter is used, then an external
   1.236 +    /// elevator object must be passed to the algorithm using the
   1.237 +    /// \ref elevator(Elevator&) "elevator()" function before calling
   1.238 +    /// \ref run() or \ref init().
   1.239 +    /// \sa SetStandardElevator
   1.240 +    template <typename T>
   1.241 +    struct SetElevator
   1.242 +      : public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > {
   1.243 +      typedef Preflow<Digraph, CapacityMap,
   1.244 +                      SetElevatorTraits<T> > Create;
   1.245 +    };
   1.246 +
   1.247 +    template <typename T>
   1.248 +    struct SetStandardElevatorTraits : public Traits {
   1.249 +      typedef T Elevator;
   1.250 +      static Elevator *createElevator(const Digraph& digraph, int max_level) {
   1.251 +        return new Elevator(digraph, max_level);
   1.252 +      }
   1.253 +    };
   1.254 +
   1.255 +    /// \brief \ref named-templ-param "Named parameter" for setting
   1.256 +    /// Elevator type with automatic allocation
   1.257 +    ///
   1.258 +    /// \ref named-templ-param "Named parameter" for setting Elevator
   1.259 +    /// type with automatic allocation.
   1.260 +    /// The Elevator should have standard constructor interface to be
   1.261 +    /// able to automatically created by the algorithm (i.e. the
   1.262 +    /// digraph and the maximum level should be passed to it).
   1.263 +    /// However an external elevator object could also be passed to the
   1.264 +    /// algorithm with the \ref elevator(Elevator&) "elevator()" function
   1.265 +    /// before calling \ref run() or \ref init().
   1.266 +    /// \sa SetElevator
   1.267 +    template <typename T>
   1.268 +    struct SetStandardElevator
   1.269 +      : public Preflow<Digraph, CapacityMap,
   1.270 +                       SetStandardElevatorTraits<T> > {
   1.271 +      typedef Preflow<Digraph, CapacityMap,
   1.272 +                      SetStandardElevatorTraits<T> > Create;
   1.273 +    };
   1.274 +
   1.275 +    /// @}
   1.276 +
   1.277 +  protected:
   1.278 +
   1.279 +    Preflow() {}
   1.280 +
   1.281 +  public:
   1.282 +
   1.283 +
   1.284 +    /// \brief The constructor of the class.
   1.285 +    ///
   1.286 +    /// The constructor of the class.
   1.287 +    /// \param digraph The digraph the algorithm runs on.
   1.288 +    /// \param capacity The capacity of the arcs.
   1.289 +    /// \param source The source node.
   1.290 +    /// \param target The target node.
   1.291 +    Preflow(const Digraph& digraph, const CapacityMap& capacity,
   1.292 +            Node source, Node target)
   1.293 +      : _graph(digraph), _capacity(&capacity),
   1.294 +        _node_num(0), _source(source), _target(target),
   1.295 +        _flow(0), _local_flow(false),
   1.296 +        _level(0), _local_level(false),
   1.297 +        _excess(0), _tolerance(), _phase() {}
   1.298 +
   1.299 +    /// \brief Destructor.
   1.300 +    ///
   1.301 +    /// Destructor.
   1.302 +    ~Preflow() {
   1.303 +      destroyStructures();
   1.304 +    }
   1.305 +
   1.306 +    /// \brief Sets the capacity map.
   1.307 +    ///
   1.308 +    /// Sets the capacity map.
   1.309 +    /// \return <tt>(*this)</tt>
   1.310 +    Preflow& capacityMap(const CapacityMap& map) {
   1.311 +      _capacity = &map;
   1.312 +      return *this;
   1.313 +    }
   1.314 +
   1.315 +    /// \brief Sets the flow map.
   1.316 +    ///
   1.317 +    /// Sets the flow map.
   1.318 +    /// If you don't use this function before calling \ref run() or
   1.319 +    /// \ref init(), an instance will be allocated automatically.
   1.320 +    /// The destructor deallocates this automatically allocated map,
   1.321 +    /// of course.
