lemon/gomory_hu_tree.h
changeset 545 e72bacfea6b7
parent 544 ccd2d3a3001e
child 546 d6b40ebb2617
     1.1 --- a/lemon/gomory_hu_tree.h	Wed Feb 25 11:10:52 2009 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,554 +0,0 @@
     1.4 -/* -*- C++ -*-
     1.5 - *
     1.6 - * This file is a part of LEMON, a generic C++ optimization library
     1.7 - *
     1.8 - * Copyright (C) 2003-2008
     1.9 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 - *
    1.12 - * Permission to use, modify and distribute this software is granted
    1.13 - * provided that this copyright notice appears in all copies. For
    1.14 - * precise terms see the accompanying LICENSE file.
    1.15 - *
    1.16 - * This software is provided "AS IS" with no warranty of any kind,
    1.17 - * express or implied, and with no claim as to its suitability for any
    1.18 - * purpose.
    1.19 - *
    1.20 - */
    1.21 -
    1.22 -#ifndef LEMON_GOMORY_HU_TREE_H
    1.23 -#define LEMON_GOMORY_HU_TREE_H
    1.24 -
    1.25 -#include <limits>
    1.26 -
    1.27 -#include <lemon/core.h>
    1.28 -#include <lemon/preflow.h>
    1.29 -#include <lemon/concept_check.h>
    1.30 -#include <lemon/concepts/maps.h>
    1.31 -
    1.32 -/// \ingroup min_cut
    1.33 -/// \file 
    1.34 -/// \brief Gomory-Hu cut tree in graphs.
    1.35 -
    1.36 -namespace lemon {
    1.37 -
    1.38 -  /// \ingroup min_cut
    1.39 -  ///
    1.40 -  /// \brief Gomory-Hu cut tree algorithm
    1.41 -  ///
    1.42 -  /// The Gomory-Hu tree is a tree on the node set of the graph, but it
    1.43 -  /// may contain edges which are not in the original digraph. It has the
    1.44 -  /// property that the minimum capacity edge of the path between two nodes 
    1.45 -  /// in this tree has the same weight as the minimum cut in the digraph
    1.46 -  /// between these nodes. Moreover the components obtained by removing
    1.47 -  /// this edge from the tree determine the corresponding minimum cut.
    1.48 -  ///
    1.49 -  /// Therefore once this tree is computed, the minimum cut between any pair
    1.50 -  /// of nodes can easily be obtained.
    1.51 -  /// 
    1.52 -  /// The algorithm calculates \e n-1 distinct minimum cuts (currently with
    1.53 -  /// the \ref Preflow algorithm), therefore the algorithm has
    1.54 -  /// \f$(O(n^3\sqrt{e})\f$ overall time complexity. It calculates a
    1.55 -  /// rooted Gomory-Hu tree, its structure and the weights can be obtained
    1.56 -  /// by \c predNode(), \c predValue() and \c rootDist().
    1.57 -  /// 
    1.58 -  /// The members \c minCutMap() and \c minCutValue() calculate
    1.59 -  /// the minimum cut and the minimum cut value between any two node
    1.60 -  /// in the digraph. You can also list (iterate on) the nodes and the
    1.61 -  /// edges of the cuts using MinCutNodeIt and MinCutEdgeIt.
    1.62 -  ///
    1.63 -  /// \tparam GR The undirected graph data structure the algorithm will run on
    1.64 -  /// \tparam CAP type of the EdgeMap describing the Edge capacities.
    1.65 -  /// it is typename GR::template EdgeMap<int> by default.
