doc/groups.dox
changeset 1099 ad40f7d32846
parent 877 141f9c0db4a3
child 904 c279b19abc62
     1.1 --- a/doc/groups.dox	Fri Aug 09 11:07:27 2013 +0200
     1.2 +++ b/doc/groups.dox	Sun Aug 11 15:28:12 2013 +0200
     1.3 @@ -2,7 +2,7 @@
     1.4   *
     1.5   * This file is a part of LEMON, a generic C++ optimization library.
     1.6   *
     1.7 - * Copyright (C) 2003-2009
     1.8 + * Copyright (C) 2003-2010
     1.9   * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10   * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11   *
    1.12 @@ -226,14 +226,6 @@
    1.13  */
    1.14  
    1.15  /**
    1.16 -@defgroup matrices Matrices
    1.17 -@ingroup datas
    1.18 -\brief Two dimensional data storages implemented in LEMON.
    1.19 -
    1.20 -This group contains two dimensional data storages implemented in LEMON.
    1.21 -*/
    1.22 -
    1.23 -/**
    1.24  @defgroup paths Path Structures
    1.25  @ingroup datas
    1.26  \brief %Path structures implemented in LEMON.
    1.27 @@ -246,7 +238,28 @@
    1.28  efficient to have e.g. the Dijkstra algorithm to store its result in
    1.29  any kind of path structure.
    1.30  
    1.31 -\sa lemon::concepts::Path
    1.32 +\sa \ref concepts::Path "Path concept"
    1.33 +*/
    1.34 +
    1.35 +/**
    1.36 +@defgroup heaps Heap Structures
    1.37 +@ingroup datas
    1.38 +\brief %Heap structures implemented in LEMON.
    1.39 +
    1.40 +This group contains the heap structures implemented in LEMON.
    1.41 +
    1.42 +LEMON provides several heap classes. They are efficient implementations
    1.43 +of the abstract data type \e priority \e queue. They store items with
    1.44 +specified values called \e priorities in such a way that finding and
    1.45 +removing the item with minimum priority are efficient.
    1.46 +The basic operations are adding and erasing items, changing the priority
    1.47 +of an item, etc.
    1.48 +
    1.49 +Heaps are crucial in several algorithms, such as Dijkstra and Prim.
    1.50 +The heap implementations have the same interface, thus any of them can be
    1.51 +used easily in such algorithms.
    1.52 +
    1.53 +\sa \ref concepts::Heap "Heap concept"
    1.54  */
    1.55  
    1.56  /**
    1.57 @@ -259,6 +272,28 @@
    1.58  */
    1.59  
    1.60  /**
    1.61 +@defgroup geomdat Geometric Data Structures
    1.62 +@ingroup auxdat
    1.63 +\brief Geometric data structures implemented in LEMON.
    1.64 +
    1.65 +This group contains geometric data structures implemented in LEMON.
    1.66 +
    1.67 + - \ref lemon::dim2::Point "dim2::Point" implements a two dimensional
    1.68 +   vector with the usual operations.
    1.69 + - \ref lemon::dim2::Box "dim2::Box" can be used to determine the
    1.70 +   rectangular bounding box of a set of \ref lemon::dim2::Point
    1.71 +   "dim2::Point"'s.
    1.72 +*/
    1.73 +
    1.74 +/**
    1.75 +@defgroup matrices Matrices
    1.76 +@ingroup auxdat
    1.77 +\brief Two dimensional data storages implemented in LEMON.
    1.78 +
    1.79 +This group contains two dimensional data storages implemented in LEMON.
    1.80 +*/
    1.81 +
    1.82 +/**
    1.83  @defgroup algs Algorithms
    1.84  \brief This group contains the several algorithms
    1.85  implemented in LEMON.
    1.86 @@ -273,7 +308,8 @@
    1.87  \brief Common graph search algorithms.
    1.88  
    1.89  This group contains the common graph search algorithms, namely
    1.90 -\e breadth-first \e search (BFS) and \e depth-first \e search (DFS).
    1.91 +\e breadth-first \e search (BFS) and \e depth-first \e search (DFS)
    1.92 +\ref clrs01algorithms.
    1.93  */
    1.94  
    1.95  /**
    1.96 @@ -281,7 +317,8 @@
    1.97  @ingroup algs
    1.98  \brief Algorithms for finding shortest paths.
    1.99  
   1.100 -This group contains the algorithms for finding shortest paths in digraphs.
   1.101 +This group contains the algorithms for finding shortest paths in digraphs
   1.102 +\ref clrs01algorithms.
