lemon/hartmann_orlin.h
changeset 864 d3ea191c3412
parent 863 a93f1a27d831
child 865 d48d79b11f5b
     1.1 --- a/lemon/hartmann_orlin.h	Mon Mar 08 08:33:41 2010 +0100
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,650 +0,0 @@
     1.4 -/* -*- C++ -*-
     1.5 - *
     1.6 - * This file is a part of LEMON, a generic C++ optimization library
     1.7 - *
     1.8 - * Copyright (C) 2003-2008
     1.9 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 - *
    1.12 - * Permission to use, modify and distribute this software is granted
    1.13 - * provided that this copyright notice appears in all copies. For
    1.14 - * precise terms see the accompanying LICENSE file.
    1.15 - *
    1.16 - * This software is provided "AS IS" with no warranty of any kind,
    1.17 - * express or implied, and with no claim as to its suitability for any
    1.18 - * purpose.
    1.19 - *
    1.20 - */
    1.21 -
    1.22 -#ifndef LEMON_HARTMANN_ORLIN_H
    1.23 -#define LEMON_HARTMANN_ORLIN_H
    1.24 -
    1.25 -/// \ingroup min_mean_cycle
    1.26 -///
    1.27 -/// \file
    1.28 -/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
    1.29 -
    1.30 -#include <vector>
    1.31 -#include <limits>
    1.32 -#include <lemon/core.h>
    1.33 -#include <lemon/path.h>
    1.34 -#include <lemon/tolerance.h>
    1.35 -#include <lemon/connectivity.h>
    1.36 -
    1.37 -namespace lemon {
    1.38 -
    1.39 -  /// \brief Default traits class of HartmannOrlin algorithm.
    1.40 -  ///
    1.41 -  /// Default traits class of HartmannOrlin algorithm.
    1.42 -  /// \tparam GR The type of the digraph.
    1.43 -  /// \tparam LEN The type of the length map.
    1.44 -  /// It must conform to the \ref concepts::Rea_data "Rea_data" concept.
    1.45 -#ifdef DOXYGEN
    1.46 -  template <typename GR, typename LEN>
    1.47 -#else
    1.48 -  template <typename GR, typename LEN,
    1.49 -    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
    1.50 -#endif
    1.51 -  struct HartmannOrlinDefaultTraits
    1.52 -  {
    1.53 -    /// The type of the digraph
    1.54 -    typedef GR Digraph;
    1.55 -    /// The type of the length map
    1.56 -    typedef LEN LengthMap;
    1.57 -    /// The type of the arc lengths
    1.58 -    typedef typename LengthMap::Value Value;
    1.59 -
    1.60 -    /// \brief The large value type used for internal computations
    1.61 -    ///
    1.62 -    /// The large value type used for internal computations.
    1.63 -    /// It is \c long \c long if the \c Value type is integer,
    1.64 -    /// otherwise it is \c double.
    1.65 -    /// \c Value must be convertible to \c LargeValue.
    1.66 -    typedef double LargeValue;
    1.67 -
    1.68 -    /// The tolerance type used for internal computations
    1.69 -    typedef lemon::Tolerance<LargeValue> Tolerance;
    1.70 -
    1.71 -    /// \brief The path type of the found cycles
    1.72 -    ///
    1.73 -    /// The path type of the found cycles.
    1.74 -    /// It must conform to the \ref lemon::concepts::Path "Path" concept
    1.75 -    /// and it must have an \c addFront() function.
    1.76 -    typedef lemon::Path<Digraph> Path;
    1.77 -  };
    1.78 -
    1.79 -  // Default traits class for integer value types
    1.80 -  template <typename GR, typename LEN>
    1.81 -  struct HartmannOrlinDefaultTraits<GR, LEN, true>
    1.82 -  {
    1.83 -    typedef GR Digraph;
    1.84 -    typedef LEN LengthMap;
    1.85 -    typedef typename LengthMap::Value Value;
    1.86 -#ifdef LEMON_HAVE_LONG_LONG
    1.87 -    typedef long long LargeValue;
    1.88 -#else
    1.89 -    typedef long LargeValue;
    1.90 -#endif
    1.91 -    typedef lemon::Tolerance<LargeValue> Tolerance;
    1.92 -    typedef lemon::Path<Digraph> Path;
    1.93 -  };
    1.94 -
    1.95 -
    1.96 -  /// \addtogroup min_mean_cycle
    1.97 -  /// @{
    1.98 -
    1.99 -  /// \brief Implementation of the Hartmann-Orlin algorithm for finding
   1.100 -  /// a minimum mean cycle.
