lemon/binom_heap.h
changeset 703 bb3392fe91f2
parent 701 d1a9224f1e30
child 707 3887d6f994d7
     1.1 --- a/lemon/binom_heap.h	Thu Jul 09 02:39:47 2009 +0200
     1.2 +++ b/lemon/binom_heap.h	Thu Jul 09 04:07:08 2009 +0200
     1.3 @@ -1,8 +1,8 @@
     1.4 -/* -*- C++ -*-
     1.5 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.6   *
     1.7 - * This file is a part of LEMON, a generic C++ optimization library
     1.8 + * This file is a part of LEMON, a generic C++ optimization library.
     1.9   *
    1.10 - * Copyright (C) 2003-2008
    1.11 + * Copyright (C) 2003-2009
    1.12   * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.13   * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.14   *
    1.15 @@ -20,193 +20,199 @@
    1.16  #define LEMON_BINOM_HEAP_H
    1.17  
    1.18  ///\file
    1.19 -///\ingroup auxdat
    1.20 +///\ingroup heaps
    1.21  ///\brief Binomial Heap implementation.
    1.22  
    1.23  #include <vector>
    1.24 +#include <utility>
    1.25  #include <functional>
    1.26  #include <lemon/math.h>
    1.27  #include <lemon/counter.h>
    1.28  
    1.29  namespace lemon {
    1.30  
    1.31 -  /// \ingroup auxdat
    1.32 +  /// \ingroup heaps
    1.33    ///
    1.34 -  ///\brief Binomial Heap.
    1.35 +  ///\brief Binomial heap data structure.
    1.36    ///
    1.37 -  ///This class implements the \e Binomial \e heap data structure. A \e heap
    1.38 -  ///is a data structure for storing items with specified values called \e
    1.39 -  ///priorities in such a way that finding the item with minimum priority is
    1.40 -  ///efficient. \c Compare specifies the ordering of the priorities. In a heap
    1.41 -  ///one can change the priority of an item, add or erase an item, etc.
    1.42 +  /// This class implements the \e binomial \e heap data structure.
    1.43 +  /// It fully conforms to the \ref concepts::Heap "heap concept".
    1.44    ///
    1.45 -  ///The methods \ref increase and \ref erase are not efficient in a Binomial
    1.46 -  ///heap. In case of many calls to these operations, it is better to use a
    1.47 -  ///\ref BinHeap "binary heap".
    1.48 +  /// The methods \ref increase() and \ref erase() are not efficient
    1.49 +  /// in a binomial heap. In case of many calls of these operations,
    1.50 +  /// it is better to use other heap structure, e.g. \ref BinHeap
    1.51 +  /// "binary heap".
    1.52    ///
    1.53 -  ///\param _Prio Type of the priority of the items.
    1.54 -  ///\param _ItemIntMap A read and writable Item int map, used internally
    1.55 -  ///to handle the cross references.
    1.56 -  ///\param _Compare A class for the ordering of the priorities. The
    1.57 -  ///default is \c std::less<_Prio>.
    1.58 -  ///
    1.59 -  ///\sa BinHeap
    1.60 -  ///\sa Dijkstra
    1.61 -  ///\author Dorian Batha
    1.62 -
    1.63 +  /// \tparam PR Type of the priorities of the items.
    1.64 +  /// \tparam IM A read-writable item map with \c int values, used
    1.65 +  /// internally to handle the cross references.
    1.66 +  /// \tparam CMP A functor class for comparing the priorities.
    1.67 +  /// The default is \c std::less<PR>.
    1.68  #ifdef DOXYGEN
    1.69 -  template <typename _Prio,
    1.70 -            typename _ItemIntMap,
    1.71 -            typename _Compare>
    1.72 +  template <typename PR, typename IM, typename CMP>
    1.73  #else
    1.74 -  template <typename _Prio,
    1.75 -            typename _ItemIntMap,
    1.76 -            typename _Compare = std::less<_Prio> >
    1.77 +  template <typename PR, typename IM, typename CMP = std::less<PR> >
    1.78  #endif
    1.79    class BinomHeap {
    1.80    public:
    1.81 -    typedef _ItemIntMap ItemIntMap;
    1.82 -    typedef _Prio Prio;
    1.83 +    /// Type of the item-int map.