    1.66 -  template <typename GR,
    1.67 -	    typename CAP = typename GR::template EdgeMap<int>
    1.68 -            >
    1.69 -  class GomoryHuTree {
    1.70 -  public:
    1.71 -
    1.72 -    /// The graph type
    1.73 -    typedef GR Graph;
    1.74 -    /// The type if the edge capacity map
    1.75 -    typedef CAP Capacity;
    1.76 -    /// The value type of capacities
    1.77 -    typedef typename Capacity::Value Value;
    1.78 -    
    1.79 -  private:
    1.80 -
    1.81 -    TEMPLATE_GRAPH_TYPEDEFS(Graph);
    1.82 -
    1.83 -    const Graph& _graph;
    1.84 -    const Capacity& _capacity;
    1.85 -
    1.86 -    Node _root;
    1.87 -    typename Graph::template NodeMap<Node>* _pred;
    1.88 -    typename Graph::template NodeMap<Value>* _weight;
    1.89 -    typename Graph::template NodeMap<int>* _order;
    1.90 -
    1.91 -    void createStructures() {
    1.92 -      if (!_pred) {
    1.93 -	_pred = new typename Graph::template NodeMap<Node>(_graph);
    1.94 -      }
    1.95 -      if (!_weight) {
    1.96 -	_weight = new typename Graph::template NodeMap<Value>(_graph);
    1.97 -      }
    1.98 -      if (!_order) {
    1.99 -	_order = new typename Graph::template NodeMap<int>(_graph);
   1.100 -      }
   1.101 -    }
   1.102 -
   1.103 -    void destroyStructures() {
   1.104 -      if (_pred) {
   1.105 -	delete _pred;
   1.106 -      }
   1.107 -      if (_weight) {
   1.108 -	delete _weight;
   1.109 -      }
   1.110 -      if (_order) {
   1.111 -	delete _order;
   1.112 -      }
   1.113 -    }
   1.114 -  
   1.115 -  public:
   1.116 -
   1.117 -    /// \brief Constructor
   1.118 -    ///
   1.119 -    /// Constructor
   1.120 -    /// \param graph The graph the algorithm will run on.
   1.121 -    /// \param capacity The capacity map.
   1.122 -    GomoryHuTree(const Graph& graph, const Capacity& capacity) 
   1.123 -      : _graph(graph), _capacity(capacity),
   1.124 -	_pred(0), _weight(0), _order(0) 
   1.125 -    {
   1.126 -      checkConcept<concepts::ReadMap<Edge, Value>, Capacity>();
   1.127 -    }
   1.128 -
   1.129 -
   1.130 -    /// \brief Destructor
   1.131 -    ///
   1.132 -    /// Destructor
   1.133 -    ~GomoryHuTree() {
   1.134 -      destroyStructures();
   1.135 -    }
   1.136 -
   1.137 -    // \brief Initialize the internal data structures.
   1.138 -    //
   1.139 -    // This function initializes the internal data structures.
   1.140 -    //
   1.141 -    void init() {
   1.142 -      createStructures();
   1.143 -
   1.144 -      _root = NodeIt(_graph);
   1.145 -      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.146 -	_pred->set(n, _root);
   1.147 -	_order->set(n, -1);
   1.148 -      }
   1.149 -      _pred->set(_root, INVALID);
   1.150 -      _weight->set(_root, std::numeric_limits<Value>::max()); 
   1.151 -    }
   1.152 -
   1.153 -
   1.154 -    // \brief Start the algorithm
   1.155 -    //
   1.156 -    // This function starts the algorithm.
   1.157 -    //
   1.158 -    // \pre \ref init() must be called before using this function.
   1.159 -    //
   1.160 -    void start() {
   1.161 -      Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID);
   1.162 -
   1.163 -      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.164 -	if (n == _root) continue;
   1.165 -
   1.166 -	Node pn = (*_pred)[n];
   1.167 -	fa.source(n);
   1.168 -	fa.target(pn);
   1.169 -
   1.170 -	fa.runMinCut();
   1.171 -
   1.172 -	_weight->set(n, fa.flowValue());
   1.173 -
   1.174 -	for (NodeIt nn(_graph); nn != INVALID; ++nn) {
   1.175 -	  if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
   1.176 -	    _pred->set(nn, n);
   1.177 -	  }
   1.178 -	}
   1.179 -	if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
   1.180 -	  _pred->set(n, (*_pred)[pn]);
   1.181 -	  _pred->set(pn, n);
   1.182 -	  _weight->set(n, (*_weight)[pn]);
   1.183 -	  _weight->set(pn, fa.flowValue());	
   1.184 -	}
   1.185 -      }
   1.186 -
   1.187 -      _order->set(_root, 0);
   1.188 -      int index = 1;
   1.189 -
   1.190 -      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.191 -	std::vector<Node> st;
   1.192 -	Node nn = n;
   1.193 -	while ((*_order)[nn] == -1) {
   1.194 -	  st.push_back(nn);
   1.195 -	  nn = (*_pred)[nn];
   1.196 -	}
   1.197 -	while (!st.empty()) {
   1.198 -	  _order->set(st.back(), index++);
   1.199 -	  st.pop_back();
   1.200 -	}
   1.201 -      }
   1.202 -    }
   1.203 -
   1.204 -    ///\name Execution Control
   1.205 - 
   1.206 -    ///@{
   1.207 -
   1.208 -    /// \brief Run the Gomory-Hu algorithm.