   1.101 -  ///
   1.102 -  /// This class implements the Hartmann-Orlin algorithm for finding
   1.103 -  /// a directed cycle of minimum mean length (cost) in a digraph
   1.104 -  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
   1.105 -  /// It is an improved version of \ref Karp "Karp"'s original algorithm,
   1.106 -  /// it applies an efficient early termination scheme.
   1.107 -  /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
   1.108 -  ///
   1.109 -  /// \tparam GR The type of the digraph the algorithm runs on.
   1.110 -  /// \tparam LEN The type of the length map. The default
   1.111 -  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   1.112 -  /// \tparam TR The traits class that defines various types used by the
   1.113 -  /// algorithm. By default, it is \ref HartmannOrlinDefaultTraits
   1.114 -  /// "HartmannOrlinDefaultTraits<GR, LEN>".
   1.115 -  /// In most cases, this parameter should not be set directly,
   1.116 -  /// consider to use the named template parameters instead.
   1.117 -#ifdef DOXYGEN
   1.118 -  template <typename GR, typename LEN, typename TR>
   1.119 -#else
   1.120 -  template < typename GR,
   1.121 -             typename LEN = typename GR::template ArcMap<int>,
   1.122 -             typename TR = HartmannOrlinDefaultTraits<GR, LEN> >
   1.123 -#endif
   1.124 -  class HartmannOrlin
   1.125 -  {
   1.126 -  public:
   1.127 -
   1.128 -    /// The type of the digraph
   1.129 -    typedef typename TR::Digraph Digraph;
   1.130 -    /// The type of the length map
   1.131 -    typedef typename TR::LengthMap LengthMap;
   1.132 -    /// The type of the arc lengths
   1.133 -    typedef typename TR::Value Value;
   1.134 -
   1.135 -    /// \brief The large value type
   1.136 -    ///
   1.137 -    /// The large value type used for internal computations.
   1.138 -    /// By default, it is \c long \c long if the \c Value type is integer,
   1.139 -    /// otherwise it is \c double.
   1.140 -    typedef typename TR::LargeValue LargeValue;
   1.141 -
   1.142 -    /// The tolerance type
   1.143 -    typedef typename TR::Tolerance Tolerance;
   1.144 -
   1.145 -    /// \brief The path type of the found cycles
   1.146 -    ///
   1.147 -    /// The path type of the found cycles.
   1.148 -    /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
   1.149 -    /// it is \ref lemon::Path "Path<Digraph>".