    1.84 +    typedef IM ItemIntMap;
    1.85 +    /// Type of the priorities.
    1.86 +    typedef PR Prio;
    1.87 +    /// Type of the items stored in the heap.
    1.88      typedef typename ItemIntMap::Key Item;
    1.89 -    typedef std::pair<Item,Prio> Pair;
    1.90 -    typedef _Compare Compare;
    1.91 +    /// Functor type for comparing the priorities.
    1.92 +    typedef CMP Compare;
    1.93 +
    1.94 +    /// \brief Type to represent the states of the items.
    1.95 +    ///
    1.96 +    /// Each item has a state associated to it. It can be "in heap",
    1.97 +    /// "pre-heap" or "post-heap". The latter two are indifferent from the
    1.98 +    /// heap's point of view, but may be useful to the user.
    1.99 +    ///
   1.100 +    /// The item-int map must be initialized in such way that it assigns
   1.101 +    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
   1.102 +    enum State {
   1.103 +      IN_HEAP = 0,    ///< = 0.
   1.104 +      PRE_HEAP = -1,  ///< = -1.
   1.105 +      POST_HEAP = -2  ///< = -2.
   1.106 +    };
   1.107  
   1.108    private:
   1.109      class store;
   1.110  
   1.111 -    std::vector<store> container;
   1.112 -    int minimum, head;
   1.113 -    ItemIntMap &iimap;
   1.114 -    Compare comp;
   1.115 -    int num_items;
   1.116 +    std::vector<store> _data;
   1.117 +    int _min, _head;
   1.118 +    ItemIntMap &_iim;
   1.119 +    Compare _comp;
   1.120 +    int _num_items;
   1.121  
   1.122    public:
   1.123 -    ///Status of the nodes
   1.124 -    enum State {
   1.125 -      ///The node is in the heap
   1.126 -      IN_HEAP = 0,
   1.127 -      ///The node has never been in the heap
   1.128 -      PRE_HEAP = -1,
   1.129 -      ///The node was in the heap but it got out of it
   1.130 -      POST_HEAP = -2
   1.131 -    };
   1.132 +    /// \brief Constructor.
   1.133 +    ///
   1.134 +    /// Constructor.
   1.135 +    /// \param map A map that assigns \c int values to the items.
   1.136 +    /// It is used internally to handle the cross references.
   1.137 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   1.138 +    explicit BinomHeap(ItemIntMap &map)
   1.139 +      : _min(0), _head(-1), _iim(map), _num_items(0) {}
   1.140  
   1.141 -    /// \brief The constructor
   1.142 +    /// \brief Constructor.
   1.143      ///
   1.144 -    /// \c _iimap should be given to the constructor, since it is
   1.145 -    ///   used internally to handle the cross references.
   1.146 -    explicit BinomHeap(ItemIntMap &_iimap)
   1.147 -      : minimum(0), head(-1), iimap(_iimap), num_items() {}
   1.148 -
   1.149 -    /// \brief The constructor
   1.150 -    ///
   1.151 -    /// \c _iimap should be given to the constructor, since it is used
   1.152 -    /// internally to handle the cross references. \c _comp is an
   1.153 -    /// object for ordering of the priorities.
   1.154 -    BinomHeap(ItemIntMap &_iimap, const Compare &_comp)
   1.155 -      : minimum(0), head(-1), iimap(_iimap), comp(_comp), num_items() {}
   1.156 +    /// Constructor.
   1.157 +    /// \param map A map that assigns \c int values to the items.
   1.158 +    /// It is used internally to handle the cross references.
   1.159 +    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   1.160 +    /// \param comp The function object used for comparing the priorities.
   1.161 +    BinomHeap(ItemIntMap &map, const Compare &comp)
   1.162 +      : _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
   1.163  
   1.164      /// \brief The number of items stored in the heap.
   1.165      ///
   1.166 -    /// Returns the number of items stored in the heap.
   1.167 -    int size() const { return num_items; }
   1.168 +    /// This function returns the number of items stored in the heap.