   1.103  
   1.104   - \ref Dijkstra algorithm for finding shortest paths from a source node
   1.105     when all arc lengths are non-negative.
   1.106 @@ -298,12 +335,21 @@
   1.107  */
   1.108  
   1.109  /**
   1.110 +@defgroup spantree Minimum Spanning Tree Algorithms
   1.111 +@ingroup algs
   1.112 +\brief Algorithms for finding minimum cost spanning trees and arborescences.
   1.113 +
   1.114 +This group contains the algorithms for finding minimum cost spanning
   1.115 +trees and arborescences \ref clrs01algorithms.
   1.116 +*/
   1.117 +
   1.118 +/**
   1.119  @defgroup max_flow Maximum Flow Algorithms
   1.120  @ingroup algs
   1.121  \brief Algorithms for finding maximum flows.
   1.122  
   1.123  This group contains the algorithms for finding maximum flows and
   1.124 -feasible circulations.
   1.125 +feasible circulations \ref clrs01algorithms, \ref amo93networkflows.
   1.126  
   1.127  The \e maximum \e flow \e problem is to find a flow of maximum value between
   1.128  a single source and a single target. Formally, there is a \f$G=(V,A)\f$
   1.129 @@ -318,17 +364,21 @@
   1.130  \f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f]
   1.131  
   1.132  LEMON contains several algorithms for solving maximum flow problems:
   1.133 -- \ref EdmondsKarp Edmonds-Karp algorithm.
   1.134 -- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm.
   1.135 -- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees.
   1.136 -- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees.
   1.137 +- \ref EdmondsKarp Edmonds-Karp algorithm
   1.138 +  \ref edmondskarp72theoretical.
   1.139 +- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm
   1.140 +  \ref goldberg88newapproach.
   1.141 +- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees
   1.142 +  \ref dinic70algorithm, \ref sleator83dynamic.
   1.143 +- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees
   1.144 +  \ref goldberg88newapproach, \ref sleator83dynamic.
   1.145  
   1.146 -In most cases the \ref Preflow "Preflow" algorithm provides the
   1.147 +In most cases the \ref Preflow algorithm provides the
   1.148  fastest method for computing a maximum flow. All implementations
   1.149  also provide functions to query the minimum cut, which is the dual
   1.150  problem of maximum flow.
   1.151  
   1.152 -\ref Circulation is a preflow push-relabel algorithm implemented directly 
   1.153 +\ref Circulation is a preflow push-relabel algorithm implemented directly
   1.154  for finding feasible circulations, which is a somewhat different problem,
   1.155  but it is strongly related to maximum flow.
   1.156  For more information, see \ref Circulation.
   1.157 @@ -341,18 +391,20 @@
   1.158  \brief Algorithms for finding minimum cost flows and circulations.
   1.159  
   1.160  This group contains the algorithms for finding minimum cost flows and
   1.161 -circulations. For more information about this problem and its dual
   1.162 -solution see \ref min_cost_flow "Minimum Cost Flow Problem".
   1.163 +circulations \ref amo93networkflows. For more information about this
   1.164 +problem and its dual solution, see \ref min_cost_flow
   1.165 +"Minimum Cost Flow Problem".
   1.166  
   1.167  LEMON contains several algorithms for this problem.
   1.168   - \ref NetworkSimplex Primal Network Simplex algorithm with various
   1.169 -   pivot strategies.
   1.170 - - \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on
   1.171 -   cost scaling.
   1.172 - - \ref CapacityScaling Successive Shortest %Path algorithm with optional
   1.173 -   capacity scaling.
   1.174 - - \ref CancelAndTighten The Cancel and Tighten algorithm.
   1.175 - - \ref CycleCanceling Cycle-Canceling algorithms.
   1.176 +   pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex.
   1.177 + - \ref CostScaling Cost Scaling algorithm based on push/augment and
   1.178 +   relabel operations \ref goldberg90approximation, \ref goldberg97efficient,
   1.179 +   \ref bunnagel98efficient.
   1.180 + - \ref CapacityScaling Capacity Scaling algorithm based on the successive
   1.181 +   shortest path method \ref edmondskarp72theoretical.
   1.182 + - \ref CycleCanceling Cycle-Canceling algorithms, two of which are
   1.183 +   strongly polynomial \ref klein67primal, \ref goldberg89cyclecanceling.
   1.184  
   1.185  In general NetworkSimplex is the most efficient implementation,
   1.186  but in special cases other algorithms could be faster.
