lemon/fib_heap.h
changeset 1099 ad40f7d32846
parent 710 f1fe0ddad6f7
     1.1 --- a/lemon/fib_heap.h	Fri Aug 09 11:07:27 2013 +0200
     1.2 +++ b/lemon/fib_heap.h	Sun Aug 11 15:28:12 2013 +0200
     1.3 @@ -20,53 +20,49 @@
     1.4  #define LEMON_FIB_HEAP_H
     1.5  
     1.6  ///\file
     1.7 -///\ingroup auxdat
     1.8 -///\brief Fibonacci Heap implementation.
     1.9 +///\ingroup heaps
    1.10 +///\brief Fibonacci heap implementation.
    1.11  
    1.12  #include <vector>
    1.13 +#include <utility>
    1.14  #include <functional>
    1.15  #include <lemon/math.h>
    1.16  
    1.17  namespace lemon {
    1.18  
    1.19 -  /// \ingroup auxdat
    1.20 +  /// \ingroup heaps
    1.21    ///
    1.22 -  ///\brief Fibonacci Heap.
    1.23 +  /// \brief Fibonacci heap data structure.
    1.24    ///
    1.25 -  ///This class implements the \e Fibonacci \e heap data structure. A \e heap
    1.26 -  ///is a data structure for storing items with specified values called \e
    1.27 -  ///priorities in such a way that finding the item with minimum priority is
    1.28 -  ///efficient. \c CMP specifies the ordering of the priorities. In a heap
    1.29 -  ///one can change the priority of an item, add or erase an item, etc.
    1.30 +  /// This class implements the \e Fibonacci \e heap data structure.
    1.31 +  /// It fully conforms to the \ref concepts::Heap "heap concept".
    1.32    ///
    1.33 -  ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
    1.34 -  ///heap. In case of many calls to these operations, it is better to use a
    1.35 -  ///\ref BinHeap "binary heap".
    1.36 +  /// The methods \ref increase() and \ref erase() are not efficient in a
    1.37 +  /// Fibonacci heap. In case of many calls of these operations, it is
    1.38 +  /// better to use other heap structure, e.g. \ref BinHeap "binary heap".
    1.39    ///
    1.40 -  ///\param PRIO Type of the priority of the items.
    1.41 -  ///\param IM A read and writable Item int map, used internally
    1.42 -  ///to handle the cross references.
    1.43 -  ///\param CMP A class for the ordering of the priorities. The
    1.44 -  ///default is \c std::less<PRIO>.
    1.45 -  ///
    1.46 -  ///\sa BinHeap
    1.47 -  ///\sa Dijkstra
    1.48 +  /// \tparam PR Type of the priorities of the items.
    1.49 +  /// \tparam IM A read-writable item map with \c int values, used
    1.50 +  /// internally to handle the cross references.
    1.51 +  /// \tparam CMP A functor class for comparing the priorities.
    1.52 +  /// The default is \c std::less<PR>.
    1.53  #ifdef DOXYGEN
    1.54 -  template <typename PRIO, typename IM, typename CMP>
    1.55 +  template <typename PR, typename IM, typename CMP>
    1.56  #else
    1.57 -  template <typename PRIO, typename IM, typename CMP = std::less<PRIO> >
    1.58 +  template <typename PR, typename IM, typename CMP = std::less<PR> >
    1.59  #endif
    1.60    class FibHeap {
    1.61    public:
    1.62 -    ///\e
    1.63 +
    1.64 +    /// Type of the item-int map.
    1.65      typedef IM ItemIntMap;
    1.66 -    ///\e
    1.67 -    typedef PRIO Prio;
    1.68 -    ///\e
    1.69 +    /// Type of the priorities.
    1.70 +    typedef PR Prio;
    1.71 +    /// Type of the items stored in the heap.
    1.72      typedef typename ItemIntMap::Key Item;
    1.73 -    ///\e
    1.74 +    /// Type of the item-priority pairs.
    1.75      typedef std::pair<Item,Prio> Pair;
    1.76 -    ///\e
    1.77 +    /// Functor type for comparing the priorities.
    1.78      typedef CMP Compare;
    1.79  
    1.80    private:
    1.81 @@ -80,10 +76,10 @@
    1.82  
    1.83    public:
    1.84  
    1.85 -    /// \brief Type to represent the items states.
    1.86 +    /// \brief Type to represent the states of the items.
    1.87      ///
    1.88 -    /// Each Item element have a state associated to it. It may be "in heap",
    1.89 -    /// "pre heap" or "post heap". The latter two are indifferent from the
    1.90 +    /// Each item has a state associated to it. It can be "in heap",
    1.91 +    /// "pre-heap" or "post-heap". The latter two are indifferent from the
    1.92      /// heap's point of view, but may be useful to the user.
