lemon/list_graph.h
author Alpar Juttner <alpar@cs.elte.hu>
Thu, 05 Nov 2009 15:50:01 +0100
changeset 784 1a7fe3bef514
parent 740 819ca5b50de0
parent 739 32baeb8e5c8f
child 786 e20173729589
child 787 c2230649a493
permissions -rw-r--r--
Merge #321
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_LIST_GRAPH_H
    20 #define LEMON_LIST_GRAPH_H
    21 
    22 ///\ingroup graphs
    23 ///\file
    24 ///\brief ListDigraph and ListGraph classes.
    25 
    26 #include <lemon/core.h>
    27 #include <lemon/error.h>
    28 #include <lemon/bits/graph_extender.h>
    29 
    30 #include <vector>
    31 #include <list>
    32 
    33 namespace lemon {
    34 
    35   class ListDigraph;
    36 
    37   class ListDigraphBase {
    38 
    39   protected:
    40     struct NodeT {
    41       int first_in, first_out;
    42       int prev, next;
    43     };
    44 
    45     struct ArcT {
    46       int target, source;
    47       int prev_in, prev_out;
    48       int next_in, next_out;
    49     };
    50 
    51     std::vector<NodeT> nodes;
    52 
    53     int first_node;
    54 
    55     int first_free_node;
    56 
    57     std::vector<ArcT> arcs;
    58 
    59     int first_free_arc;
    60 
    61   public:
    62 
    63     typedef ListDigraphBase Digraph;
    64 
    65     class Node {
    66       friend class ListDigraphBase;
    67       friend class ListDigraph;
    68     protected:
    69 
    70       int id;
    71       explicit Node(int pid) { id = pid;}
    72 
    73     public:
    74       Node() {}
    75       Node (Invalid) { id = -1; }
    76       bool operator==(const Node& node) const {return id == node.id;}
    77       bool operator!=(const Node& node) const {return id != node.id;}
    78       bool operator<(const Node& node) const {return id < node.id;}
    79     };
    80 
    81     class Arc {
    82       friend class ListDigraphBase;
    83       friend class ListDigraph;
    84     protected:
    85 
    86       int id;
    87       explicit Arc(int pid) { id = pid;}
    88 
    89     public:
    90       Arc() {}
    91       Arc (Invalid) { id = -1; }
    92       bool operator==(const Arc& arc) const {return id == arc.id;}
    93       bool operator!=(const Arc& arc) const {return id != arc.id;}
    94       bool operator<(const Arc& arc) const {return id < arc.id;}
    95     };
    96 
    97 
    98 
    99     ListDigraphBase()
   100       : nodes(), first_node(-1),
   101         first_free_node(-1), arcs(), first_free_arc(-1) {}
   102 
   103 
   104     int maxNodeId() const { return nodes.size()-1; }
   105     int maxArcId() const { return arcs.size()-1; }
   106 
   107     Node source(Arc e) const { return Node(arcs[e.id].source); }
   108     Node target(Arc e) const { return Node(arcs[e.id].target); }
   109 
   110 
   111     void first(Node& node) const {
   112       node.id = first_node;
   113     }
   114 
   115     void next(Node& node) const {
   116       node.id = nodes[node.id].next;
   117     }
   118 
   119 
   120     void first(Arc& arc) const {
   121       int n;
   122       for(n = first_node;
   123           n != -1 && nodes[n].first_out == -1;
   124           n = nodes[n].next) {}
   125       arc.id = (n == -1) ? -1 : nodes[n].first_out;
   126     }
   127 
   128     void next(Arc& arc) const {
   129       if (arcs[arc.id].next_out != -1) {
   130         arc.id = arcs[arc.id].next_out;
   131       } else {
   132         int n;
   133         for(n = nodes[arcs[arc.id].source].next;
   134             n != -1 && nodes[n].first_out == -1;
   135             n = nodes[n].next) {}
   136         arc.id = (n == -1) ? -1 : nodes[n].first_out;
   137       }
   138     }
   139 
   140     void firstOut(Arc &e, const Node& v) const {
   141       e.id = nodes[v.id].first_out;
   142     }
   143     void nextOut(Arc &e) const {
   144       e.id=arcs[e.id].next_out;
   145     }
   146 
   147     void firstIn(Arc &e, const Node& v) const {
   148       e.id = nodes[v.id].first_in;
   149     }
   150     void nextIn(Arc &e) const {
   151       e.id=arcs[e.id].next_in;
   152     }
   153 
   154 
   155     static int id(Node v) { return v.id; }
   156     static int id(Arc e) { return e.id; }
   157 
   158     static Node nodeFromId(int id) { return Node(id);}
   159     static Arc arcFromId(int id) { return Arc(id);}
   160 
   161     bool valid(Node n) const {
   162       return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
   163         nodes[n.id].prev != -2;
   164     }
   165 
   166     bool valid(Arc a) const {
   167       return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
   168         arcs[a.id].prev_in != -2;
   169     }
   170 
   171     Node addNode() {
   172       int n;
   173 
   174       if(first_free_node==-1) {
   175         n = nodes.size();
   176         nodes.push_back(NodeT());
   177       } else {
   178         n = first_free_node;