   1.150 -    typedef typename TR::Path Path;
   1.151 -
   1.152 -    /// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm
   1.153 -    typedef TR Traits;
   1.154 -
   1.155 -  private:
   1.156 -
   1.157 -    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   1.158 -
   1.159 -    // Data sturcture for path data
   1.160 -    struct PathData
   1.161 -    {
   1.162 -      LargeValue dist;
   1.163 -      Arc pred;
   1.164 -      PathData(LargeValue d, Arc p = INVALID) :
   1.165 -        dist(d), pred(p) {}
   1.166 -    };
   1.167 -
   1.168 -    typedef typename Digraph::template NodeMap<std::vector<PathData> >
   1.169 -      PathDataNodeMap;
   1.170 -
   1.171 -  private:
   1.172 -
   1.173 -    // The digraph the algorithm runs on
   1.174 -    const Digraph &_gr;
   1.175 -    // The length of the arcs
   1.176 -    const LengthMap &_length;
   1.177 -
   1.178 -    // Data for storing the strongly connected components
   1.179 -    int _comp_num;
   1.180 -    typename Digraph::template NodeMap<int> _comp;
   1.181 -    std::vector<std::vector<Node> > _comp_nodes;
   1.182 -    std::vector<Node>* _nodes;
   1.183 -    typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
   1.184 -
   1.185 -    // Data for the found cycles
   1.186 -    bool _curr_found, _best_found;
   1.187 -    LargeValue _curr_length, _best_length;
   1.188 -    int _curr_size, _best_size;
   1.189 -    Node _curr_node, _best_node;
   1.190 -    int _curr_level, _best_level;
   1.191 -
   1.192 -    Path *_cycle_path;
   1.193 -    bool _local_path;
   1.194 -
   1.195 -    // Node map for storing path data
   1.196 -    PathDataNodeMap _data;
   1.197 -    // The processed nodes in the last round
   1.198 -    std::vector<Node> _process;
   1.199 -
   1.200 -    Tolerance _tolerance;
   1.201 -
   1.202 -    // Infinite constant
   1.203 -    const LargeValue INF;
   1.204 -
   1.205 -  public:
   1.206 -
   1.207 -    /// \name Named Template Parameters
   1.208 -    /// @{
   1.209 -
   1.210 -    template <typename T>
   1.211 -    struct SetLargeValueTraits : public Traits {
   1.212 -      typedef T LargeValue;
   1.213 -      typedef lemon::Tolerance<T> Tolerance;
   1.214 -    };
   1.215 -
   1.216 -    /// \brief \ref named-templ-param "Named parameter" for setting
   1.217 -    /// \c LargeValue type.
   1.218 -    ///
   1.219 -    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
   1.220 -    /// type. It is used for internal computations in the algorithm.
   1.221 -    template <typename T>
   1.222 -    struct SetLargeValue
   1.223 -      : public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
   1.224 -      typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create;
   1.225 -    };
   1.226 -
   1.227 -    template <typename T>
   1.228 -    struct SetPathTraits : public Traits {
   1.229 -      typedef T Path;
   1.230 -    };
   1.231 -
   1.232 -    /// \brief \ref named-templ-param "Named parameter" for setting
   1.233 -    /// \c %Path type.
   1.234 -    ///
   1.235 -    /// \ref named-templ-param "Named parameter" for setting the \c %Path
   1.236 -    /// type of the found cycles.
   1.237 -    /// It must conform to the \ref lemon::concepts::Path "Path" concept
   1.238 -    /// and it must have an \c addFront() function.
   1.239 -    template <typename T>
   1.240 -    struct SetPath
   1.241 -      : public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
   1.242 -      typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create;
   1.243 -    };
   1.244 -
   1.245 -    /// @}
   1.246 -
   1.247 -  protected:
   1.248 -
   1.249 -    HartmannOrlin() {}
   1.250 -
   1.251 -  public:
   1.252 -
   1.253 -    /// \brief Constructor.
   1.254 -    ///
   1.255 -    /// The constructor of the class.
   1.256 -    ///
   1.257 -    /// \param digraph The digraph the algorithm runs on.
   1.258 -    /// \param length The lengths (costs) of the arcs.
   1.259 -    HartmannOrlin( const Digraph &digraph,
   1.260 -                   const LengthMap &length ) :
   1.261 -      _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
   1.262 -      _best_found(false), _best_length(0), _best_size(1),
   1.263 -      _cycle_path(NULL), _local_path(false), _data(digraph),
   1.264 -      INF(std::numeric_limits<LargeValue>::has_infinity ?
   1.265 -          std::numeric_limits<LargeValue>::infinity() :
   1.266 -          std::numeric_limits<LargeValue>::max())
   1.267 -    {}
   1.268 -
   1.269 -    /// Destructor.
   1.270 -    ~HartmannOrlin() {
   1.271 -      if (_local_path) delete _cycle_path;
   1.272 -    }
   1.273 -
   1.274 -    /// \brief Set the path structure for storing the found cycle.
   1.275 -    ///
   1.276 -    /// This function sets an external path structure for storing the
   1.277 -    /// found cycle.