   1.169 +    int size() const { return _num_items; }
   1.170  
   1.171 -    /// \brief Checks if the heap stores no items.
   1.172 +    /// \brief Check if the heap is empty.
   1.173      ///
   1.174 -    ///   Returns \c true if and only if the heap stores no items.
   1.175 -    bool empty() const { return num_items==0; }
   1.176 +    /// This function returns \c true if the heap is empty.
   1.177 +    bool empty() const { return _num_items==0; }
   1.178  
   1.179 -    /// \brief Make empty this heap.
   1.180 +    /// \brief Make the heap empty.
   1.181      ///
   1.182 -    /// Make empty this heap. It does not change the cross reference
   1.183 -    /// map.  If you want to reuse a heap what is not surely empty you
   1.184 -    /// should first clear the heap and after that you should set the
   1.185 -    /// cross reference map for each item to \c PRE_HEAP.
   1.186 +    /// This functon makes the heap empty.
   1.187 +    /// It does not change the cross reference map. If you want to reuse
   1.188 +    /// a heap that is not surely empty, you should first clear it and
   1.189 +    /// then you should set the cross reference map to \c PRE_HEAP
   1.190 +    /// for each item.
   1.191      void clear() {
   1.192 -      container.clear(); minimum=0; num_items=0; head=-1;
   1.193 +      _data.clear(); _min=0; _num_items=0; _head=-1;
   1.194      }
   1.195  
   1.196 -    /// \brief \c item gets to the heap with priority \c value independently
   1.197 -    /// if \c item was already there.
   1.198 +    /// \brief Set the priority of an item or insert it, if it is
   1.199 +    /// not stored in the heap.
   1.200      ///
   1.201 -    /// This method calls \ref push(\c item, \c value) if \c item is not
   1.202 -    /// stored in the heap and it calls \ref decrease(\c item, \c value) or
   1.203 -    /// \ref increase(\c item, \c value) otherwise.
   1.204 +    /// This method sets the priority of the given item if it is
   1.205 +    /// already stored in the heap. Otherwise it inserts the given
   1.206 +    /// item into the heap with the given priority.
   1.207 +    /// \param item The item.
   1.208 +    /// \param value The priority.
   1.209      void set (const Item& item, const Prio& value) {
   1.210 -      int i=iimap[item];
   1.211 -      if ( i >= 0 && container[i].in ) {
   1.212 -        if ( comp(value, container[i].prio) ) decrease(item, value);
   1.213 -        if ( comp(container[i].prio, value) ) increase(item, value);
   1.214 +      int i=_iim[item];
   1.215 +      if ( i >= 0 && _data[i].in ) {
   1.216 +        if ( _comp(value, _data[i].prio) ) decrease(item, value);
   1.217 +        if ( _comp(_data[i].prio, value) ) increase(item, value);
   1.218        } else push(item, value);
   1.219      }
   1.220  
   1.221 -    /// \brief Adds \c item to the heap with priority \c value.
   1.222 +    /// \brief Insert an item into the heap with the given priority.
   1.223      ///
   1.224 -    /// Adds \c item to the heap with priority \c value.
   1.225 -    /// \pre \c item must not be stored in the heap.
   1.226 +    /// This function inserts the given item into the heap with the
   1.227 +    /// given priority.
   1.228 +    /// \param item The item to insert.
   1.229 +    /// \param value The priority of the item.
   1.230 +    /// \pre \e item must not be stored in the heap.