   1.209 -    ///
   1.210 -    /// This function runs the Gomory-Hu algorithm.
   1.211 -    void run() {
   1.212 -      init();
   1.213 -      start();
   1.214 -    }
   1.215 -    
   1.216 -    /// @}
   1.217 -
   1.218 -    ///\name Query Functions
   1.219 -    ///The results of the algorithm can be obtained using these
   1.220 -    ///functions.\n
   1.221 -    ///The \ref run() "run()" should be called before using them.\n
   1.222 -    ///See also MinCutNodeIt and MinCutEdgeIt
   1.223 -
   1.224 -    ///@{
   1.225 -
   1.226 -    /// \brief Return the predecessor node in the Gomory-Hu tree.
   1.227 -    ///
   1.228 -    /// This function returns the predecessor node in the Gomory-Hu tree.
   1.229 -    /// If the node is
   1.230 -    /// the root of the Gomory-Hu tree, then it returns \c INVALID.
   1.231 -    Node predNode(const Node& node) {
   1.232 -      return (*_pred)[node];
   1.233 -    }
   1.234 -
   1.235 -    /// \brief Return the distance from the root node in the Gomory-Hu tree.
   1.236 -    ///
   1.237 -    /// This function returns the distance of \c node from the root node
   1.238 -    /// in the Gomory-Hu tree.
   1.239 -    int rootDist(const Node& node) {
   1.240 -      return (*_order)[node];
   1.241 -    }
   1.242 -
   1.243 -    /// \brief Return the weight of the predecessor edge in the
   1.244 -    /// Gomory-Hu tree.
   1.245 -    ///
   1.246 -    /// This function returns the weight of the predecessor edge in the
   1.247 -    /// Gomory-Hu tree.  If the node is the root, the result is undefined.
   1.248 -    Value predValue(const Node& node) {
   1.249 -      return (*_weight)[node];
   1.250 -    }
   1.251 -
   1.252 -    /// \brief Return the minimum cut value between two nodes
   1.253 -    ///
   1.254 -    /// This function returns the minimum cut value between two nodes. The
   1.255 -    /// algorithm finds the nearest common ancestor in the Gomory-Hu
   1.256 -    /// tree and calculates the minimum weight arc on the paths to
   1.257 -    /// the ancestor.
   1.258 -    Value minCutValue(const Node& s, const Node& t) const {
   1.259 -      Node sn = s, tn = t;
   1.260 -      Value value = std::numeric_limits<Value>::max();
   1.261 -      
   1.262 -      while (sn != tn) {
   1.263 -	if ((*_order)[sn] < (*_order)[tn]) {
   1.264 -	  if ((*_weight)[tn] <= value) value = (*_weight)[tn];
   1.265 -	  tn = (*_pred)[tn];
   1.266 -	} else {
   1.267 -	  if ((*_weight)[sn] <= value) value = (*_weight)[sn];
   1.268 -	  sn = (*_pred)[sn];
   1.269 -	}
   1.270 -      }
   1.271 -      return value;
   1.272 -    }
   1.273 -
   1.274 -    /// \brief Return the minimum cut between two nodes
   1.275 -    ///
   1.276 -    /// This function returns the minimum cut between the nodes \c s and \c t
   1.277 -    /// the \r cutMap parameter by setting the nodes in the component of
   1.278 -    /// \c \s to true and the other nodes to false.
   1.279 -    ///
   1.280 -    /// The \c cutMap should be \ref concepts::ReadWriteMap
   1.281 -    /// "ReadWriteMap".