   1.322 +    /// \return <tt>(*this)</tt>
   1.323 +    Preflow& flowMap(FlowMap& map) {
   1.324 +      if (_local_flow) {
   1.325 +        delete _flow;
   1.326 +        _local_flow = false;
   1.327 +      }
   1.328 +      _flow = &map;
   1.329 +      return *this;
   1.330 +    }
   1.331 +
   1.332 +    /// \brief Sets the source node.
   1.333 +    ///
   1.334 +    /// Sets the source node.
   1.335 +    /// \return <tt>(*this)</tt>
   1.336 +    Preflow& source(const Node& node) {
   1.337 +      _source = node;
   1.338 +      return *this;
   1.339 +    }
   1.340 +
   1.341 +    /// \brief Sets the target node.
   1.342 +    ///
   1.343 +    /// Sets the target node.
   1.344 +    /// \return <tt>(*this)</tt>
   1.345 +    Preflow& target(const Node& node) {
   1.346 +      _target = node;
   1.347 +      return *this;
   1.348 +    }
   1.349 +
   1.350 +    /// \brief Sets the elevator used by algorithm.
   1.351 +    ///
   1.352 +    /// Sets the elevator used by algorithm.
   1.353 +    /// If you don't use this function before calling \ref run() or
   1.354 +    /// \ref init(), an instance will be allocated automatically.
   1.355 +    /// The destructor deallocates this automatically allocated elevator,
   1.356 +    /// of course.
   1.357 +    /// \return <tt>(*this)</tt>
   1.358 +    Preflow& elevator(Elevator& elevator) {
   1.359 +      if (_local_level) {
   1.360 +        delete _level;
   1.361 +        _local_level = false;
   1.362 +      }
   1.363 +      _level = &elevator;
   1.364 +      return *this;
   1.365 +    }
   1.366 +
   1.367 +    /// \brief Returns a const reference to the elevator.
   1.368 +    ///
   1.369 +    /// Returns a const reference to the elevator.
   1.370 +    ///
   1.371 +    /// \pre Either \ref run() or \ref init() must be called before
   1.372 +    /// using this function.
   1.373 +    const Elevator& elevator() const {
   1.374 +      return *_level;
   1.375 +    }
   1.376 +
   1.377 +    /// \brief Sets the tolerance used by algorithm.
   1.378 +    ///
   1.379 +    /// Sets the tolerance used by algorithm.
   1.380 +    Preflow& tolerance(const Tolerance& tolerance) const {
   1.381 +      _tolerance = tolerance;
   1.382 +      return *this;
   1.383 +    }
   1.384 +
   1.385 +    /// \brief Returns a const reference to the tolerance.
   1.386 +    ///
   1.387 +    /// Returns a const reference to the tolerance.
   1.388 +    const Tolerance& tolerance() const {
   1.389 +      return tolerance;
   1.390 +    }
   1.391 +
   1.392 +    /// \name Execution Control
   1.393 +    /// The simplest way to execute the preflow algorithm is to use
   1.394 +    /// \ref run() or \ref runMinCut().\n
   1.395 +    /// If you need more control on the initial solution or the execution,
   1.396 +    /// first you have to call one of the \ref init() functions, then
   1.397 +    /// \ref startFirstPhase() and if you need it \ref startSecondPhase().
   1.398 +
   1.399 +    ///@{
   1.400 +
   1.401 +    /// \brief Initializes the internal data structures.
   1.402 +    ///
   1.403 +    /// Initializes the internal data structures and sets the initial
   1.404 +    /// flow to zero on each arc.