   1.231      void push (const Item& item, const Prio& value) {
   1.232 -      int i=iimap[item];
   1.233 +      int i=_iim[item];
   1.234        if ( i<0 ) {
   1.235 -        int s=container.size();
   1.236 -        iimap.set( item,s );
   1.237 +        int s=_data.size();
   1.238 +        _iim.set( item,s );
   1.239          store st;
   1.240          st.name=item;
   1.241 -        container.push_back(st);
   1.242 +        _data.push_back(st);
   1.243          i=s;
   1.244        }
   1.245        else {
   1.246 -        container[i].parent=container[i].right_neighbor=container[i].child=-1;
   1.247 -        container[i].degree=0;
   1.248 -        container[i].in=true;
   1.249 +        _data[i].parent=_data[i].right_neighbor=_data[i].child=-1;
   1.250 +        _data[i].degree=0;
   1.251 +        _data[i].in=true;
   1.252        }
   1.253 -      container[i].prio=value;
   1.254 +      _data[i].prio=value;
   1.255  
   1.256 -      if( 0==num_items ) { head=i; minimum=i; }
   1.257 +      if( 0==_num_items ) { _head=i; _min=i; }
   1.258        else { merge(i); }
   1.259  
   1.260 -      minimum = find_min();
   1.261 +      _min = findMin();
   1.262  
   1.263 -      ++num_items;
   1.264 +      ++_num_items;
   1.265      }
   1.266  
   1.267 -    /// \brief Returns the item with minimum priority relative to \c Compare.
   1.268 +    /// \brief Return the item having minimum priority.
   1.269      ///
   1.270 -    /// This method returns the item with minimum priority relative to \c
   1.271 -    /// Compare.
   1.272 -    /// \pre The heap must be nonempty.
   1.273 -    Item top() const { return container[minimum].name; }
   1.274 +    /// This function returns the item having minimum priority.
   1.275 +    /// \pre The heap must be non-empty.
   1.276 +    Item top() const { return _data[_min].name; }
   1.277  
   1.278 -    /// \brief Returns the minimum priority relative to \c Compare.
   1.279 +    /// \brief The minimum priority.
   1.280      ///
   1.281 -    /// It returns the minimum priority relative to \c Compare.
   1.282 -    /// \pre The heap must be nonempty.
   1.283 -    const Prio& prio() const { return container[minimum].prio; }
   1.284 +    /// This function returns the minimum priority.
   1.285 +    /// \pre The heap must be non-empty.
   1.286 +    Prio prio() const { return _data[_min].prio; }
   1.287  
   1.288 -    /// \brief Returns the priority of \c item.
   1.289 +    /// \brief The priority of the given item.
   1.290      ///
   1.291 -    /// It returns the priority of \c item.
   1.292 -    /// \pre \c item must be in the heap.
   1.293 +    /// This function returns the priority of the given item.
   1.294 +    /// \param item The item.
   1.295 +    /// \pre \e item must be in the heap.
   1.296      const Prio& operator[](const Item& item) const {
   1.297 -      return container[iimap[item]].prio;
   1.298 +      return _data[_iim[item]].prio;
   1.299      }
   1.300  
   1.301 -    /// \brief Deletes the item with minimum priority relative to \c Compare.
   1.302 +    /// \brief Remove the item having minimum priority.
   1.303      ///
   1.304 -    /// This method deletes the item with minimum priority relative to \c
   1.305 -    /// Compare from the heap.
   1.306 +    /// This function removes the item having minimum priority.
   1.307      /// \pre The heap must be non-empty.
   1.308      void pop() {
   1.309 -      container[minimum].in=false;
   1.310 +      _data[_min].in=false;
   1.311  
   1.312        int head_child=-1;
   1.313 -      if ( container[minimum].child!=-1 ) {
   1.314 -        int child=container[minimum].child;
   1.315 +      if ( _data[_min].child!=-1 ) {
   1.316 +        int child=_data[_min].child;
   1.317          int neighb;
   1.318          int prev=-1;
   1.319          while( child!=-1 ) {
   1.320 -          neighb=container[child].right_neighbor;
   1.321 -          container[child].parent=-1;
   1.322 -          container[child].right_neighbor=prev;
   1.323 +          neighb=_data[child].right_neighbor;
   1.324 +          _data[child].parent=-1;
   1.325 +          _data[child].right_neighbor=prev;
   1.326            head_child=child;
   1.327            prev=child;
   1.328            child=neighb;
   1.329 @@ -214,142 +220,144 @@
   1.330        }
   1.331  
   1.332        // The first case is that there are only one root.
   1.333 -      if ( -1==container[head].right_neighbor ) {
   1.334 -        head=head_child;
   1.335 +      if ( -1==_data[_head].right_neighbor ) {
   1.336 +        _head=head_child;
   1.337        }
   1.338        // The case where there are more roots.