   1.282 -    ///
   1.283 -    /// For higher level interfaces, see MinCutNodeIt and MinCutEdgeIt
   1.284 -    template <typename CutMap>
   1.285 -    Value minCutMap(const Node& s, ///< Base node
   1.286 -                    const Node& t,
   1.287 -                    ///< The node you want to separate from Node s.
   1.288 -                    CutMap& cutMap
   1.289 -                    ///< The cut will be return in this map.
   1.290 -                    /// It must be a \c bool \ref concepts::ReadWriteMap
   1.291 -                    /// "ReadWriteMap" on the graph nodes.
   1.292 -                    ) const {
   1.293 -      Node sn = s, tn = t;
   1.294 -      bool s_root=false;
   1.295 -      Node rn = INVALID;
   1.296 -      Value value = std::numeric_limits<Value>::max();
   1.297 -      
   1.298 -      while (sn != tn) {
   1.299 -	if ((*_order)[sn] < (*_order)[tn]) {
   1.300 -	  if ((*_weight)[tn] <= value) {
   1.301 -	    rn = tn;
   1.302 -            s_root = false;
   1.303 -	    value = (*_weight)[tn];
   1.304 -	  }
   1.305 -	  tn = (*_pred)[tn];
   1.306 -	} else {
   1.307 -	  if ((*_weight)[sn] <= value) {
   1.308 -	    rn = sn;
   1.309 -            s_root = true;
   1.310 -	    value = (*_weight)[sn];
   1.311 -	  }
   1.312 -	  sn = (*_pred)[sn];
   1.313 -	}
   1.314 -      }
   1.315 -
   1.316 -      typename Graph::template NodeMap<bool> reached(_graph, false);
   1.317 -      reached.set(_root, true);
   1.318 -      cutMap.set(_root, !s_root);
   1.319 -      reached.set(rn, true);
   1.320 -      cutMap.set(rn, s_root);
   1.321 -
   1.322 -      std::vector<Node> st;
   1.323 -      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.324 -	st.clear();
   1.325 -        Node nn = n;
   1.326 -	while (!reached[nn]) {
   1.327 -	  st.push_back(nn);
   1.328 -	  nn = (*_pred)[nn];
   1.329 -	}
   1.330 -	while (!st.empty()) {
   1.331 -	  cutMap.set(st.back(), cutMap[nn]);
   1.332 -	  st.pop_back();
   1.333 -	}
   1.334 -      }
   1.335 -      
   1.336 -      return value;
   1.337 -    }
   1.338 -
   1.339 -    ///@}
   1.340 -
   1.341 -    friend class MinCutNodeIt;
   1.342 -
   1.343 -    /// Iterate on the nodes of a minimum cut
   1.344 -    
   1.345 -    /// This iterator class lists the nodes of a minimum cut found by
   1.346 -    /// GomoryHuTree. Before using it, you must allocate a GomoryHuTree class,
   1.347 -    /// and call its \ref GomoryHuTree::run() "run()" method.
   1.348 -    ///
   1.349 -    /// This example counts the nodes in the minimum cut separating \c s from
   1.350 -    /// \c t.
   1.351 -    /// \code
   1.352 -    /// GomoruHuTree<Graph> gom(g, capacities);
   1.353 -    /// gom.run();
   1.354 -    /// int sum=0;
   1.355 -    /// for(GomoruHuTree<Graph>::MinCutNodeIt n(gom,s,t);n!=INVALID;++n) ++sum;
   1.356 -    /// \endcode
   1.357 -    class MinCutNodeIt
   1.358 -    {
   1.359 -      bool _side;
   1.360 -      typename Graph::NodeIt _node_it;
   1.361 -      typename Graph::template NodeMap<bool> _cut;
   1.362 -    public:
   1.363 -      /// Constructor
   1.364 -
   1.365 -      /// Constructor
   1.366 -      ///
   1.367 -      MinCutNodeIt(GomoryHuTree const &gomory,
   1.368 -                   ///< The GomoryHuTree class. You must call its
   1.369 -                   ///  run() method
   1.370 -                   ///  before initializing this iterator
   1.371 -                   const Node& s, ///< Base node
   1.372 -                   const Node& t,
   1.373 -                   ///< The node you want to separate from Node s.