   179         first_free_node = nodes[n].next;
   180       }
   181 
   182       nodes[n].next = first_node;
   183       if(first_node != -1) nodes[first_node].prev = n;
   184       first_node = n;
   185       nodes[n].prev = -1;
   186 
   187       nodes[n].first_in = nodes[n].first_out = -1;
   188 
   189       return Node(n);
   190     }
   191 
   192     Arc addArc(Node u, Node v) {
   193       int n;
   194 
   195       if (first_free_arc == -1) {
   196         n = arcs.size();
   197         arcs.push_back(ArcT());
   198       } else {
   199         n = first_free_arc;
   200         first_free_arc = arcs[n].next_in;
   201       }
   202 
   203       arcs[n].source = u.id;
   204       arcs[n].target = v.id;
   205 
   206       arcs[n].next_out = nodes[u.id].first_out;
   207       if(nodes[u.id].first_out != -1) {
   208         arcs[nodes[u.id].first_out].prev_out = n;
   209       }
   210 
   211       arcs[n].next_in = nodes[v.id].first_in;
   212       if(nodes[v.id].first_in != -1) {
   213         arcs[nodes[v.id].first_in].prev_in = n;
   214       }
   215 
   216       arcs[n].prev_in = arcs[n].prev_out = -1;
   217 
   218       nodes[u.id].first_out = nodes[v.id].first_in = n;
   219 
   220       return Arc(n);
   221     }
   222 
   223     void erase(const Node& node) {
   224       int n = node.id;
   225 
   226       if(nodes[n].next != -1) {
   227         nodes[nodes[n].next].prev = nodes[n].prev;
   228       }
   229 
   230       if(nodes[n].prev != -1) {
   231         nodes[nodes[n].prev].next = nodes[n].next;
   232       } else {
   233         first_node = nodes[n].next;
   234       }
   235 
   236       nodes[n].next = first_free_node;
   237       first_free_node = n;
   238       nodes[n].prev = -2;
   239 
   240     }
   241 
   242     void erase(const Arc& arc) {
   243       int n = arc.id;
   244 
   245       if(arcs[n].next_in!=-1) {
   246         arcs[arcs[n].next_in].prev_in = arcs[n].prev_in;
   247       }
   248 
   249       if(arcs[n].prev_in!=-1) {
   250         arcs[arcs[n].prev_in].next_in = arcs[n].next_in;
   251       } else {
   252         nodes[arcs[n].target].first_in = arcs[n].next_in;
   253       }
   254 
   255 
   256       if(arcs[n].next_out!=-1) {
   257         arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
   258       }
   259 
   260       if(arcs[n].prev_out!=-1) {
   261         arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
   262       } else {
   263         nodes[arcs[n].source].first_out = arcs[n].next_out;
   264       }
   265 
   266       arcs[n].next_in = first_free_arc;
   267       first_free_arc = n;
   268       arcs[n].prev_in = -2;
   269     }
   270 
   271     void clear() {
   272       arcs.clear();
   273       nodes.clear();
   274       first_node = first_free_node = first_free_arc = -1;
   275     }
   276 
   277   protected:
   278     void changeTarget(Arc e, Node n)
   279     {
   280       if(arcs[e.id].next_in != -1)
   281         arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in;
   282       if(arcs[e.id].prev_in != -1)
   283         arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in;
   284       else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in;
   285       if (nodes[n.id].first_in != -1) {
   286         arcs[nodes[n.id].first_in].prev_in = e.id;
   287       }
   288       arcs[e.id].target = n.id;
   289       arcs[e.id].prev_in = -1;
   290       arcs[e.id].next_in = nodes[n.id].first_in;
   291       nodes[n.id].first_in = e.id;
   292     }
   293     void changeSource(Arc e, Node n)
   294     {
   295       if(arcs[e.id].next_out != -1)
   296         arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out;
   297       if(arcs[e.id].prev_out != -1)
   298         arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out;
   299       else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out;
   300       if (nodes[n.id].first_out != -1) {
   301         arcs[nodes[n.id].first_out].prev_out = e.id;
   302       }
   303       arcs[e.id].source = n.id;
   304       arcs[e.id].prev_out = -1;
   305       arcs[e.id].next_out = nodes[n.id].first_out;
   306       nodes[n.id].first_out = e.id;
   307     }
   308 
   309   };
   310 
   311   typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase;
   312 
   313   /// \addtogroup graphs
   314   /// @{
   315 
   316   ///A general directed graph structure.
   317 
   318   ///\ref ListDigraph is a versatile and fast directed graph
   319   ///implementation based on linked lists that are stored in
   320   ///\c std::vector structures.
   321   ///
   322   ///This type fully conforms to the \ref concepts::Digraph "Digraph concept"
   323   ///and it also provides several useful additional functionalities.
   324   ///Most of its member functions and nested classes are documented
   325   ///only in the concept class.