   1.187 @@ -375,7 +427,7 @@
   1.188  cut is the \f$X\f$ solution of the next optimization problem:
   1.189  
   1.190  \f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
   1.191 -    \sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
   1.192 +    \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
   1.193  
   1.194  LEMON contains several algorithms related to minimum cut problems:
   1.195  
   1.196 @@ -391,27 +443,40 @@
   1.197  */
   1.198  
   1.199  /**
   1.200 -@defgroup graph_properties Connectivity and Other Graph Properties
   1.201 +@defgroup min_mean_cycle Minimum Mean Cycle Algorithms
   1.202  @ingroup algs
   1.203 -\brief Algorithms for discovering the graph properties
   1.204 +\brief Algorithms for finding minimum mean cycles.
   1.205  
   1.206 -This group contains the algorithms for discovering the graph properties
   1.207 -like connectivity, bipartiteness, euler property, simplicity etc.
   1.208 +This group contains the algorithms for finding minimum mean cycles
   1.209 +\ref clrs01algorithms, \ref amo93networkflows.
   1.210  
   1.211 -\image html edge_biconnected_components.png
   1.212 -\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
   1.213 -*/
   1.214 +The \e minimum \e mean \e cycle \e problem is to find a directed cycle
   1.215 +of minimum mean length (cost) in a digraph.
   1.216 +The mean length of a cycle is the average length of its arcs, i.e. the
   1.217 +ratio between the total length of the cycle and the number of arcs on it.
   1.218  
   1.219 -/**
   1.220 -@defgroup planar Planarity Embedding and Drawing
   1.221 -@ingroup algs
   1.222 -\brief Algorithms for planarity checking, embedding and drawing
   1.223 +This problem has an important connection to \e conservative \e length
   1.224 +\e functions, too. A length function on the arcs of a digraph is called
   1.225 +conservative if and only if there is no directed cycle of negative total
   1.226 +length. For an arbitrary length function, the negative of the minimum
   1.227 +cycle mean is the smallest \f$\epsilon\f$ value so that increasing the
   1.228 +arc lengths uniformly by \f$\epsilon\f$ results in a conservative length
   1.229 +function.
   1.230  
   1.231 -This group contains the algorithms for planarity checking,
   1.232 -embedding and drawing.
   1.233 +LEMON contains three algorithms for solving the minimum mean cycle problem:
   1.234 +- \ref KarpMmc Karp's original algorithm \ref amo93networkflows,
   1.235 +  \ref dasdan98minmeancycle.
   1.236 +- \ref HartmannOrlinMmc Hartmann-Orlin's algorithm, which is an improved
   1.237 +  version of Karp's algorithm \ref dasdan98minmeancycle.
   1.238 +- \ref HowardMmc Howard's policy iteration algorithm
   1.239 +  \ref dasdan98minmeancycle.
   1.240  
   1.241 -\image html planar.png
   1.242 -\image latex planar.eps "Plane graph" width=\textwidth
   1.243 +In practice, the \ref HowardMmc "Howard" algorithm proved to be by far the
   1.244 +most efficient one, though the best known theoretical bound on its running
   1.245 +time is exponential.
   1.246 +Both \ref KarpMmc "Karp" and \ref HartmannOrlinMmc "Hartmann-Orlin" algorithms
   1.247 +run in time O(ne) and use space O(n<sup>2</sup>+e), but the latter one is
   1.248 +typically faster due to the applied early termination scheme.
   1.249  */
   1.250  
   1.251  /**
   1.252 @@ -449,18 +514,49 @@
   1.253  - \ref MaxWeightedPerfectMatching
   1.254    Edmond's blossom shrinking algorithm for calculating maximum weighted
   1.255    perfect matching in general graphs.
   1.256 +- \ref MaxFractionalMatching Push-relabel algorithm for calculating
   1.257 +  maximum cardinality fractional matching in general graphs.
   1.258 +- \ref MaxWeightedFractionalMatching Augmenting path algorithm for calculating
   1.259 +  maximum weighted fractional matching in general graphs.
   1.260 +- \ref MaxWeightedPerfectFractionalMatching
   1.261 +  Augmenting path algorithm for calculating maximum weighted
   1.262 +  perfect fractional matching in general graphs.
   1.263  
   1.264 -\image html bipartite_matching.png
   1.265 -\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
   1.266 +\image html matching.png
   1.267 +\image latex matching.eps "Min Cost Perfect Matching" width=\textwidth
   1.268  */
   1.269  
   1.270  /**
   1.271 -@defgroup spantree Minimum Spanning Tree Algorithms
   1.272 +@defgroup graph_properties Connectivity and Other Graph Properties
   1.273  @ingroup algs
   1.274 -\brief Algorithms for finding minimum cost spanning trees and arborescences.