    1.93      ///
    1.94      /// The item-int map must be initialized in such way that it assigns
    1.95 @@ -94,60 +90,54 @@
    1.96        POST_HEAP = -2  ///< = -2.
    1.97      };
    1.98  
    1.99 -    /// \brief The constructor
   1.100 +    /// \brief Constructor.
   1.101      ///
   1.102 -    /// \c map should be given to the constructor, since it is
   1.103 -    ///   used internally to handle the cross references.
   1.104 +    /// Constructor.
   1.105 +    /// \param map A map that assigns \c int values to the items.
   1.106 +    /// It is used internally to handle the cross references.
   1.107 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   1.108      explicit FibHeap(ItemIntMap &map)
   1.109        : _minimum(0), _iim(map), _num() {}
   1.110  
   1.111 -    /// \brief The constructor
   1.112 +    /// \brief Constructor.
   1.113      ///
   1.114 -    /// \c map should be given to the constructor, since it is used
   1.115 -    /// internally to handle the cross references. \c comp is an
   1.116 -    /// object for ordering of the priorities.
   1.117 +    /// Constructor.
   1.118 +    /// \param map A map that assigns \c int values to the items.
   1.119 +    /// It is used internally to handle the cross references.
   1.120 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   1.121 +    /// \param comp The function object used for comparing the priorities.
   1.122      FibHeap(ItemIntMap &map, const Compare &comp)
   1.123        : _minimum(0), _iim(map), _comp(comp), _num() {}
   1.124  
   1.125      /// \brief The number of items stored in the heap.
   1.126      ///
   1.127 -    /// Returns the number of items stored in the heap.
   1.128 +    /// This function returns the number of items stored in the heap.
   1.129      int size() const { return _num; }
   1.130  
   1.131 -    /// \brief Checks if the heap stores no items.
   1.132 +    /// \brief Check if the heap is empty.
   1.133      ///
   1.134 -    ///   Returns \c true if and only if the heap stores no items.
   1.135 +    /// This function returns \c true if the heap is empty.
   1.136      bool empty() const { return _num==0; }
   1.137  
   1.138 -    /// \brief Make empty this heap.
   1.139 +    /// \brief Make the heap empty.
   1.140      ///
   1.141 -    /// Make empty this heap. It does not change the cross reference
   1.142 -    /// map.  If you want to reuse a heap what is not surely empty you
   1.143 -    /// should first clear the heap and after that you should set the
   1.144 -    /// cross reference map for each item to \c PRE_HEAP.
   1.145 +    /// This functon makes the heap empty.
   1.146 +    /// It does not change the cross reference map. If you want to reuse
   1.147 +    /// a heap that is not surely empty, you should first clear it and
   1.148 +    /// then you should set the cross reference map to \c PRE_HEAP
   1.149 +    /// for each item.
   1.150      void clear() {
   1.151        _data.clear(); _minimum = 0; _num = 0;
   1.152      }
   1.153  
   1.154 -    /// \brief \c item gets to the heap with priority \c value independently
   1.155 -    /// if \c item was already there.
   1.156 +    /// \brief Insert an item into the heap with the given priority.
   1.157      ///
   1.158 -    /// This method calls \ref push(\c item, \c value) if \c item is not
   1.159 -    /// stored in the heap and it calls \ref decrease(\c item, \c value) or
   1.160 -    /// \ref increase(\c item, \c value) otherwise.
   1.161 -    void set (const Item& item, const Prio& value) {
   1.162 -      int i=_iim[item];
   1.163 -      if ( i >= 0 && _data[i].in ) {
   1.164 -        if ( _comp(value, _data[i].prio) ) decrease(item, value);
   1.165 -        if ( _comp(_data[i].prio, value) ) increase(item, value);
   1.166 -      } else push(item, value);
   1.167 -    }
   1.168 -
   1.169 -    /// \brief Adds \c item to the heap with priority \c value.
   1.170 -    ///
   1.171 -    /// Adds \c item to the heap with priority \c value.
   1.172 -    /// \pre \c item must not be stored in the heap.
   1.173 -    void push (const Item& item, const Prio& value) {
   1.174 +    /// This function inserts the given item into the heap with the
   1.175 +    /// given priority.
   1.176 +    /// \param item The item to insert.
   1.177 +    /// \param prio The priority of the item.
   1.178 +    /// \pre \e item must not be stored in the heap.