   1.405 +    void init() {
   1.406 +      createStructures();
   1.407 +
   1.408 +      _phase = true;
   1.409 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.410 +        (*_excess)[n] = 0;
   1.411 +      }
   1.412 +
   1.413 +      for (ArcIt e(_graph); e != INVALID; ++e) {
   1.414 +        _flow->set(e, 0);
   1.415 +      }
   1.416 +
   1.417 +      typename Digraph::template NodeMap<bool> reached(_graph, false);
   1.418 +
   1.419 +      _level->initStart();
   1.420 +      _level->initAddItem(_target);
   1.421 +
   1.422 +      std::vector<Node> queue;
   1.423 +      reached[_source] = true;
   1.424 +
   1.425 +      queue.push_back(_target);
   1.426 +      reached[_target] = true;
   1.427 +      while (!queue.empty()) {
   1.428 +        _level->initNewLevel();
   1.429 +        std::vector<Node> nqueue;
   1.430 +        for (int i = 0; i < int(queue.size()); ++i) {
   1.431 +          Node n = queue[i];
   1.432 +          for (InArcIt e(_graph, n); e != INVALID; ++e) {
   1.433 +            Node u = _graph.source(e);
   1.434 +            if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
   1.435 +              reached[u] = true;
   1.436 +              _level->initAddItem(u);
   1.437 +              nqueue.push_back(u);
   1.438 +            }
   1.439 +          }
   1.440 +        }
   1.441 +        queue.swap(nqueue);
   1.442 +      }
   1.443 +      _level->initFinish();
   1.444 +
   1.445 +      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
   1.446 +        if (_tolerance.positive((*_capacity)[e])) {
   1.447 +          Node u = _graph.target(e);
   1.448 +          if ((*_level)[u] == _level->maxLevel()) continue;
   1.449 +          _flow->set(e, (*_capacity)[e]);
   1.450 +          (*_excess)[u] += (*_capacity)[e];
   1.451 +          if (u != _target && !_level->active(u)) {
   1.452 +            _level->activate(u);
   1.453 +          }
   1.454 +        }
   1.455 +      }
   1.456 +    }
   1.457 +
   1.458 +    /// \brief Initializes the internal data structures using the
   1.459 +    /// given flow map.
   1.460 +    ///
   1.461 +    /// Initializes the internal data structures and sets the initial
   1.462 +    /// flow to the given \c flowMap. The \c flowMap should contain a
   1.463 +    /// flow or at least a preflow, i.e. at each node excluding the
   1.464 +    /// source node the incoming flow should greater or equal to the
   1.465 +    /// outgoing flow.
   1.466 +    /// \return \c false if the given \c flowMap is not a preflow.
   1.467 +    template <typename FlowMap>
   1.468 +    bool init(const FlowMap& flowMap) {
   1.469 +      createStructures();
   1.470 +
   1.471 +      for (ArcIt e(_graph); e != INVALID; ++e) {
   1.472 +        _flow->set(e, flowMap[e]);
   1.473 +      }
   1.474 +
   1.475 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.476 +        Value excess = 0;
   1.477 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
   1.478 +          excess += (*_flow)[e];
   1.479 +        }
   1.480 +        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   1.481 +          excess -= (*_flow)[e];
   1.482 +        }
   1.483 +        if (excess < 0 && n != _source) return false;
   1.484 +        (*_excess)[n] = excess;
   1.485 +      }
   1.486 +
   1.487 +      typename Digraph::template NodeMap<bool> reached(_graph, false);
   1.488 +
   1.489 +      _level->initStart();
   1.490 +      _level->initAddItem(_target);
   1.491 +
   1.492 +      std::vector<Node> queue;
   1.493 +      reached[_source] = true;
   1.494 +
   1.495 +      queue.push_back(_target);
   1.496 +      reached[_target] = true;
   1.497 +      while (!queue.empty()) {
   1.498 +        _level->initNewLevel();
   1.499 +        std::vector<Node> nqueue;
   1.500 +        for (int i = 0; i < int(queue.size()); ++i) {
   1.501 +          Node n = queue[i];
   1.502 +          for (InArcIt e(_graph, n); e != INVALID; ++e) {