   1.339        else {
   1.340 -        if( head!=minimum )  { unlace(minimum); }
   1.341 -        else { head=container[head].right_neighbor; }
   1.342 +        if( _head!=_min )  { unlace(_min); }
   1.343 +        else { _head=_data[_head].right_neighbor; }
   1.344  
   1.345          merge(head_child);
   1.346        }
   1.347 -      minimum=find_min();
   1.348 -      --num_items;
   1.349 +      _min=findMin();
   1.350 +      --_num_items;
   1.351      }
   1.352  
   1.353 -    /// \brief Deletes \c item from the heap.
   1.354 +    /// \brief Remove the given item from the heap.
   1.355      ///
   1.356 -    /// This method deletes \c item from the heap, if \c item was already
   1.357 -    /// stored in the heap. It is quite inefficient in Binomial heaps.
   1.358 +    /// This function removes the given item from the heap if it is
   1.359 +    /// already stored.
   1.360 +    /// \param item The item to delete.
   1.361 +    /// \pre \e item must be in the heap.
   1.362      void erase (const Item& item) {
   1.363 -      int i=iimap[item];
   1.364 -      if ( i >= 0 && container[i].in ) {
   1.365 -        decrease( item, container[minimum].prio-1 );
   1.366 +      int i=_iim[item];
   1.367 +      if ( i >= 0 && _data[i].in ) {
   1.368 +        decrease( item, _data[_min].prio-1 );
   1.369          pop();
   1.370        }
   1.371      }
   1.372  
   1.373 -    /// \brief Decreases the priority of \c item to \c value.
   1.374 +    /// \brief Decrease the priority of an item to the given value.
   1.375      ///
   1.376 -    /// This method decreases the priority of \c item to \c value.
   1.377 -    /// \pre \c item must be stored in the heap with priority at least \c
   1.378 -    ///   value relative to \c Compare.
   1.379 +    /// This function decreases the priority of an item to the given value.
   1.380 +    /// \param item The item.
   1.381 +    /// \param value The priority.
   1.382 +    /// \pre \e item must be stored in the heap with priority at least \e value.
   1.383      void decrease (Item item, const Prio& value) {
   1.384 -      int i=iimap[item];
   1.385 +      int i=_iim[item];
   1.386  
   1.387 -      if( comp( value,container[i].prio ) ) {
   1.388 -        container[i].prio=value;
   1.389 +      if( _comp( value,_data[i].prio ) ) {
   1.390 +        _data[i].prio=value;
   1.391  
   1.392 -        int p_loc=container[i].parent, loc=i;
   1.393 +        int p_loc=_data[i].parent, loc=i;
   1.394          int parent, child, neighb;
   1.395  
   1.396 -        while( -1!=p_loc && comp(container[loc].prio,container[p_loc].prio) ) {
   1.397 +        while( -1!=p_loc && _comp(_data[loc].prio,_data[p_loc].prio) ) {
   1.398  
   1.399            // parent set for other loc_child
   1.400 -          child=container[loc].child;
   1.401 +          child=_data[loc].child;
   1.402            while( -1!=child ) {
   1.403 -            container[child].parent=p_loc;
   1.404 -            child=container[child].right_neighbor;
   1.405 +            _data[child].parent=p_loc;
   1.406 +            child=_data[child].right_neighbor;
   1.407            }
   1.408  
   1.409            // parent set for other p_loc_child
   1.410 -          child=container[p_loc].child;
   1.411 +          child=_data[p_loc].child;
   1.412            while( -1!=child ) {
   1.413 -            container[child].parent=loc;
   1.414 -            child=container[child].right_neighbor;
   1.415 +            _data[child].parent=loc;
   1.416 +            child=_data[child].right_neighbor;
   1.417            }
   1.418  
   1.419 -          child=container[p_loc].child;
   1.420 -          container[p_loc].child=container[loc].child;
   1.421 +          child=_data[p_loc].child;
   1.422 +          _data[p_loc].child=_data[loc].child;
   1.423            if( child==loc )
   1.424              child=p_loc;
   1.425 -          container[loc].child=child;