   1.374 -                   bool side=true
   1.375 -                   ///< If it is \c true (default) then the iterator lists
   1.376 -                   ///  the nodes of the component containing \c s,
   1.377 -                   ///  otherwise it lists the other component.
   1.378 -                   /// \note As the minimum cut is not always unique,
   1.379 -                   /// \code
   1.380 -                   /// MinCutNodeIt(gomory, s, t, true);
   1.381 -                   /// \endcode
   1.382 -                   /// and
   1.383 -                   /// \code
   1.384 -                   /// MinCutNodeIt(gomory, t, s, false);
   1.385 -                   /// \endcode
   1.386 -                   /// does not necessarily give the same set of nodes.
   1.387 -                   /// However it is ensured that
   1.388 -                   /// \code
   1.389 -                   /// MinCutNodeIt(gomory, s, t, true);
   1.390 -                   /// \endcode
   1.391 -                   /// and
   1.392 -                   /// \code
   1.393 -                   /// MinCutNodeIt(gomory, s, t, false);
   1.394 -                   /// \endcode
   1.395 -                   /// together list each node exactly once.
   1.396 -                   )
   1.397 -        : _side(side), _cut(gomory._graph)
   1.398 -      {
   1.399 -        gomory.minCutMap(s,t,_cut);
   1.400 -        for(_node_it=typename Graph::NodeIt(gomory._graph);
   1.401 -            _node_it!=INVALID && _cut[_node_it]!=_side;
   1.402 -            ++_node_it) {}
   1.403 -      }
   1.404 -      /// Conversion to Node
   1.405 -
   1.406 -      /// Conversion to Node
   1.407 -      ///
   1.408 -      operator typename Graph::Node() const
   1.409 -      {
   1.410 -        return _node_it;
   1.411 -      }
   1.412 -      bool operator==(Invalid) { return _node_it==INVALID; }
   1.413 -      bool operator!=(Invalid) { return _node_it!=INVALID; }
   1.414 -      /// Next node
   1.415 -
   1.416 -      /// Next node
   1.417 -      ///
   1.418 -      MinCutNodeIt &operator++()
   1.419 -      {
   1.420 -        for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {}
   1.421 -        return *this;
   1.422 -      }
   1.423 -      /// Postfix incrementation
   1.424 -
   1.425 -      /// Postfix incrementation
   1.426 -      ///
   1.427 -      /// \warning This incrementation
   1.428 -      /// returns a \c Node, not a \ref MinCutNodeIt, as one may
   1.429 -      /// expect.
   1.430 -      typename Graph::Node operator++(int)
   1.431 -      {
   1.432 -        typename Graph::Node n=*this;
   1.433 -        ++(*this);
   1.434 -        return n;
   1.435 -      }
   1.436 -    };
   1.437 -    
   1.438 -    friend class MinCutEdgeIt;
   1.439 -    
   1.440 -    /// Iterate on the edges of a minimum cut
   1.441 -    
   1.442 -    /// This iterator class lists the edges of a minimum cut found by
   1.443 -    /// GomoryHuTree. Before using it, you must allocate a GomoryHuTree class,
   1.444 -    /// and call its \ref GomoryHuTree::run() "run()" method.
   1.445 -    ///
   1.446 -    /// This example computes the value of the minimum cut separating \c s from
   1.447 -    /// \c t.