   1.503 +            Node u = _graph.source(e);
   1.504 +            if (!reached[u] &&
   1.505 +                _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
   1.506 +              reached[u] = true;
   1.507 +              _level->initAddItem(u);
   1.508 +              nqueue.push_back(u);
   1.509 +            }
   1.510 +          }
   1.511 +          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   1.512 +            Node v = _graph.target(e);
   1.513 +            if (!reached[v] && _tolerance.positive((*_flow)[e])) {
   1.514 +              reached[v] = true;
   1.515 +              _level->initAddItem(v);
   1.516 +              nqueue.push_back(v);
   1.517 +            }
   1.518 +          }
   1.519 +        }
   1.520 +        queue.swap(nqueue);
   1.521 +      }
   1.522 +      _level->initFinish();
   1.523 +
   1.524 +      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
   1.525 +        Value rem = (*_capacity)[e] - (*_flow)[e];
   1.526 +        if (_tolerance.positive(rem)) {
   1.527 +          Node u = _graph.target(e);
   1.528 +          if ((*_level)[u] == _level->maxLevel()) continue;
   1.529 +          _flow->set(e, (*_capacity)[e]);
   1.530 +          (*_excess)[u] += rem;
   1.531 +          if (u != _target && !_level->active(u)) {
   1.532 +            _level->activate(u);
   1.533 +          }
   1.534 +        }
   1.535 +      }
   1.536 +      for (InArcIt e(_graph, _source); e != INVALID; ++e) {
   1.537 +        Value rem = (*_flow)[e];
   1.538 +        if (_tolerance.positive(rem)) {
   1.539 +          Node v = _graph.source(e);
   1.540 +          if ((*_level)[v] == _level->maxLevel()) continue;
   1.541 +          _flow->set(e, 0);
   1.542 +          (*_excess)[v] += rem;
   1.543 +          if (v != _target && !_level->active(v)) {
   1.544 +            _level->activate(v);
   1.545 +          }
   1.546 +        }
   1.547 +      }
   1.548 +      return true;
   1.549 +    }
   1.550 +
   1.551 +    /// \brief Starts the first phase of the preflow algorithm.
   1.552 +    ///
   1.553 +    /// The preflow algorithm consists of two phases, this method runs
   1.554 +    /// the first phase. After the first phase the maximum flow value
   1.555 +    /// and a minimum value cut can already be computed, although a
   1.556 +    /// maximum flow is not yet obtained. So after calling this method
   1.557 +    /// \ref flowValue() returns the value of a maximum flow and \ref
   1.558 +    /// minCut() returns a minimum cut.
   1.559 +    /// \pre One of the \ref init() functions must be called before
   1.560 +    /// using this function.
   1.561 +    void startFirstPhase() {
   1.562 +      _phase = true;
   1.563 +
   1.564 +      Node n = _level->highestActive();
   1.565 +      int level = _level->highestActiveLevel();
   1.566 +      while (n != INVALID) {
   1.567 +        int num = _node_num;
   1.568 +
   1.569 +        while (num > 0 && n != INVALID) {
   1.570 +          Value excess = (*_excess)[n];
   1.571 +          int new_level = _level->maxLevel();
   1.572 +
   1.573 +          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   1.574 +            Value rem = (*_capacity)[e] - (*_flow)[e];
   1.575 +            if (!_tolerance.positive(rem)) continue;
   1.576 +            Node v = _graph.target(e);
   1.577 +            if ((*_level)[v] < level) {
   1.578 +              if (!_level->active(v) && v != _target) {
   1.579 +                _level->activate(v);
   1.580 +              }
   1.581 +              if (!_tolerance.less(rem, excess)) {
   1.582 +                _flow->set(e, (*_flow)[e] + excess);
   1.583 +                (*_excess)[v] += excess;
   1.584 +                excess = 0;
   1.585 +                goto no_more_push_1;
   1.586 +              } else {
   1.587 +                excess -= rem;
   1.588 +                (*_excess)[v] += rem;
   1.589 +                _flow->set(e, (*_capacity)[e]);
   1.590 +              }
   1.591 +            } else if (new_level > (*_level)[v]) {
   1.592 +              new_level = (*_level)[v];
   1.593 +            }
   1.594 +          }
   1.595 +
   1.596 +          for (InArcIt e(_graph, n); e != INVALID; ++e) {
   1.597 +            Value rem = (*_flow)[e];
   1.598 +            if (!_tolerance.positive(rem)) continue;
   1.599 +            Node v = _graph.source(e);
   1.600 +            if ((*_level)[v] < level) {
   1.601 +              if (!_level->active(v) && v != _target) {
   1.602 +                _level->activate(v);
   1.603 +              }
   1.604 +              if (!_tolerance.less(rem, excess)) {
   1.605 +                _flow->set(e, (*_flow)[e] - excess);
   1.606 +                (*_excess)[v] += excess;
   1.607 +                excess = 0;
   1.608 +                goto no_more_push_1;
   1.609 +              } else {
   1.610 +                excess -= rem;
   1.611 +                (*_excess)[v] += rem;
   1.612 +                _flow->set(e, 0);
   1.613 +              }
   1.614 +            } else if (new_level > (*_level)[v]) {
   1.615 +              new_level = (*_level)[v];
   1.616 +            }
   1.617 +          }
   1.618 +
   1.619 +        no_more_push_1:
   1.620 +
   1.621 +          (*_excess)[n] = excess;
   1.622 +
   1.623 +          if (excess != 0) {
   1.624 +            if (new_level + 1 < _level->maxLevel()) {
   1.625 +              _level->liftHighestActive(new_level + 1);
   1.626 +            } else {
   1.627 +              _level->liftHighestActiveToTop();
   1.628 +            }
   1.629 +            if (_level->emptyLevel(level)) {
   1.630 +              _level->liftToTop(level);
   1.631 +            }
   1.632 +          } else {
   1.633 +            _level->deactivate(n);
   1.634 +          }
   1.635 +
   1.636 +          n = _level->highestActive();
   1.637 +          level = _level->highestActiveLevel();
   1.638 +          --num;
   1.639 +        }
   1.640 +
   1.641 +        num = _node_num * 20;
   1.642 +        while (num > 0 && n != INVALID) {
   1.643 +          Value excess = (*_excess)[n];
   1.644 +          int new_level = _level->maxLevel();
   1.645 +
   1.646 +          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   1.647 +            Value rem = (*_capacity)[e] - (*_flow)[e];
   1.648 +            if (!_tolerance.positive(rem)) continue;
   1.649 +            Node v = _graph.target(e);
   1.650 +            if ((*_level)[v] < level) {
   1.651 +              if (!_level->active(v) && v != _target) {
   1.652 +                _level->activate(v);
   1.653 +              }
   1.654 +              if (!_tolerance.less(rem, excess)) {
   1.655 +                _flow->set(e, (*_flow)[e] + excess);
   1.656 +                (*_excess)[v] += excess;
   1.657 +                excess = 0;
   1.658 +                goto no_more_push_2;
   1.659 +              } else {
   1.660 +                excess -= rem;
   1.661 +                (*_excess)[v] += rem;
   1.662 +                _flow->set(e, (*_capacity)[e]);
   1.663 +              }
   1.664 +            } else if (new_level > (*_level)[v]) {
   1.665 +              new_level = (*_level)[v];
   1.666 +            }
   1.667 +          }
   1.668 +
   1.669 +          for (InArcIt e(_graph, n); e != INVALID; ++e) {
   1.670 +            Value rem = (*_flow)[e];
   1.671 +            if (!_tolerance.positive(rem)) continue;
   1.672 +            Node v = _graph.source(e);
   1.673 +            if ((*_level)[v] < level) {
   1.674 +              if (!_level->active(v) && v != _target) {
   1.675 +                _level->activate(v);
   1.676 +              }
   1.677 +              if (!_tolerance.less(rem, excess)) {
   1.678 +                _flow->set(e, (*_flow)[e] - excess);
   1.679 +                (*_excess)[v] += excess;
   1.680 +                excess = 0;
   1.681 +                goto no_more_push_2;
   1.682 +              } else {
   1.683 +                excess -= rem;
   1.684 +                (*_excess)[v] += rem;
   1.685 +                _flow->set(e, 0);
   1.686 +              }
   1.687 +            } else if (new_level > (*_level)[v]) {
   1.688 +              new_level = (*_level)[v];
   1.689 +            }
   1.690 +          }
   1.691 +
   1.692 +        no_more_push_2:
   1.693 +
   1.694 +          (*_excess)[n] = excess;
   1.695 +
   1.696 +          if (excess != 0) {
   1.697 +            if (new_level + 1 < _level->maxLevel()) {
   1.698 +              _level->liftActiveOn(level, new_level + 1);
   1.699 +            } else {
   1.700 +              _level->liftActiveToTop(level);
   1.701 +            }
   1.702 +            if (_level->emptyLevel(level)) {
   1.703 +              _level->liftToTop(level);
   1.704 +            }
   1.705 +          } else {
   1.706 +            _level->deactivate(n);
   1.707 +          }
   1.708 +
   1.709 +          while (level >= 0 && _level->activeFree(level)) {
   1.710 +            --level;
   1.711 +          }
   1.712 +          if (level == -1) {
   1.713 +            n = _level->highestActive();
   1.714 +            level = _level->highestActiveLevel();
   1.715 +          } else {
   1.716 +            n = _level->activeOn(level);
   1.717 +          }
   1.718 +          --num;
   1.719 +        }
   1.720 +      }
   1.721 +    }
   1.722 +
   1.723 +    /// \brief Starts the second phase of the preflow algorithm.
   1.724 +    ///
   1.725 +    /// The preflow algorithm consists of two phases, this method runs
   1.726 +    /// the second phase. After calling one of the \ref init() functions
   1.727 +    /// and \ref startFirstPhase() and then \ref startSecondPhase(),
   1.728 +    /// \ref flowMap() returns a maximum flow, \ref flowValue() returns the
   1.729 +    /// value of a maximum flow, \ref minCut() returns a minimum cut
   1.730 +    /// \pre One of the \ref init() functions and \ref startFirstPhase()
   1.731 +    /// must be called before using this function.
   1.732 +    void startSecondPhase() {
   1.733 +      _phase = false;
   1.734 +
   1.735 +      typename Digraph::template NodeMap<bool> reached(_graph);
   1.736 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.737 +        reached[n] = (*_level)[n] < _level->maxLevel();
   1.738 +      }
   1.739 +
   1.740 +      _level->initStart();
   1.741 +      _level->initAddItem(_source);
   1.742 +
   1.743 +      std::vector<Node> queue;
   1.744 +      queue.push_back(_source);
   1.745 +      reached[_source] = true;
   1.746 +
   1.747 +      while (!queue.empty()) {
   1.748 +        _level->initNewLevel();
   1.749 +        std::vector<Node> nqueue;
   1.750 +        for (int i = 0; i < int(queue.size()); ++i) {
   1.751 +          Node n = queue[i];
   1.752 +          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   1.753 +            Node v = _graph.target(e);
   1.754 +            if (!reached[v] && _tolerance.positive((*_flow)[e])) {
   1.755 +              reached[v] = true;
   1.756 +              _level->initAddItem(v);
   1.757 +              nqueue.push_back(v);
   1.758 +            }
   1.759 +          }
   1.760 +          for (InArcIt e(_graph, n); e != INVALID; ++e) {
   1.761 +            Node u = _graph.source(e);
   1.762 +            if (!reached[u] &&
   1.763 +                _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
   1.764 +              reached[u] = true;
   1.765 +              _level->initAddItem(u);
   1.766 +              nqueue.push_back(u);
   1.767 +            }
   1.768 +          }
   1.769 +        }
   1.770 +        queue.swap(nqueue);
   1.771 +      }
   1.772 +      _level->initFinish();
   1.773 +
   1.774 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.775 +        if (!reached[n]) {
   1.776 +          _level->dirtyTopButOne(n);
   1.777 +        } else if ((*_excess)[n] > 0 && _target != n) {
   1.778 +          _level->activate(n);
   1.779 +        }
   1.780 +      }
   1.781 +
   1.782 +      Node n;
   1.783 +      while ((n = _level->highestActive()) != INVALID) {
   1.784 +        Value excess = (*_excess)[n];
   1.785 +        int level = _level->highestActiveLevel();
   1.786 +        int new_level = _level->maxLevel();
   1.787 +
   1.788 +        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   1.789 +          Value rem = (*_capacity)[e] - (*_flow)[e];
   1.790 +          if (!_tolerance.positive(rem)) continue;
   1.791 +          Node v = _graph.target(e);
   1.792 +          if ((*_level)[v] < level) {
   1.793 +            if (!_level->active(v) && v != _source) {
   1.794 +              _level->activate(v);
   1.795 +            }
   1.796 +            if (!_tolerance.less(rem, excess)) {
   1.797 +              _flow->set(e, (*_flow)[e] + excess);
   1.798 +              (*_excess)[v] += excess;
   1.799 +              excess = 0;
   1.800 +              goto no_more_push;
   1.801 +            } else {
   1.802 +              excess -= rem;
   1.803 +              (*_excess)[v] += rem;
   1.804 +              _flow->set(e, (*_capacity)[e]);
   1.805 +            }
   1.806 +          } else if (new_level > (*_level)[v]) {
   1.807 +            new_level = (*_level)[v];
   1.808 +          }
   1.809 +        }
   1.810 +
   1.811 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
   1.812 +          Value rem = (*_flow)[e];
   1.813 +          if (!_tolerance.positive(rem)) continue;
   1.814 +          Node v = _graph.source(e);
   1.815 +          if ((*_level)[v] < level) {
   1.816 +            if (!_level->active(v) && v != _source) {
   1.817 +              _level->activate(v);
   1.818 +            }
   1.819 +            if (!_tolerance.less(rem, excess)) {
   1.820 +              _flow->set(e, (*_flow)[e] - excess);
   1.821 +              (*_excess)[v] += excess;
   1.822 +              excess = 0;
   1.823 +              goto no_more_push;
   1.824 +            } else {
   1.825 +              excess -= rem;
   1.826 +              (*_excess)[v] += rem;
   1.827 +              _flow->set(e, 0);
   1.828 +            }
   1.829 +          } else if (new_level > (*_level)[v]) {
   1.830 +            new_level = (*_level)[v];
   1.831 +          }
   1.832 +        }
   1.833 +
   1.834 +      no_more_push:
   1.835 +
   1.836 +        (*_excess)[n] = excess;
   1.837 +
   1.838 +        if (excess != 0) {
   1.839 +          if (new_level + 1 < _level->maxLevel()) {
   1.840 +            _level->liftHighestActive(new_level + 1);
   1.841 +          } else {
   1.842 +            // Calculation error
   1.843 +            _level->liftHighestActiveToTop();
   1.844 +          }
   1.845 +          if (_level->emptyLevel(level)) {
   1.846 +            // Calculation error
   1.847 +            _level->liftToTop(level);
   1.848 +          }
   1.849 +        } else {
   1.850 +          _level->deactivate(n);
   1.851 +        }
   1.852 +
   1.853 +      }
   1.854 +    }
   1.855 +
   1.856 +    /// \brief Runs the preflow algorithm.
   1.857 +    ///
   1.858 +    /// Runs the preflow algorithm.
   1.859 +    /// \note pf.run() is just a shortcut of the following code.
   1.860 +    /// \code
   1.861 +    ///   pf.init();
   1.862 +    ///   pf.startFirstPhase();
   1.863 +    ///   pf.startSecondPhase();
   1.864 +    /// \endcode
   1.865 +    void run() {
   1.866 +      init();
   1.867 +      startFirstPhase();
   1.868 +      startSecondPhase();
   1.869 +    }
   1.870 +
   1.871 +    /// \brief Runs the preflow algorithm to compute the minimum cut.
   1.872 +    ///
   1.873 +    /// Runs the preflow algorithm to compute the minimum cut.
   1.874 +    /// \note pf.runMinCut() is just a shortcut of the following code.
   1.875 +    /// \code
   1.876 +    ///   pf.init();
   1.877 +    ///   pf.startFirstPhase();
   1.878 +    /// \endcode
   1.879 +    void runMinCut() {
   1.880 +      init();
   1.881 +      startFirstPhase();
   1.882 +    }
   1.883 +
   1.884 +    /// @}
   1.885 +
   1.886 +    /// \name Query Functions
   1.887 +    /// The results of the preflow algorithm can be obtained using these
   1.888 +    /// functions.\n
   1.889 +    /// Either one of the \ref run() "run*()" functions or one of the
   1.890 +    /// \ref startFirstPhase() "start*()" functions should be called
   1.891 +    /// before using them.
   1.892 +
   1.893 +    ///@{
   1.894 +
   1.895 +    /// \brief Returns the value of the maximum flow.
   1.896 +    ///
   1.897 +    /// Returns the value of the maximum flow by returning the excess
   1.898 +    /// of the target node. This value equals to the value of
   1.899 +    /// the maximum flow already after the first phase of the algorithm.
   1.900 +    ///
   1.901 +    /// \pre Either \ref run() or \ref init() must be called before
   1.902 +    /// using this function.
   1.903 +    Value flowValue() const {
   1.904 +      return (*_excess)[_target];
   1.905 +    }
   1.906 +
   1.907 +    /// \brief Returns the flow value on the given arc.
   1.908 +    ///
   1.909 +    /// Returns the flow value on the given arc. This method can
   1.910 +    /// be called after the second phase of the algorithm.
   1.911 +    ///
   1.912 +    /// \pre Either \ref run() or \ref init() must be called before
   1.913 +    /// using this function.
   1.914 +    Value flow(const Arc& arc) const {
   1.915 +      return (*_flow)[arc];
   1.916 +    }
   1.917 +
   1.918 +    /// \brief Returns a const reference to the flow map.
   1.919 +    ///
   1.920 +    /// Returns a const reference to the arc map storing the found flow.
   1.921 +    /// This method can be called after the second phase of the algorithm.
   1.922 +    ///
   1.923 +    /// \pre Either \ref run() or \ref init() must be called before
   1.924 +    /// using this function.
   1.925 +    const FlowMap& flowMap() const {
   1.926 +      return *_flow;
   1.927 +    }
   1.928 +
   1.929 +    /// \brief Returns \c true when the node is on the source side of the
   1.930 +    /// minimum cut.
   1.931 +    ///
   1.932 +    /// Returns true when the node is on the source side of the found
   1.933 +    /// minimum cut. This method can be called both after running \ref
   1.934 +    /// startFirstPhase() and \ref startSecondPhase().
   1.935 +    ///
   1.936 +    /// \pre Either \ref run() or \ref init() must be called before
   1.937 +    /// using this function.
   1.938 +    bool minCut(const Node& node) const {
   1.939 +      return ((*_level)[node] == _level->maxLevel()) == _phase;
   1.940 +    }
   1.941 +
   1.942 +    /// \brief Gives back a minimum value cut.
   1.943 +    ///
   1.944 +    /// Sets \c cutMap to the characteristic vector of a minimum value
   1.945 +    /// cut. \c cutMap should be a \ref concepts::WriteMap "writable"
   1.946 +    /// node map with \c bool (or convertible) value type.
   1.947 +    ///
   1.948 +    /// This method can be called both after running \ref startFirstPhase()
   1.949 +    /// and \ref startSecondPhase(). The result after the second phase
   1.950 +    /// could be slightly different if inexact computation is used.
   1.951 +    ///
   1.952 +    /// \note This function calls \ref minCut() for each node, so it runs in
   1.953 +    /// O(n) time.
   1.954 +    ///
   1.955 +    /// \pre Either \ref run() or \ref init() must be called before
   1.956 +    /// using this function.
   1.957 +    template <typename CutMap>
   1.958 +    void minCutMap(CutMap& cutMap) const {
   1.959 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.960 +        cutMap.set(n, minCut(n));
   1.961 +      }
   1.962 +    }
   1.963 +
   1.964 +    /// @}
   1.965 +  };
   1.966 +}
   1.967 +
   1.968 +#endif