   1.426 +          _data[loc].child=child;
   1.427  
   1.428            // left_neighb set for p_loc
   1.429 -          if( container[loc].child!=p_loc ) {
   1.430 -            while( container[child].right_neighbor!=loc )
   1.431 -              child=container[child].right_neighbor;
   1.432 -            container[child].right_neighbor=p_loc;
   1.433 +          if( _data[loc].child!=p_loc ) {
   1.434 +            while( _data[child].right_neighbor!=loc )
   1.435 +              child=_data[child].right_neighbor;
   1.436 +            _data[child].right_neighbor=p_loc;
   1.437            }
   1.438  
   1.439            // left_neighb set for loc
   1.440 -          parent=container[p_loc].parent;
   1.441 -          if( -1!=parent ) child=container[parent].child;
   1.442 -          else child=head;
   1.443 +          parent=_data[p_loc].parent;
   1.444 +          if( -1!=parent ) child=_data[parent].child;
   1.445 +          else child=_head;
   1.446  
   1.447            if( child!=p_loc ) {
   1.448 -            while( container[child].right_neighbor!=p_loc )
   1.449 -              child=container[child].right_neighbor;
   1.450 -            container[child].right_neighbor=loc;
   1.451 +            while( _data[child].right_neighbor!=p_loc )
   1.452 +              child=_data[child].right_neighbor;
   1.453 +            _data[child].right_neighbor=loc;
   1.454            }
   1.455  
   1.456 -          neighb=container[p_loc].right_neighbor;
   1.457 -          container[p_loc].right_neighbor=container[loc].right_neighbor;
   1.458 -          container[loc].right_neighbor=neighb;
   1.459 +          neighb=_data[p_loc].right_neighbor;
   1.460 +          _data[p_loc].right_neighbor=_data[loc].right_neighbor;
   1.461 +          _data[loc].right_neighbor=neighb;
   1.462  
   1.463 -          container[p_loc].parent=loc;
   1.464 -          container[loc].parent=parent;
   1.465 +          _data[p_loc].parent=loc;
   1.466 +          _data[loc].parent=parent;
   1.467  
   1.468 -          if( -1!=parent && container[parent].child==p_loc )
   1.469 -            container[parent].child=loc;
   1.470 +          if( -1!=parent && _data[parent].child==p_loc )
   1.471 +            _data[parent].child=loc;
   1.472  
   1.473            /*if new parent will be the first root*/
   1.474 -          if( head==p_loc )
   1.475 -            head=loc;
   1.476 +          if( _head==p_loc )
   1.477 +            _head=loc;
   1.478  
   1.479 -          p_loc=container[loc].parent;
   1.480 +          p_loc=_data[loc].parent;
   1.481          }
   1.482        }
   1.483 -      if( comp(value,container[minimum].prio) ) {
   1.484 -        minimum=i;
   1.485 +      if( _comp(value,_data[_min].prio) ) {
   1.486 +        _min=i;
   1.487        }
   1.488      }
   1.489  
   1.490 -    /// \brief Increases the priority of \c item to \c value.
   1.491 +    /// \brief Increase the priority of an item to the given value.
   1.492      ///
   1.493 -    /// This method sets the priority of \c item to \c value. Though
   1.494 -    /// there is no precondition on the priority of \c item, this
   1.495 -    /// method should be used only if it is indeed necessary to increase
   1.496 -    /// (relative to \c Compare) the priority of \c item, because this
   1.497 -    /// method is inefficient.
   1.498 +    /// This function increases the priority of an item to the given value.
   1.499 +    /// \param item The item.
   1.500 +    /// \param value The priority.
   1.501 +    /// \pre \e item must be stored in the heap with priority at most \e value.
   1.502      void increase (Item item, const Prio& value) {
   1.503        erase(item);
   1.504        push(item, value);
   1.505      }
   1.506  
   1.507 -
   1.508 -    /// \brief Returns if \c item is in, has already been in, or has never
   1.509 -    /// been in the heap.
   1.510 +    /// \brief Return the state of an item.