   1.448 -    /// \code
   1.449 -    /// GomoruHuTree<Graph> gom(g, capacities);
   1.450 -    /// gom.run();
   1.451 -    /// int value=0;
   1.452 -    /// for(GomoruHuTree<Graph>::MinCutEdgeIt e(gom,s,t);e!=INVALID;++e)
   1.453 -    ///   value+=capacities[e];
   1.454 -    /// \endcode
   1.455 -    /// the result will be the same as it is returned by
   1.456 -    /// \ref GomoryHuTree::minCostValue() "gom.minCostValue(s,t)"
   1.457 -    class MinCutEdgeIt
   1.458 -    {
   1.459 -      bool _side;
   1.460 -      const Graph &_graph;
   1.461 -      typename Graph::NodeIt _node_it;
   1.462 -      typename Graph::OutArcIt _arc_it;
   1.463 -      typename Graph::template NodeMap<bool> _cut;
   1.464 -      void step()
   1.465 -      {
   1.466 -        ++_arc_it;
   1.467 -        while(_node_it!=INVALID && _arc_it==INVALID)
   1.468 -          {
   1.469 -            for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {}
   1.470 -            if(_node_it!=INVALID)
   1.471 -              _arc_it=typename Graph::OutArcIt(_graph,_node_it);
   1.472 -          }
   1.473 -      }
   1.474 -      
   1.475 -    public:
   1.476 -      MinCutEdgeIt(GomoryHuTree const &gomory,
   1.477 -                   ///< The GomoryHuTree class. You must call its
   1.478 -                   ///  run() method
   1.479 -                   ///  before initializing this iterator
   1.480 -                   const Node& s,  ///< Base node
   1.481 -                   const Node& t,
   1.482 -                   ///< The node you want to separate from Node s.
   1.483 -                   bool side=true
   1.484 -                   ///< If it is \c true (default) then the listed arcs
   1.485 -                   ///  will be oriented from the
   1.486 -                   ///  the nodes of the component containing \c s,
   1.487 -                   ///  otherwise they will be oriented in the opposite
   1.488 -                   ///  direction.
   1.489 -                   )
   1.490 -        : _graph(gomory._graph), _cut(_graph)
   1.491 -      {
   1.492 -        gomory.minCutMap(s,t,_cut);
   1.493 -        if(!side)
   1.494 -          for(typename Graph::NodeIt n(_graph);n!=INVALID;++n)
   1.495 -            _cut[n]=!_cut[n];
   1.496 -
   1.497 -        for(_node_it=typename Graph::NodeIt(_graph);
   1.498 -            _node_it!=INVALID && !_cut[_node_it];
   1.499 -            ++_node_it) {}
   1.500 -        _arc_it = _node_it!=INVALID ?
   1.501 -          typename Graph::OutArcIt(_graph,_node_it) : INVALID;
   1.502 -        while(_node_it!=INVALID && _arc_it == INVALID)
   1.503 -          {
   1.504 -            for(++_node_it; _node_it!=INVALID&&!_cut[_node_it]; ++_node_it) {}
   1.505 -            if(_node_it!=INVALID)
   1.506 -              _arc_it= typename Graph::OutArcIt(_graph,_node_it);
   1.507 -          }
   1.508 -        while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
   1.509 -      }
   1.510 -      /// Conversion to Arc
   1.511 -
   1.512 -      /// Conversion to Arc
   1.513 -      ///
   1.514 -      operator typename Graph::Arc() const
   1.515 -      {
   1.516 -        return _arc_it;
   1.517 -      }
   1.518 -      /// Conversion to Edge
   1.519 -
   1.520 -      /// Conversion to Edge
   1.521 -      ///
   1.522 -      operator typename Graph::Edge() const
   1.523 -      {
   1.524 -        return _arc_it;
   1.525 -      }
   1.526 -      bool operator==(Invalid) { return _node_it==INVALID; }
   1.527 -      bool operator!=(Invalid) { return _node_it!=INVALID; }
   1.528 -      /// Next edge
   1.529 -
   1.530 -      /// Next edge
   1.531 -      ///
   1.532 -      MinCutEdgeIt &operator++()
   1.533 -      {
   1.534 -        step();
   1.535 -        while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
   1.536 -        return *this;
   1.537 -      }
   1.538 -      /// Postfix incrementation
   1.539 -      
   1.540 -      /// Postfix incrementation
   1.541 -      ///
   1.542 -      /// \warning This incrementation
   1.543 -      /// returns a \c Arc, not a \ref MinCutEdgeIt, as one may
   1.544 -      /// expect.
   1.545 -      typename Graph::Arc operator++(int)
   1.546 -      {
   1.547 -        typename Graph::Arc e=*this;
   1.548 -        ++(*this);
   1.549 -        return e;
   1.550 -      }
   1.551 -    };
   1.552 -
   1.553 -  };
   1.554 -
   1.555 -}
   1.556 -
   1.557 -#endif