   1.179 +    void push (const Item& item, const Prio& prio) {
   1.180        int i=_iim[item];
   1.181        if ( i < 0 ) {
   1.182          int s=_data.size();
   1.183 @@ -168,47 +158,37 @@
   1.184          _data[i].right_neighbor=_data[_minimum].right_neighbor;
   1.185          _data[_minimum].right_neighbor=i;
   1.186          _data[i].left_neighbor=_minimum;
   1.187 -        if ( _comp( value, _data[_minimum].prio) ) _minimum=i;
   1.188 +        if ( _comp( prio, _data[_minimum].prio) ) _minimum=i;
   1.189        } else {
   1.190          _data[i].right_neighbor=_data[i].left_neighbor=i;
   1.191          _minimum=i;
   1.192        }
   1.193 -      _data[i].prio=value;
   1.194 +      _data[i].prio=prio;
   1.195        ++_num;
   1.196      }
   1.197  
   1.198 -    /// \brief Returns the item with minimum priority relative to \c Compare.
   1.199 +    /// \brief Return the item having minimum priority.
   1.200      ///
   1.201 -    /// This method returns the item with minimum priority relative to \c
   1.202 -    /// Compare.
   1.203 -    /// \pre The heap must be nonempty.
   1.204 +    /// This function returns the item having minimum priority.
   1.205 +    /// \pre The heap must be non-empty.
   1.206      Item top() const { return _data[_minimum].name; }
   1.207  
   1.208 -    /// \brief Returns the minimum priority relative to \c Compare.
   1.209 +    /// \brief The minimum priority.
   1.210      ///
   1.211 -    /// It returns the minimum priority relative to \c Compare.
   1.212 -    /// \pre The heap must be nonempty.
   1.213 -    const Prio& prio() const { return _data[_minimum].prio; }
   1.214 +    /// This function returns the minimum priority.
   1.215 +    /// \pre The heap must be non-empty.
   1.216 +    Prio prio() const { return _data[_minimum].prio; }
   1.217  
   1.218 -    /// \brief Returns the priority of \c item.
   1.219 +    /// \brief Remove the item having minimum priority.
   1.220      ///
   1.221 -    /// It returns the priority of \c item.
   1.222 -    /// \pre \c item must be in the heap.
   1.223 -    const Prio& operator[](const Item& item) const {
   1.224 -      return _data[_iim[item]].prio;
   1.225 -    }
   1.226 -
   1.227 -    /// \brief Deletes the item with minimum priority relative to \c Compare.
   1.228 -    ///
   1.229 -    /// This method deletes the item with minimum priority relative to \c
   1.230 -    /// Compare from the heap.
   1.231 +    /// This function removes the item having minimum priority.
   1.232      /// \pre The heap must be non-empty.
   1.233      void pop() {
   1.234        /*The first case is that there are only one root.*/
   1.235        if ( _data[_minimum].left_neighbor==_minimum ) {
   1.236          _data[_minimum].in=false;
   1.237          if ( _data[_minimum].degree!=0 ) {
   1.238 -          makeroot(_data[_minimum].child);
   1.239 +          makeRoot(_data[_minimum].child);
   1.240            _minimum=_data[_minimum].child;
   1.241            balance();
   1.242          }
   1.243 @@ -221,7 +201,7 @@
   1.244            int child=_data[_minimum].child;
   1.245            int last_child=_data[child].left_neighbor;
   1.246  
   1.247 -          makeroot(child);
   1.248 +          makeRoot(child);
   1.249  
   1.250            _data[left].right_neighbor=child;
   1.251            _data[child].left_neighbor=left;
   1.252 @@ -234,10 +214,12 @@
   1.253        --_num;
   1.254      }
   1.255  
   1.256 -    /// \brief Deletes \c item from the heap.
   1.257 +    /// \brief Remove the given item from the heap.
   1.258      ///
   1.259 -    /// This method deletes \c item from the heap, if \c item was already
   1.260 -    /// stored in the heap. It is quite inefficient in Fibonacci heaps.
   1.261 +    /// This function removes the given item from the heap if it is
   1.262 +    /// already stored.
   1.263 +    /// \param item The item to delete.
   1.264 +    /// \pre \e item must be in the heap.
   1.265      void erase (const Item& item) {
   1.266        int i=_iim[item];
   1.267  
   1.268 @@ -252,43 +234,68 @@
   1.269        }
   1.270      }
   1.271  
   1.272 -    /// \brief Decreases the priority of \c item to \c value.
   1.273 +    /// \brief The priority of the given item.
   1.274      ///
   1.275 -    /// This method decreases the priority of \c item to \c value.
   1.276 -    /// \pre \c item must be stored in the heap with priority at least \c
   1.277 -    ///   value relative to \c Compare.
   1.278 -    void decrease (Item item, const Prio& value) {
   1.279 +    /// This function returns the priority of the given item.
   1.280 +    /// \param item The item.
   1.281 +    /// \pre \e item must be in the heap.
   1.282 +    Prio operator[](const Item& item) const {
   1.283 +      return _data[_iim[item]].prio;
   1.284 +    }
   1.285 +
   1.286 +    /// \brief Set the priority of an item or insert it, if it is
   1.287 +    /// not stored in the heap.
   1.288 +    ///
   1.289 +    /// This method sets the priority of the given item if it is
   1.290 +    /// already stored in the heap. Otherwise it inserts the given
   1.291 +    /// item into the heap with the given priority.
   1.292 +    /// \param item The item.
   1.293 +    /// \param prio The priority.
   1.294 +    void set (const Item& item, const Prio& prio) {
   1.295        int i=_iim[item];
   1.296 -      _data[i].prio=value;
   1.297 +      if ( i >= 0 && _data[i].in ) {
   1.298 +        if ( _comp(prio, _data[i].prio) ) decrease(item, prio);
   1.299 +        if ( _comp(_data[i].prio, prio) ) increase(item, prio);
   1.300 +      } else push(item, prio);
   1.301 +    }
   1.302 +
   1.303 +    /// \brief Decrease the priority of an item to the given value.
   1.304 +    ///
   1.305 +    /// This function decreases the priority of an item to the given value.
   1.306 +    /// \param item The item.
   1.307 +    /// \param prio The priority.
   1.308 +    /// \pre \e item must be stored in the heap with priority at least \e prio.
   1.309 +    void decrease (const Item& item, const Prio& prio) {
   1.310 +      int i=_iim[item];
   1.311 +      _data[i].prio=prio;
   1.312        int p=_data[i].parent;
   1.313  
   1.314 -      if ( p!=-1 && _comp(value, _data[p].prio) ) {
   1.315 +      if ( p!=-1 && _comp(prio, _data[p].prio) ) {
   1.316          cut(i,p);
   1.317          cascade(p);
   1.318        }
   1.319 -      if ( _comp(value, _data[_minimum].prio) ) _minimum=i;
   1.320 +      if ( _comp(prio, _data[_minimum].prio) ) _minimum=i;
   1.321      }
   1.322  
   1.323 -    /// \brief Increases the priority of \c item to \c value.
   1.324 +    /// \brief Increase the priority of an item to the given value.
   1.325      ///
   1.326 -    /// This method sets the priority of \c item to \c value. Though
   1.327 -    /// there is no precondition on the priority of \c item, this
   1.328 -    /// method should be used only if it is indeed necessary to increase
   1.329 -    /// (relative to \c Compare) the priority of \c item, because this
   1.330 -    /// method is inefficient.
   1.331 -    void increase (Item item, const Prio& value) {
   1.332 +    /// This function increases the priority of an item to the given value.
   1.333 +    /// \param item The item.
   1.334 +    /// \param prio The priority.
   1.335 +    /// \pre \e item must be stored in the heap with priority at most \e prio.
   1.336 +    void increase (const Item& item, const Prio& prio) {
   1.337        erase(item);
   1.338 -      push(item, value);
   1.339 +      push(item, prio);
   1.340      }
   1.341  
   1.342 -
   1.343 -    /// \brief Returns if \c item is in, has already been in, or has never
   1.344 -    /// been in the heap.
   1.345 +    /// \brief Return the state of an item.
   1.346      ///
   1.347 -    /// This method returns PRE_HEAP if \c item has never been in the
   1.348 -    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   1.349 -    /// otherwise. In the latter case it is possible that \c item will
   1.350 -    /// get back to the heap again.
   1.351 +    /// This method returns \c PRE_HEAP if the given item has never
   1.352 +    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
   1.353 +    /// and \c POST_HEAP otherwise.
   1.354 +    /// In the latter case it is possible that the item will get back
   1.355 +    /// to the heap again.
   1.356 +    /// \param item The item.
   1.357      State state(const Item &item) const {
   1.358        int i=_iim[item];
   1.359        if( i>=0 ) {
   1.360 @@ -298,11 +305,11 @@
   1.361        return State(i);
   1.362      }
   1.363  
   1.364 -    /// \brief Sets the state of the \c item in the heap.
   1.365 +    /// \brief Set the state of an item in the heap.
   1.366      ///
   1.367 -    /// Sets the state of the \c item in the heap. It can be used to
   1.368 -    /// manually clear the heap when it is important to achive the
   1.369 -    /// better time _complexity.
   1.370 +    /// This function sets the state of the given item in the heap.
   1.371 +    /// It can be used to manually clear the heap when it is important
   1.372 +    /// to achive better time complexity.
   1.373      /// \param i The item.
   1.374      /// \param st The state. It should not be \c IN_HEAP.
   1.375      void state(const Item& i, State st) {
   1.376 @@ -365,7 +372,7 @@
   1.377        } while ( s != m );
   1.378      }
   1.379  
   1.380 -    void makeroot(int c) {
   1.381 +    void makeRoot(int c) {
   1.382        int s=c;
   1.383        do {
   1.384          _data[s].parent=-1;