   1.511      ///
   1.512 -    /// This method returns PRE_HEAP if \c item has never been in the
   1.513 -    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   1.514 -    /// otherwise. In the latter case it is possible that \c item will
   1.515 -    /// get back to the heap again.
   1.516 +    /// This method returns \c PRE_HEAP if the given item has never
   1.517 +    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
   1.518 +    /// and \c POST_HEAP otherwise.
   1.519 +    /// In the latter case it is possible that the item will get back
   1.520 +    /// to the heap again.
   1.521 +    /// \param item The item.
   1.522      State state(const Item &item) const {
   1.523 -      int i=iimap[item];
   1.524 +      int i=_iim[item];
   1.525        if( i>=0 ) {
   1.526 -        if ( container[i].in ) i=0;
   1.527 +        if ( _data[i].in ) i=0;
   1.528          else i=-2;
   1.529        }
   1.530        return State(i);
   1.531      }
   1.532  
   1.533 -    /// \brief Sets the state of the \c item in the heap.
   1.534 +    /// \brief Set the state of an item in the heap.
   1.535      ///
   1.536 -    /// Sets the state of the \c item in the heap. It can be used to
   1.537 -    /// manually clear the heap when it is important to achive the
   1.538 -    /// better time complexity.
   1.539 +    /// This function sets the state of the given item in the heap.
   1.540 +    /// It can be used to manually clear the heap when it is important
   1.541 +    /// to achive better time complexity.
   1.542      /// \param i The item.
   1.543      /// \param st The state. It should not be \c IN_HEAP.
   1.544      void state(const Item& i, State st) {
   1.545 @@ -359,7 +367,7 @@
   1.546          if (state(i) == IN_HEAP) {
   1.547            erase(i);
   1.548          }
   1.549 -        iimap[i] = st;
   1.550 +        _iim[i] = st;
   1.551          break;
   1.552        case IN_HEAP:
   1.553          break;
   1.554 @@ -367,20 +375,20 @@
   1.555      }
   1.556  
   1.557    private:
   1.558 -    int find_min() {
   1.559 +    int findMin() {
   1.560        int min_loc=-1, min_val;
   1.561 -      int x=head;
   1.562 +      int x=_head;
   1.563        if( x!=-1 ) {
   1.564 -        min_val=container[x].prio;
   1.565 +        min_val=_data[x].prio;
   1.566          min_loc=x;
   1.567 -        x=container[x].right_neighbor;
   1.568 +        x=_data[x].right_neighbor;
   1.569  
   1.570          while( x!=-1 ) {
   1.571 -          if( comp( container[x].prio,min_val ) ) {
   1.572 -            min_val=container[x].prio;
   1.573 +          if( _comp( _data[x].prio,min_val ) ) {
   1.574 +            min_val=_data[x].prio;
   1.575              min_loc=x;
   1.576            }
   1.577 -          x=container[x].right_neighbor;
   1.578 +          x=_data[x].right_neighbor;
   1.579          }
   1.580        }
   1.581        return min_loc;
   1.582 @@ -389,29 +397,29 @@
   1.583      void merge(int a) {
   1.584        interleave(a);
   1.585  
   1.586 -      int x=head;
   1.587 +      int x=_head;
   1.588        if( -1!=x ) {
   1.589 -        int x_prev=-1, x_next=container[x].right_neighbor;
   1.590 +        int x_prev=-1, x_next=_data[x].right_neighbor;
   1.591          while( -1!=x_next ) {
   1.592 -          if( container[x].degree!=container[x_next].degree || ( -1!=container[x_next].right_neighbor && container[container[x_next].right_neighbor].degree==container[x].degree ) ) {
   1.593 +          if( _data[x].degree!=_data[x_next].degree || ( -1!=_data[x_next].right_neighbor && _data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
   1.594              x_prev=x;
   1.595              x=x_next;
   1.596            }
   1.597            else {
   1.598 -            if( comp(container[x].prio,container[x_next].prio) ) {
   1.599 -              container[x].right_neighbor=container[x_next].right_neighbor;
   1.600 +            if( _comp(_data[x].prio,_data[x_next].prio) ) {
   1.601 +              _data[x].right_neighbor=_data[x_next].right_neighbor;