   1.275 +\brief Algorithms for discovering the graph properties
   1.276  
   1.277 -This group contains the algorithms for finding minimum cost spanning
   1.278 -trees and arborescences.
   1.279 +This group contains the algorithms for discovering the graph properties
   1.280 +like connectivity, bipartiteness, euler property, simplicity etc.
   1.281 +
   1.282 +\image html connected_components.png
   1.283 +\image latex connected_components.eps "Connected components" width=\textwidth
   1.284 +*/
   1.285 +
   1.286 +/**
   1.287 +@defgroup planar Planarity Embedding and Drawing
   1.288 +@ingroup algs
   1.289 +\brief Algorithms for planarity checking, embedding and drawing
   1.290 +
   1.291 +This group contains the algorithms for planarity checking,
   1.292 +embedding and drawing.
   1.293 +
   1.294 +\image html planar.png
   1.295 +\image latex planar.eps "Plane graph" width=\textwidth
   1.296 +*/
   1.297 +
   1.298 +/**
   1.299 +@defgroup approx Approximation Algorithms
   1.300 +@ingroup algs
   1.301 +\brief Approximation algorithms.
   1.302 +
   1.303 +This group contains the approximation and heuristic algorithms
   1.304 +implemented in LEMON.
   1.305  */
   1.306  
   1.307  /**
   1.308 @@ -473,15 +569,6 @@
   1.309  */
   1.310  
   1.311  /**
   1.312 -@defgroup approx Approximation Algorithms
   1.313 -@ingroup algs
   1.314 -\brief Approximation algorithms.
   1.315 -
   1.316 -This group contains the approximation and heuristic algorithms
   1.317 -implemented in LEMON.
   1.318 -*/
   1.319 -
   1.320 -/**
   1.321  @defgroup gen_opt_group General Optimization Tools
   1.322  \brief This group contains some general optimization frameworks
   1.323  implemented in LEMON.
   1.324 @@ -491,13 +578,16 @@
   1.325  */
   1.326  
   1.327  /**
   1.328 -@defgroup lp_group Lp and Mip Solvers
   1.329 +@defgroup lp_group LP and MIP Solvers
   1.330  @ingroup gen_opt_group
   1.331 -\brief Lp and Mip solver interfaces for LEMON.
   1.332 +\brief LP and MIP solver interfaces for LEMON.
   1.333  
   1.334 -This group contains Lp and Mip solver interfaces for LEMON. The
   1.335 -various LP solvers could be used in the same manner with this
   1.336 -interface.
   1.337 +This group contains LP and MIP solver interfaces for LEMON.
   1.338 +Various LP solvers could be used in the same manner with this
   1.339 +high-level interface.
   1.340 +
   1.341 +The currently supported solvers are \ref glpk, \ref clp, \ref cbc,
   1.342 +\ref cplex, \ref soplex.
   1.343  */
   1.344  
   1.345  /**
   1.346 @@ -587,7 +677,7 @@
   1.347  */
   1.348  
   1.349  /**
   1.350 -@defgroup dimacs_group DIMACS format
   1.351 +@defgroup dimacs_group DIMACS Format
   1.352  @ingroup io_group
   1.353  \brief Read and write files in DIMACS format
   1.354  
   1.355 @@ -636,8 +726,8 @@
   1.356  @ingroup concept
   1.357  \brief Skeleton and concept checking classes for graph structures
   1.358  
   1.359 -This group contains the skeletons and concept checking classes of LEMON's
   1.360 -graph structures and helper classes used to implement these.
   1.361 +This group contains the skeletons and concept checking classes of
   1.362 +graph structures.
   1.363  */
   1.364  
   1.365  /**
   1.366 @@ -649,6 +739,15 @@
   1.367  */
   1.368  
   1.369  /**
   1.370 +@defgroup tools Standalone Utility Applications
   1.371 +
   1.372 +Some utility applications are listed here.
   1.373 +
   1.374 +The standard compilation procedure (<tt>./configure;make</tt>) will compile
   1.375 +them, as well.
   1.376 +*/
   1.377 +
   1.378 +/**
   1.379  \anchor demoprograms
   1.380  
   1.381  @defgroup demos Demo Programs
   1.382 @@ -660,13 +759,4 @@
   1.383  <tt>make check</tt> commands.
   1.384  */
   1.385  
   1.386 -/**
   1.387 -@defgroup tools Standalone Utility Applications
   1.388 -
   1.389 -Some utility applications are listed here.
   1.390 -
   1.391 -The standard compilation procedure (<tt>./configure;make</tt>) will compile
   1.392 -them, as well.
   1.393 -*/
   1.394 -
   1.395  }