   1.278 -    ///
   1.279 -    /// If you don't call this function before calling \ref run() or
   1.280 -    /// \ref findMinMean(), it will allocate a local \ref Path "path"
   1.281 -    /// structure. The destuctor deallocates this automatically
   1.282 -    /// allocated object, of course.
   1.283 -    ///
   1.284 -    /// \note The algorithm calls only the \ref lemon::Path::addFront()
   1.285 -    /// "addFront()" function of the given path structure.
   1.286 -    ///
   1.287 -    /// \return <tt>(*this)</tt>
   1.288 -    HartmannOrlin& cycle(Path &path) {
   1.289 -      if (_local_path) {
   1.290 -        delete _cycle_path;
   1.291 -        _local_path = false;
   1.292 -      }
   1.293 -      _cycle_path = &path;
   1.294 -      return *this;
   1.295 -    }
   1.296 -
   1.297 -    /// \brief Set the tolerance used by the algorithm.
   1.298 -    ///
   1.299 -    /// This function sets the tolerance object used by the algorithm.
   1.300 -    ///
   1.301 -    /// \return <tt>(*this)</tt>
   1.302 -    HartmannOrlin& tolerance(const Tolerance& tolerance) {
   1.303 -      _tolerance = tolerance;
   1.304 -      return *this;
   1.305 -    }
   1.306 -
   1.307 -    /// \brief Return a const reference to the tolerance.
   1.308 -    ///
   1.309 -    /// This function returns a const reference to the tolerance object
   1.310 -    /// used by the algorithm.
   1.311 -    const Tolerance& tolerance() const {
   1.312 -      return _tolerance;
   1.313 -    }
   1.314 -
   1.315 -    /// \name Execution control
   1.316 -    /// The simplest way to execute the algorithm is to call the \ref run()
   1.317 -    /// function.\n
   1.318 -    /// If you only need the minimum mean length, you may call
   1.319 -    /// \ref findMinMean().
   1.320 -
   1.321 -    /// @{
   1.322 -
   1.323 -    /// \brief Run the algorithm.
   1.324 -    ///
   1.325 -    /// This function runs the algorithm.
   1.326 -    /// It can be called more than once (e.g. if the underlying digraph
   1.327 -    /// and/or the arc lengths have been modified).
   1.328 -    ///
   1.329 -    /// \return \c true if a directed cycle exists in the digraph.
   1.330 -    ///
   1.331 -    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
   1.332 -    /// \code
   1.333 -    ///   return mmc.findMinMean() && mmc.findCycle();
   1.334 -    /// \endcode
   1.335 -    bool run() {
   1.336 -      return findMinMean() && findCycle();
   1.337 -    }
   1.338 -
   1.339 -    /// \brief Find the minimum cycle mean.
   1.340 -    ///
   1.341 -    /// This function finds the minimum mean length of the directed
   1.342 -    /// cycles in the digraph.
   1.343 -    ///
   1.344 -    /// \return \c true if a directed cycle exists in the digraph.
   1.345 -    bool findMinMean() {
   1.346 -      // Initialization and find strongly connected components
   1.347 -      init();
   1.348 -      findComponents();
   1.349 -      
   1.350 -      // Find the minimum cycle mean in the components
   1.351 -      for (int comp = 0; comp < _comp_num; ++comp) {
   1.352 -        if (!initComponent(comp)) continue;
   1.353 -        processRounds();
   1.354 -        
   1.355 -        // Update the best cycle (global minimum mean cycle)
   1.356 -        if ( _curr_found && (!_best_found || 
   1.357 -             _curr_length * _best_size < _best_length * _curr_size) ) {
   1.358 -          _best_found = true;
   1.359 -          _best_length = _curr_length;
   1.360 -          _best_size = _curr_size;
   1.361 -          _best_node = _curr_node;
   1.362 -          _best_level = _curr_level;
   1.363 -        }
   1.364 -      }
   1.365 -      return _best_found;
   1.366 -    }
   1.367 -
   1.368 -    /// \brief Find a minimum mean directed cycle.
   1.369 -    ///
   1.370 -    /// This function finds a directed cycle of minimum mean length
   1.371 -    /// in the digraph using the data computed by findMinMean().
   1.372 -    ///
   1.373 -    /// \return \c true if a directed cycle exists in the digraph.
   1.374 -    ///
   1.375 -    /// \pre \ref findMinMean() must be called before using this function.
   1.376 -    bool findCycle() {
   1.377 -      if (!_best_found) return false;
   1.378 -      IntNodeMap reached(_gr, -1);
   1.379 -      int r = _best_level + 1;
   1.380 -      Node u = _best_node;
   1.381 -      while (reached[u] < 0) {
   1.382 -        reached[u] = --r;
   1.383 -        u = _gr.source(_data[u][r].pred);
   1.384 -      }
   1.385 -      r = reached[u];
   1.386 -      Arc e = _data[u][r].pred;
   1.387 -      _cycle_path->addFront(e);
   1.388 -      _best_length = _length[e];
   1.389 -      _best_size = 1;
   1.390 -      Node v;
   1.391 -      while ((v = _gr.source(e)) != u) {
   1.392 -        e = _data[v][--r].pred;
   1.393 -        _cycle_path->addFront(e);
   1.394 -        _best_length += _length[e];
   1.395 -        ++_best_size;
   1.396 -      }
   1.397 -      return true;
   1.398 -    }
   1.399 -
   1.400 -    /// @}
   1.401 -
   1.402 -    /// \name Query Functions
   1.403 -    /// The results of the algorithm can be obtained using these
   1.404 -    /// functions.\n
   1.405 -    /// The algorithm should be executed before using them.
   1.406 -
   1.407 -    /// @{
   1.408 -
   1.409 -    /// \brief Return the total length of the found cycle.
   1.410 -    ///
   1.411 -    /// This function returns the total length of the found cycle.
   1.412 -    ///
   1.413 -    /// \pre \ref run() or \ref findMinMean() must be called before
   1.414 -    /// using this function.
   1.415 -    Value cycleLength() const {
   1.416 -      return static_cast<Value>(_best_length);
   1.417 -    }
   1.418 -
   1.419 -    /// \brief Return the number of arcs on the found cycle.
   1.420 -    ///
   1.421 -    /// This function returns the number of arcs on the found cycle.
   1.422 -    ///
   1.423 -    /// \pre \ref run() or \ref findMinMean() must be called before
   1.424 -    /// using this function.
   1.425 -    int cycleArcNum() const {
   1.426 -      return _best_size;
   1.427 -    }
   1.428 -
   1.429 -    /// \brief Return the mean length of the found cycle.
   1.430 -    ///
   1.431 -    /// This function returns the mean length of the found cycle.
   1.432 -    ///
   1.433 -    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
   1.434 -    /// following code.
   1.435 -    /// \code
   1.436 -    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
   1.437 -    /// \endcode
   1.438 -    ///
   1.439 -    /// \pre \ref run() or \ref findMinMean() must be called before
   1.440 -    /// using this function.
   1.441 -    double cycleMean() const {
   1.442 -      return static_cast<double>(_best_length) / _best_size;
   1.443 -    }
   1.444 -
   1.445 -    /// \brief Return the found cycle.
   1.446 -    ///
   1.447 -    /// This function returns a const reference to the path structure
   1.448 -    /// storing the found cycle.
   1.449 -    ///
   1.450 -    /// \pre \ref run() or \ref findCycle() must be called before using
   1.451 -    /// this function.
   1.452 -    const Path& cycle() const {
   1.453 -      return *_cycle_path;
   1.454 -    }
   1.455 -
   1.456 -    ///@}
   1.457 -
   1.458 -  private:
   1.459 -
   1.460 -    // Initialization
   1.461 -    void init() {
   1.462 -      if (!_cycle_path) {
   1.463 -        _local_path = true;
   1.464 -        _cycle_path = new Path;
   1.465 -      }
   1.466 -      _cycle_path->clear();
   1.467 -      _best_found = false;
   1.468 -      _best_length = 0;
   1.469 -      _best_size = 1;
   1.470 -      _cycle_path->clear();
   1.471 -      for (NodeIt u(_gr); u != INVALID; ++u)
   1.472 -        _data[u].clear();
   1.473 -    }
   1.474 -
   1.475 -    // Find strongly connected components and initialize _comp_nodes
   1.476 -    // and _out_arcs
   1.477 -    void findComponents() {
   1.478 -      _comp_num = stronglyConnectedComponents(_gr, _comp);
   1.479 -      _comp_nodes.resize(_comp_num);
   1.480 -      if (_comp_num == 1) {
   1.481 -        _comp_nodes[0].clear();
   1.482 -        for (NodeIt n(_gr); n != INVALID; ++n) {
   1.483 -          _comp_nodes[0].push_back(n);
   1.484 -          _out_arcs[n].clear();
   1.485 -          for (OutArcIt a(_gr, n); a != INVALID; ++a) {
   1.486 -            _out_arcs[n].push_back(a);
   1.487 -          }
   1.488 -        }
   1.489 -      } else {
   1.490 -        for (int i = 0; i < _comp_num; ++i)
   1.491 -          _comp_nodes[i].clear();
   1.492 -        for (NodeIt n(_gr); n != INVALID; ++n) {
   1.493 -          int k = _comp[n];
   1.494 -          _comp_nodes[k].push_back(n);
   1.495 -          _out_arcs[n].clear();
   1.496 -          for (OutArcIt a(_gr, n); a != INVALID; ++a) {
   1.497 -            if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
   1.498 -          }
   1.499 -        }
   1.500 -      }
   1.501 -    }
   1.502 -
   1.503 -    // Initialize path data for the current component
   1.504 -    bool initComponent(int comp) {
   1.505 -      _nodes = &(_comp_nodes[comp]);
   1.506 -      int n = _nodes->size();
   1.507 -      if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
   1.508 -        return false;
   1.509 -      }      
   1.510 -      for (int i = 0; i < n; ++i) {
   1.511 -        _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
   1.512 -      }
   1.513 -      return true;
   1.514 -    }
   1.515 -
   1.516 -    // Process all rounds of computing path data for the current component.
   1.517 -    // _data[v][k] is the length of a shortest directed walk from the root
   1.518 -    // node to node v containing exactly k arcs.
   1.519 -    void processRounds() {
   1.520 -      Node start = (*_nodes)[0];
   1.521 -      _data[start][0] = PathData(0);
   1.522 -      _process.clear();
   1.523 -      _process.push_back(start);
   1.524 -
   1.525 -      int k, n = _nodes->size();
   1.526 -      int next_check = 4;
   1.527 -      bool terminate = false;
   1.528 -      for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
   1.529 -        processNextBuildRound(k);
   1.530 -        if (k == next_check || k == n) {
   1.531 -          terminate = checkTermination(k);
   1.532 -          next_check = next_check * 3 / 2;
   1.533 -        }
   1.534 -      }
   1.535 -      for ( ; k <= n && !terminate; ++k) {
   1.536 -        processNextFullRound(k);
   1.537 -        if (k == next_check || k == n) {
   1.538 -          terminate = checkTermination(k);
   1.539 -          next_check = next_check * 3 / 2;
   1.540 -        }
   1.541 -      }
   1.542 -    }
   1.543 -
   1.544 -    // Process one round and rebuild _process
   1.545 -    void processNextBuildRound(int k) {
   1.546 -      std::vector<Node> next;
   1.547 -      Node u, v;
   1.548 -      Arc e;
   1.549 -      LargeValue d;
   1.550 -      for (int i = 0; i < int(_process.size()); ++i) {
   1.551 -        u = _process[i];
   1.552 -        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
   1.553 -          e = _out_arcs[u][j];
   1.554 -          v = _gr.target(e);
   1.555 -          d = _data[u][k-1].dist + _length[e];
   1.556 -          if (_tolerance.less(d, _data[v][k].dist)) {
   1.557 -            if (_data[v][k].dist == INF) next.push_back(v);
   1.558 -            _data[v][k] = PathData(d, e);
   1.559 -          }
   1.560 -        }
   1.561 -      }
   1.562 -      _process.swap(next);
   1.563 -    }
   1.564 -
   1.565 -    // Process one round using _nodes instead of _process
   1.566 -    void processNextFullRound(int k) {
   1.567 -      Node u, v;
   1.568 -      Arc e;
   1.569 -      LargeValue d;
   1.570 -      for (int i = 0; i < int(_nodes->size()); ++i) {
   1.571 -        u = (*_nodes)[i];
   1.572 -        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
   1.573 -          e = _out_arcs[u][j];
   1.574 -          v = _gr.target(e);
   1.575 -          d = _data[u][k-1].dist + _length[e];
   1.576 -          if (_tolerance.less(d, _data[v][k].dist)) {
   1.577 -            _data[v][k] = PathData(d, e);
   1.578 -          }
   1.579 -        }
   1.580 -      }
   1.581 -    }
   1.582 -    
   1.583 -    // Check early termination
   1.584 -    bool checkTermination(int k) {
   1.585 -      typedef std::pair<int, int> Pair;
   1.586 -      typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
   1.587 -      typename GR::template NodeMap<LargeValue> pi(_gr);
   1.588 -      int n = _nodes->size();
   1.589 -      LargeValue length;
   1.590 -      int size;
   1.591 -      Node u;
   1.592 -      
   1.593 -      // Search for cycles that are already found
   1.594 -      _curr_found = false;
   1.595 -      for (int i = 0; i < n; ++i) {
   1.596 -        u = (*_nodes)[i];
   1.597 -        if (_data[u][k].dist == INF) continue;
   1.598 -        for (int j = k; j >= 0; --j) {
   1.599 -          if (level[u].first == i && level[u].second > 0) {
   1.600 -            // A cycle is found
   1.601 -            length = _data[u][level[u].second].dist - _data[u][j].dist;
   1.602 -            size = level[u].second - j;
   1.603 -            if (!_curr_found || length * _curr_size < _curr_length * size) {
   1.604 -              _curr_length = length;
   1.605 -              _curr_size = size;
   1.606 -              _curr_node = u;
   1.607 -              _curr_level = level[u].second;
   1.608 -              _curr_found = true;
   1.609 -            }
   1.610 -          }
   1.611 -          level[u] = Pair(i, j);
   1.612 -          if (j != 0) {
   1.613 -	    u = _gr.source(_data[u][j].pred);
   1.614 -	  }
   1.615 -        }
   1.616 -      }
   1.617 -
   1.618 -      // If at least one cycle is found, check the optimality condition
   1.619 -      LargeValue d;
   1.620 -      if (_curr_found && k < n) {
   1.621 -        // Find node potentials
   1.622 -        for (int i = 0; i < n; ++i) {
   1.623 -          u = (*_nodes)[i];
   1.624 -          pi[u] = INF;
   1.625 -          for (int j = 0; j <= k; ++j) {
   1.626 -            if (_data[u][j].dist < INF) {
   1.627 -              d = _data[u][j].dist * _curr_size - j * _curr_length;
   1.628 -              if (_tolerance.less(d, pi[u])) pi[u] = d;
   1.629 -            }
   1.630 -          }
   1.631 -        }
   1.632 -
   1.633 -        // Check the optimality condition for all arcs
   1.634 -        bool done = true;
   1.635 -        for (ArcIt a(_gr); a != INVALID; ++a) {
   1.636 -          if (_tolerance.less(_length[a] * _curr_size - _curr_length,
   1.637 -                              pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
   1.638 -            done = false;
   1.639 -            break;
   1.640 -          }
   1.641 -        }
   1.642 -        return done;
   1.643 -      }
   1.644 -      return (k == n);
   1.645 -    }
   1.646 -
   1.647 -  }; //class HartmannOrlin
   1.648 -
   1.649 -  ///@}
   1.650 -
   1.651 -} //namespace lemon
   1.652 -
   1.653 -#endif //LEMON_HARTMANN_ORLIN_H