   1.602                fuse(x_next,x);
   1.603              }
   1.604              else {
   1.605 -              if( -1==x_prev ) { head=x_next; }
   1.606 +              if( -1==x_prev ) { _head=x_next; }
   1.607                else {
   1.608 -                container[x_prev].right_neighbor=x_next;
   1.609 +                _data[x_prev].right_neighbor=x_next;
   1.610                }
   1.611                fuse(x,x_next);
   1.612                x=x_next;
   1.613              }
   1.614            }
   1.615 -          x_next=container[x].right_neighbor;
   1.616 +          x_next=_data[x].right_neighbor;
   1.617          }
   1.618        }
   1.619      }
   1.620 @@ -419,68 +427,68 @@
   1.621      void interleave(int a) {
   1.622        int other=-1, head_other=-1;
   1.623  
   1.624 -      while( -1!=a || -1!=head ) {
   1.625 +      while( -1!=a || -1!=_head ) {
   1.626          if( -1==a ) {
   1.627            if( -1==head_other ) {
   1.628 -            head_other=head;
   1.629 +            head_other=_head;
   1.630            }
   1.631            else {
   1.632 -            container[other].right_neighbor=head;
   1.633 +            _data[other].right_neighbor=_head;
   1.634            }
   1.635 -          head=-1;
   1.636 +          _head=-1;
   1.637          }
   1.638 -        else if( -1==head ) {
   1.639 +        else if( -1==_head ) {
   1.640            if( -1==head_other ) {
   1.641              head_other=a;
   1.642            }
   1.643            else {
   1.644 -            container[other].right_neighbor=a;
   1.645 +            _data[other].right_neighbor=a;
   1.646            }
   1.647            a=-1;
   1.648          }
   1.649          else {
   1.650 -          if( container[a].degree<container[head].degree ) {
   1.651 +          if( _data[a].degree<_data[_head].degree ) {
   1.652              if( -1==head_other ) {
   1.653                head_other=a;
   1.654              }
   1.655              else {
   1.656 -              container[other].right_neighbor=a;
   1.657 +              _data[other].right_neighbor=a;
   1.658              }
   1.659              other=a;
   1.660 -            a=container[a].right_neighbor;
   1.661 +            a=_data[a].right_neighbor;
   1.662            }
   1.663            else {
   1.664              if( -1==head_other ) {
   1.665 -              head_other=head;
   1.666 +              head_other=_head;
   1.667              }
   1.668              else {
   1.669 -              container[other].right_neighbor=head;
   1.670 +              _data[other].right_neighbor=_head;
   1.671              }
   1.672 -            other=head;
   1.673 -            head=container[head].right_neighbor;
   1.674 +            other=_head;
   1.675 +            _head=_data[_head].right_neighbor;
   1.676            }
   1.677          }
   1.678        }
   1.679 -      head=head_other;
   1.680 +      _head=head_other;
   1.681      }
   1.682  
   1.683      // Lacing a under b
   1.684      void fuse(int a, int b) {
   1.685 -      container[a].parent=b;
   1.686 -      container[a].right_neighbor=container[b].child;
   1.687 -      container[b].child=a;
   1.688 +      _data[a].parent=b;
   1.689 +      _data[a].right_neighbor=_data[b].child;
   1.690 +      _data[b].child=a;
   1.691  
   1.692 -      ++container[b].degree;
   1.693 +      ++_data[b].degree;
   1.694      }
   1.695  
   1.696      // It is invoked only if a has siblings.
   1.697      void unlace(int a) {
   1.698 -      int neighb=container[a].right_neighbor;
   1.699 -      int other=head;
   1.700 +      int neighb=_data[a].right_neighbor;
   1.701 +      int other=_head;
   1.702  
   1.703 -      while( container[other].right_neighbor!=a )
   1.704 -        other=container[other].right_neighbor;
   1.705 -      container[other].right_neighbor=neighb;
   1.706 +      while( _data[other].right_neighbor!=a )
   1.707 +        other=_data[other].right_neighbor;
   1.708 +      _data[other].right_neighbor=neighb;
   1.709      }
   1.710  
   1.711    private: