lemon/full_graph.h
changeset 356 99f1bdf8f7db
parent 354 80a4d0742e98
child 360 75cf49ce5390
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/full_graph.h	Tue Nov 04 10:21:22 2008 +0000
     1.3 @@ -0,0 +1,612 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2008
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_FULL_GRAPH_H
    1.23 +#define LEMON_FULL_GRAPH_H
    1.24 +
    1.25 +#include <lemon/core.h>
    1.26 +#include <lemon/bits/graph_extender.h>
    1.27 +
    1.28 +///\ingroup graphs
    1.29 +///\file
    1.30 +///\brief FullGraph and FullDigraph classes.
    1.31 +
    1.32 +namespace lemon {
    1.33 +
    1.34 +  class FullDigraphBase {
    1.35 +  public:
    1.36 +
    1.37 +    typedef FullDigraphBase Graph;
    1.38 +
    1.39 +    class Node;
    1.40 +    class Arc;
    1.41 +
    1.42 +  protected:
    1.43 +
    1.44 +    int _node_num;
    1.45 +    int _arc_num;
    1.46 +
    1.47 +    FullDigraphBase() {}
    1.48 +
    1.49 +    void construct(int n) { _node_num = n; _arc_num = n * n; }
    1.50 +
    1.51 +  public:
    1.52 +
    1.53 +    typedef True NodeNumTag;
    1.54 +    typedef True ArcNumTag;
    1.55 +
    1.56 +    Node operator()(int ix) const { return Node(ix); }
    1.57 +    int index(const Node& node) const { return node._id; }
    1.58 +
    1.59 +    Arc arc(const Node& s, const Node& t) const {
    1.60 +      return Arc(s._id * _node_num + t._id);
    1.61 +    }
    1.62 +
    1.63 +    int nodeNum() const { return _node_num; }
    1.64 +    int arcNum() const { return _arc_num; }
    1.65 +
    1.66 +    int maxNodeId() const { return _node_num - 1; }
    1.67 +    int maxArcId() const { return _arc_num - 1; }
    1.68 +
    1.69 +    Node source(Arc arc) const { return arc._id / _node_num; }
    1.70 +    Node target(Arc arc) const { return arc._id % _node_num; }
    1.71 +
    1.72 +    static int id(Node node) { return node._id; }
    1.73 +    static int id(Arc arc) { return arc._id; }
    1.74 +
    1.75 +    static Node nodeFromId(int id) { return Node(id);}
    1.76 +    static Arc arcFromId(int id) { return Arc(id);}
    1.77 +
    1.78 +    typedef True FindArcTag;
    1.79 +
    1.80 +    Arc findArc(Node s, Node t, Arc prev = INVALID) const {
    1.81 +      return prev == INVALID ? arc(s, t) : INVALID;
    1.82 +    }
    1.83 +
    1.84 +    class Node {
    1.85 +      friend class FullDigraphBase;
    1.86 +
    1.87 +    protected:
    1.88 +      int _id;
    1.89 +      Node(int id) : _id(id) {}
    1.90 +    public:
    1.91 +      Node() {}
    1.92 +      Node (Invalid) : _id(-1) {}
    1.93 +      bool operator==(const Node node) const {return _id == node._id;}
    1.94 +      bool operator!=(const Node node) const {return _id != node._id;}
    1.95 +      bool operator<(const Node node) const {return _id < node._id;}
    1.96 +    };
    1.97 +
    1.98 +    class Arc {
    1.99 +      friend class FullDigraphBase;
   1.100 +
   1.101 +    protected:
   1.102 +      int _id;  // _node_num * source + target;
   1.103 +
   1.104 +      Arc(int id) : _id(id) {}
   1.105 +
   1.106 +    public:
   1.107 +      Arc() { }
   1.108 +      Arc (Invalid) { _id = -1; }
   1.109 +      bool operator==(const Arc arc) const {return _id == arc._id;}
   1.110 +      bool operator!=(const Arc arc) const {return _id != arc._id;}
   1.111 +      bool operator<(const Arc arc) const {return _id < arc._id;}
   1.112 +    };
   1.113 +
   1.114 +    void first(Node& node) const {
   1.115 +      node._id = _node_num - 1;
   1.116 +    }
   1.117 +
   1.118 +    static void next(Node& node) {
   1.119 +      --node._id;
   1.120 +    }
   1.121 +
   1.122 +    void first(Arc& arc) const {
   1.123 +      arc._id = _arc_num - 1;
   1.124 +    }
   1.125 +
   1.126 +    static void next(Arc& arc) {
   1.127 +      --arc._id;
   1.128 +    }
   1.129 +
   1.130 +    void firstOut(Arc& arc, const Node& node) const {
   1.131 +      arc._id = (node._id + 1) * _node_num - 1;
   1.132 +    }
   1.133 +
   1.134 +    void nextOut(Arc& arc) const {
   1.135 +      if (arc._id % _node_num == 0) arc._id = 0;
   1.136 +      --arc._id;
   1.137 +    }
   1.138 +
   1.139 +    void firstIn(Arc& arc, const Node& node) const {
   1.140 +      arc._id = _arc_num + node._id - _node_num;
   1.141 +    }
   1.142 +
   1.143 +    void nextIn(Arc& arc) const {
   1.144 +      arc._id -= _node_num;
   1.145 +      if (arc._id < 0) arc._id = -1;
   1.146 +    }
   1.147 +
   1.148 +  };
   1.149 +
   1.150 +  typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase;
   1.151 +
   1.152 +  /// \ingroup graphs
   1.153 +  ///
   1.154 +  /// \brief A full digraph class.
   1.155 +  ///
   1.156 +  /// This is a simple and fast directed full graph implementation.
   1.157 +  /// From each node go arcs to each node (including the source node),
   1.158 +  /// therefore the number of the arcs in the digraph is the square of
   1.159 +  /// the node number. This digraph type is completely static, so you
   1.160 +  /// can neither add nor delete either arcs or nodes, and it needs
   1.161 +  /// constant space in memory.
   1.162 +  ///
   1.163 +  /// This class conforms to the \ref concepts::Digraph "Digraph" concept
   1.164 +  /// and it also has an important extra feature that its maps are
   1.165 +  /// real \ref concepts::ReferenceMap "reference map"s.
   1.166 +  ///
   1.167 +  /// The \c FullDigraph and \c FullGraph classes are very similar,
   1.168 +  /// but there are two differences. While this class conforms only
   1.169 +  /// to the \ref concepts::Digraph "Digraph" concept, the \c FullGraph
   1.170 +  /// class conforms to the \ref concepts::Graph "Graph" concept,
   1.171 +  /// moreover \c FullGraph does not contain a loop arc for each
   1.172 +  /// node as \c FullDigraph does.
   1.173 +  ///
   1.174 +  /// \sa FullGraph
   1.175 +  class FullDigraph : public ExtendedFullDigraphBase {
   1.176 +  public:
   1.177 +
   1.178 +    typedef ExtendedFullDigraphBase Parent;
   1.179 +
   1.180 +    /// \brief Constructor
   1.181 +    FullDigraph() { construct(0); }
   1.182 +
   1.183 +    /// \brief Constructor
   1.184 +    ///
   1.185 +    /// Constructor.
   1.186 +    /// \param n The number of the nodes.
   1.187 +    FullDigraph(int n) { construct(n); }
   1.188 +
   1.189 +    /// \brief Resizes the digraph
   1.190 +    ///
   1.191 +    /// Resizes the digraph. The function will fully destroy and
   1.192 +    /// rebuild the digraph. This cause that the maps of the digraph will
   1.193 +    /// reallocated automatically and the previous values will be lost.
   1.194 +    void resize(int n) {
   1.195 +      Parent::notifier(Arc()).clear();
   1.196 +      Parent::notifier(Node()).clear();
   1.197 +      construct(n);
   1.198 +      Parent::notifier(Node()).build();
   1.199 +      Parent::notifier(Arc()).build();
   1.200 +    }
   1.201 +
   1.202 +    /// \brief Returns the node with the given index.
   1.203 +    ///
   1.204 +    /// Returns the node with the given index. Since it is a static
   1.205 +    /// digraph its nodes can be indexed with integers from the range
   1.206 +    /// <tt>[0..nodeNum()-1]</tt>.
   1.207 +    /// \sa index()
   1.208 +    Node operator()(int ix) const { return Parent::operator()(ix); }
   1.209 +
   1.210 +    /// \brief Returns the index of the given node.
   1.211 +    ///
   1.212 +    /// Returns the index of the given node. Since it is a static
   1.213 +    /// digraph its nodes can be indexed with integers from the range
   1.214 +    /// <tt>[0..nodeNum()-1]</tt>.
   1.215 +    /// \sa operator()
   1.216 +    int index(const Node& node) const { return Parent::index(node); }
   1.217 +
   1.218 +    /// \brief Returns the arc connecting the given nodes.
   1.219 +    ///
   1.220 +    /// Returns the arc connecting the given nodes.
   1.221 +    Arc arc(const Node& u, const Node& v) const {
   1.222 +      return Parent::arc(u, v);
   1.223 +    }
   1.224 +
   1.225 +    /// \brief Number of nodes.
   1.226 +    int nodeNum() const { return Parent::nodeNum(); }
   1.227 +    /// \brief Number of arcs.
   1.228 +    int arcNum() const { return Parent::arcNum(); }
   1.229 +  };
   1.230 +
   1.231 +
   1.232 +  class FullGraphBase {
   1.233 +    int _node_num;
   1.234 +    int _edge_num;
   1.235 +  public:
   1.236 +
   1.237 +    typedef FullGraphBase Graph;
   1.238 +
   1.239 +    class Node;
   1.240 +    class Arc;
   1.241 +    class Edge;
   1.242 +
   1.243 +  protected:
   1.244 +
   1.245 +    FullGraphBase() {}
   1.246 +
   1.247 +    void construct(int n) { _node_num = n; _edge_num = n * (n - 1) / 2; }
   1.248 +
   1.249 +    int _uid(int e) const {
   1.250 +      int u = e / _node_num;
   1.251 +      int v = e % _node_num;
   1.252 +      return u < v ? u : _node_num - 2 - u;
   1.253 +    }
   1.254 +
   1.255 +    int _vid(int e) const {
   1.256 +      int u = e / _node_num;
   1.257 +      int v = e % _node_num;
   1.258 +      return u < v ? v : _node_num - 1 - v;
   1.259 +    }
   1.260 +
   1.261 +    void _uvid(int e, int& u, int& v) const {
   1.262 +      u = e / _node_num;
   1.263 +      v = e % _node_num;
   1.264 +      if  (u >= v) {
   1.265 +        u = _node_num - 2 - u;
   1.266 +        v = _node_num - 1 - v;
   1.267 +      }
   1.268 +    }
   1.269 +
   1.270 +    void _stid(int a, int& s, int& t) const {
   1.271 +      if ((a & 1) == 1) {
   1.272 +        _uvid(a >> 1, s, t);
   1.273 +      } else {
   1.274 +        _uvid(a >> 1, t, s);
   1.275 +      }
   1.276 +    }
   1.277 +
   1.278 +    int _eid(int u, int v) const {
   1.279 +      if (u < (_node_num - 1) / 2) {
   1.280 +        return u * _node_num + v;
   1.281 +      } else {
   1.282 +        return (_node_num - 1 - u) * _node_num - v - 1;
   1.283 +      }
   1.284 +    }
   1.285 +
   1.286 +  public:
   1.287 +
   1.288 +    Node operator()(int ix) const { return Node(ix); }
   1.289 +    int index(const Node& node) const { return node._id; }
   1.290 +
   1.291 +    Edge edge(const Node& u, const Node& v) const {
   1.292 +      if (u._id < v._id) {
   1.293 +        return Edge(_eid(u._id, v._id));
   1.294 +      } else if (u._id != v._id) {
   1.295 +        return Edge(_eid(v._id, u._id));
   1.296 +      } else {
   1.297 +        return INVALID;
   1.298 +      }
   1.299 +    }
   1.300 +
   1.301 +    Arc arc(const Node& s, const Node& t) const {
   1.302 +      if (s._id < t._id) {
   1.303 +        return Arc((_eid(s._id, t._id) << 1) | 1);
   1.304 +      } else if (s._id != t._id) {
   1.305 +        return Arc(_eid(t._id, s._id) << 1);
   1.306 +      } else {
   1.307 +        return INVALID;
   1.308 +      }
   1.309 +    }
   1.310 +
   1.311 +    typedef True NodeNumTag;
   1.312 +    typedef True EdgeNumTag;
   1.313 +
   1.314 +    int nodeNum() const { return _node_num; }
   1.315 +    int arcNum() const { return 2 * _edge_num; }
   1.316 +    int edgeNum() const { return _edge_num; }
   1.317 +
   1.318 +    static int id(Node node) { return node._id; }
   1.319 +    static int id(Arc arc) { return arc._id; }
   1.320 +    static int id(Edge edge) { return edge._id; }
   1.321 +
   1.322 +    int maxNodeId() const { return _node_num-1; }
   1.323 +    int maxArcId() const { return 2 * _edge_num-1; }
   1.324 +    int maxEdgeId() const { return _edge_num-1; }
   1.325 +
   1.326 +    static Node nodeFromId(int id) { return Node(id);}
   1.327 +    static Arc arcFromId(int id) { return Arc(id);}
   1.328 +    static Edge edgeFromId(int id) { return Edge(id);}
   1.329 +
   1.330 +    Node u(Edge edge) const {
   1.331 +      return Node(_uid(edge._id));
   1.332 +    }
   1.333 +
   1.334 +    Node v(Edge edge) const {
   1.335 +      return Node(_vid(edge._id));
   1.336 +    }
   1.337 +
   1.338 +    Node source(Arc arc) const {
   1.339 +      return Node((arc._id & 1) == 1 ?
   1.340 +                  _uid(arc._id >> 1) : _vid(arc._id >> 1));
   1.341 +    }
   1.342 +
   1.343 +    Node target(Arc arc) const {
   1.344 +      return Node((arc._id & 1) == 1 ?
   1.345 +                  _vid(arc._id >> 1) : _uid(arc._id >> 1));
   1.346 +    }
   1.347 +
   1.348 +    typedef True FindEdgeTag;
   1.349 +
   1.350 +    Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
   1.351 +      return prev != INVALID ? INVALID : edge(u, v);
   1.352 +    }
   1.353 +
   1.354 +    Arc findArc(Node s, Node t, Arc prev = INVALID) const {
   1.355 +      return prev != INVALID ? INVALID : arc(s, t);
   1.356 +    }
   1.357 +
   1.358 +    class Node {
   1.359 +      friend class FullGraphBase;
   1.360 +
   1.361 +    protected:
   1.362 +      int _id;
   1.363 +      Node(int id) : _id(id) {}
   1.364 +    public:
   1.365 +      Node() {}
   1.366 +      Node (Invalid) { _id = -1; }
   1.367 +      bool operator==(const Node node) const {return _id == node._id;}
   1.368 +      bool operator!=(const Node node) const {return _id != node._id;}
   1.369 +      bool operator<(const Node node) const {return _id < node._id;}
   1.370 +    };
   1.371 +
   1.372 +    class Edge {
   1.373 +      friend class FullGraphBase;
   1.374 +      friend class Arc;
   1.375 +
   1.376 +    protected:
   1.377 +      int _id;
   1.378 +
   1.379 +      Edge(int id) : _id(id) {}
   1.380 +
   1.381 +    public:
   1.382 +      Edge() { }
   1.383 +      Edge (Invalid) { _id = -1; }
   1.384 +
   1.385 +      bool operator==(const Edge edge) const {return _id == edge._id;}
   1.386 +      bool operator!=(const Edge edge) const {return _id != edge._id;}
   1.387 +      bool operator<(const Edge edge) const {return _id < edge._id;}
   1.388 +    };
   1.389 +
   1.390 +    class Arc {
   1.391 +      friend class FullGraphBase;
   1.392 +
   1.393 +    protected:
   1.394 +      int _id;
   1.395 +
   1.396 +      Arc(int id) : _id(id) {}
   1.397 +
   1.398 +    public:
   1.399 +      Arc() { }
   1.400 +      Arc (Invalid) { _id = -1; }
   1.401 +
   1.402 +      operator Edge() const { return Edge(_id != -1 ? (_id >> 1) : -1); }
   1.403 +
   1.404 +      bool operator==(const Arc arc) const {return _id == arc._id;}
   1.405 +      bool operator!=(const Arc arc) const {return _id != arc._id;}
   1.406 +      bool operator<(const Arc arc) const {return _id < arc._id;}
   1.407 +    };
   1.408 +
   1.409 +    static bool direction(Arc arc) {
   1.410 +      return (arc._id & 1) == 1;
   1.411 +    }
   1.412 +
   1.413 +    static Arc direct(Edge edge, bool dir) {
   1.414 +      return Arc((edge._id << 1) | (dir ? 1 : 0));
   1.415 +    }
   1.416 +
   1.417 +    void first(Node& node) const {
   1.418 +      node._id = _node_num - 1;
   1.419 +    }
   1.420 +
   1.421 +    static void next(Node& node) {
   1.422 +      --node._id;
   1.423 +    }
   1.424 +
   1.425 +    void first(Arc& arc) const {
   1.426 +      arc._id = (_edge_num << 1) - 1;
   1.427 +    }
   1.428 +
   1.429 +    static void next(Arc& arc) {
   1.430 +      --arc._id;
   1.431 +    }
   1.432 +
   1.433 +    void first(Edge& edge) const {
   1.434 +      edge._id = _edge_num - 1;
   1.435 +    }
   1.436 +
   1.437 +    static void next(Edge& edge) {
   1.438 +      --edge._id;
   1.439 +    }
   1.440 +
   1.441 +    void firstOut(Arc& arc, const Node& node) const {
   1.442 +      int s = node._id, t = _node_num - 1;
   1.443 +      if (s < t) {
   1.444 +        arc._id = (_eid(s, t) << 1) | 1;
   1.445 +      } else {
   1.446 +        --t;
   1.447 +        arc._id = (t != -1 ? (_eid(t, s) << 1) : -1);
   1.448 +      }
   1.449 +    }
   1.450 +
   1.451 +    void nextOut(Arc& arc) const {
   1.452 +      int s, t;
   1.453 +      _stid(arc._id, s, t);
   1.454 +      --t;
   1.455 +      if (s < t) {
   1.456 +        arc._id = (_eid(s, t) << 1) | 1;
   1.457 +      } else {
   1.458 +        if (s == t) --t;
   1.459 +        arc._id = (t != -1 ? (_eid(t, s) << 1) : -1);
   1.460 +      }
   1.461 +    }
   1.462 +
   1.463 +    void firstIn(Arc& arc, const Node& node) const {
   1.464 +      int s = _node_num - 1, t = node._id;
   1.465 +      if (s > t) {
   1.466 +        arc._id = (_eid(t, s) << 1);
   1.467 +      } else {
   1.468 +        --s;
   1.469 +        arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1);
   1.470 +      }
   1.471 +    }
   1.472 +
   1.473 +    void nextIn(Arc& arc) const {
   1.474 +      int s, t;
   1.475 +      _stid(arc._id, s, t);
   1.476 +      --s;
   1.477 +      if (s > t) {
   1.478 +        arc._id = (_eid(t, s) << 1);
   1.479 +      } else {
   1.480 +        if (s == t) --s;
   1.481 +        arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1);
   1.482 +      }
   1.483 +    }
   1.484 +
   1.485 +    void firstInc(Edge& edge, bool& dir, const Node& node) const {
   1.486 +      int u = node._id, v = _node_num - 1;
   1.487 +      if (u < v) {
   1.488 +        edge._id = _eid(u, v);
   1.489 +        dir = true;
   1.490 +      } else {
   1.491 +        --v;
   1.492 +        edge._id = (v != -1 ? _eid(v, u) : -1);
   1.493 +        dir = false;
   1.494 +      }
   1.495 +    }
   1.496 +
   1.497 +    void nextInc(Edge& edge, bool& dir) const {
   1.498 +      int u, v;
   1.499 +      if (dir) {
   1.500 +        _uvid(edge._id, u, v);
   1.501 +        --v;
   1.502 +        if (u < v) {
   1.503 +          edge._id = _eid(u, v);
   1.504 +        } else {
   1.505 +          --v;
   1.506 +          edge._id = (v != -1 ? _eid(v, u) : -1);
   1.507 +          dir = false;
   1.508 +        }
   1.509 +      } else {
   1.510 +        _uvid(edge._id, v, u);
   1.511 +        --v;
   1.512 +        edge._id = (v != -1 ? _eid(v, u) : -1);
   1.513 +      }
   1.514 +    }
   1.515 +
   1.516 +  };
   1.517 +
   1.518 +  typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase;
   1.519 +
   1.520 +  /// \ingroup graphs
   1.521 +  ///
   1.522 +  /// \brief An undirected full graph class.
   1.523 +  ///
   1.524 +  /// This is a simple and fast undirected full graph
   1.525 +  /// implementation. From each node go edge to each other node,
   1.526 +  /// therefore the number of edges in the graph is \f$n(n-1)/2\f$.
   1.527 +  /// This graph type is completely static, so you can neither
   1.528 +  /// add nor delete either edges or nodes, and it needs constant
   1.529 +  /// space in memory.
   1.530 +  ///
   1.531 +  /// This class conforms to the \ref concepts::Graph "Graph" concept
   1.532 +  /// and it also has an important extra feature that its maps are
   1.533 +  /// real \ref concepts::ReferenceMap "reference map"s.
   1.534 +  ///
   1.535 +  /// The \c FullGraph and \c FullDigraph classes are very similar,
   1.536 +  /// but there are two differences. While the \c FullDigraph class
   1.537 +  /// conforms only to the \ref concepts::Digraph "Digraph" concept,
   1.538 +  /// this class conforms to the \ref concepts::Graph "Graph" concept,
   1.539 +  /// moreover \c FullGraph does not contain a loop arc for each
   1.540 +  /// node as \c FullDigraph does.
   1.541 +  ///
   1.542 +  /// \sa FullDigraph
   1.543 +  class FullGraph : public ExtendedFullGraphBase {
   1.544 +  public:
   1.545 +
   1.546 +    typedef ExtendedFullGraphBase Parent;
   1.547 +
   1.548 +    /// \brief Constructor
   1.549 +    FullGraph() { construct(0); }
   1.550 +
   1.551 +    /// \brief Constructor
   1.552 +    ///
   1.553 +    /// Constructor.
   1.554 +    /// \param n The number of the nodes.
   1.555 +    FullGraph(int n) { construct(n); }
   1.556 +
   1.557 +    /// \brief Resizes the graph
   1.558 +    ///
   1.559 +    /// Resizes the graph. The function will fully destroy and
   1.560 +    /// rebuild the graph. This cause that the maps of the graph will
   1.561 +    /// reallocated automatically and the previous values will be lost.
   1.562 +    void resize(int n) {
   1.563 +      Parent::notifier(Arc()).clear();
   1.564 +      Parent::notifier(Edge()).clear();
   1.565 +      Parent::notifier(Node()).clear();
   1.566 +      construct(n);
   1.567 +      Parent::notifier(Node()).build();
   1.568 +      Parent::notifier(Edge()).build();
   1.569 +      Parent::notifier(Arc()).build();
   1.570 +    }
   1.571 +
   1.572 +    /// \brief Returns the node with the given index.
   1.573 +    ///
   1.574 +    /// Returns the node with the given index. Since it is a static
   1.575 +    /// graph its nodes can be indexed with integers from the range
   1.576 +    /// <tt>[0..nodeNum()-1]</tt>.
   1.577 +    /// \sa index()
   1.578 +    Node operator()(int ix) const { return Parent::operator()(ix); }
   1.579 +
   1.580 +    /// \brief Returns the index of the given node.
   1.581 +    ///
   1.582 +    /// Returns the index of the given node. Since it is a static
   1.583 +    /// graph its nodes can be indexed with integers from the range
   1.584 +    /// <tt>[0..nodeNum()-1]</tt>.
   1.585 +    /// \sa operator()
   1.586 +    int index(const Node& node) const { return Parent::index(node); }
   1.587 +
   1.588 +    /// \brief Returns the arc connecting the given nodes.
   1.589 +    ///
   1.590 +    /// Returns the arc connecting the given nodes.
   1.591 +    Arc arc(const Node& s, const Node& t) const {
   1.592 +      return Parent::arc(s, t);
   1.593 +    }
   1.594 +
   1.595 +    /// \brief Returns the edge connects the given nodes.
   1.596 +    ///
   1.597 +    /// Returns the edge connects the given nodes.
   1.598 +    Edge edge(const Node& u, const Node& v) const {
   1.599 +      return Parent::edge(u, v);
   1.600 +    }
   1.601 +
   1.602 +    /// \brief Number of nodes.
   1.603 +    int nodeNum() const { return Parent::nodeNum(); }
   1.604 +    /// \brief Number of arcs.
   1.605 +    int arcNum() const { return Parent::arcNum(); }
   1.606 +    /// \brief Number of edges.
   1.607 +    int edgeNum() const { return Parent::edgeNum(); }
   1.608 +
   1.609 +  };
   1.610 +
   1.611 +
   1.612 +} //namespace lemon
   1.613 +
   1.614 +
   1.615 +#endif //LEMON_FULL_GRAPH_H