   326   ///
   327   ///\sa concepts::Digraph
   328   ///\sa ListGraph
   329   class ListDigraph : public ExtendedListDigraphBase {
   330     typedef ExtendedListDigraphBase Parent;
   331 
   332   private:
   333     /// Digraphs are \e not copy constructible. Use DigraphCopy instead.
   334     ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
   335     /// \brief Assignment of a digraph to another one is \e not allowed.
   336     /// Use DigraphCopy instead.
   337     void operator=(const ListDigraph &) {}
   338   public:
   339 
   340     /// Constructor
   341 
   342     /// Constructor.
   343     ///
   344     ListDigraph() {}
   345 
   346     ///Add a new node to the digraph.
   347 
   348     ///This function adds a new node to the digraph.
   349     ///\return The new node.
   350     Node addNode() { return Parent::addNode(); }
   351 
   352     ///Add a new arc to the digraph.
   353 
   354     ///This function adds a new arc to the digraph with source node \c s
   355     ///and target node \c t.
   356     ///\return The new arc.
   357     Arc addArc(Node s, Node t) {
   358       return Parent::addArc(s, t);
   359     }
   360 
   361     ///\brief Erase a node from the digraph.
   362     ///
   363     ///This function erases the given node from the digraph.
   364     void erase(Node n) { Parent::erase(n); }
   365 
   366     ///\brief Erase an arc from the digraph.
   367     ///
   368     ///This function erases the given arc from the digraph.
   369     void erase(Arc a) { Parent::erase(a); }
   370 
   371     /// Node validity check
   372 
   373     /// This function gives back \c true if the given node is valid,
   374     /// i.e. it is a real node of the digraph.
   375     ///
   376     /// \warning A removed node could become valid again if new nodes are
   377     /// added to the digraph.
   378     bool valid(Node n) const { return Parent::valid(n); }
   379 
   380     /// Arc validity check
   381 
   382     /// This function gives back \c true if the given arc is valid,
   383     /// i.e. it is a real arc of the digraph.
   384     ///
   385     /// \warning A removed arc could become valid again if new arcs are
   386     /// added to the digraph.
   387     bool valid(Arc a) const { return Parent::valid(a); }
   388 
   389     /// Change the target node of an arc
   390 
   391     /// This function changes the target node of the given arc \c a to \c n.
   392     ///
   393     ///\note \c ArcIt and \c OutArcIt iterators referencing the changed
   394     ///arc remain valid, however \c InArcIt iterators are invalidated.
   395     ///
   396     ///\warning This functionality cannot be used together with the Snapshot
   397     ///feature.
   398     void changeTarget(Arc a, Node n) {
   399       Parent::changeTarget(a,n);
   400     }
   401     /// Change the source node of an arc
   402 
   403     /// This function changes the source node of the given arc \c a to \c n.
   404     ///
   405     ///\note \c InArcIt iterators referencing the changed arc remain
   406     ///valid, however \c ArcIt and \c OutArcIt iterators are invalidated.
   407     ///
   408     ///\warning This functionality cannot be used together with the Snapshot
   409     ///feature.
   410     void changeSource(Arc a, Node n) {
   411       Parent::changeSource(a,n);
   412     }
   413 
   414     /// Reverse the direction of an arc.
   415 
   416     /// This function reverses the direction of the given arc.
   417     ///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing
   418     ///the changed arc are invalidated.
   419     ///
   420     ///\warning This functionality cannot be used together with the Snapshot
   421     ///feature.
   422     void reverseArc(Arc a) {
   423       Node t=target(a);
   424       changeTarget(a,source(a));
   425       changeSource(a,t);
   426     }
   427 
   428     ///Contract two nodes.
   429 
   430     ///This function contracts the given two nodes.
   431     ///Node \c v is removed, but instead of deleting its
   432     ///incident arcs, they are joined to node \c u.
   433     ///If the last parameter \c r is \c true (this is the default value),
   434     ///then the newly created loops are removed.
   435     ///
   436     ///\note The moved arcs are joined to node \c u using changeSource()
   437     ///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are
   438     ///invalidated for the outgoing arcs of node \c v and \c InArcIt
   439     ///iterators are invalidated for the incomming arcs of \c v.
   440     ///Moreover all iterators referencing node \c v or the removed 
   441     ///loops are also invalidated. Other iterators remain valid.
   442     ///
   443     ///\warning This functionality cannot be used together with the Snapshot
   444     ///feature.
   445     void contract(Node u, Node v, bool r = true)
   446     {
   447       for(OutArcIt e(*this,v);e!=INVALID;) {
   448         OutArcIt f=e;
   449         ++f;
   450         if(r && target(e)==u) erase(e);
   451         else changeSource(e,u);
   452         e=f;
   453       }
   454       for(InArcIt e(*this,v);e!=INVALID;) {
   455         InArcIt f=e;
   456         ++f;
   457         if(r && source(e)==u) erase(e);
   458         else changeTarget(e,u);
   459         e=f;
   460       }
   461       erase(v);
   462     }
   463 
   464     ///Split a node.
   465 
   466     ///This function splits the given node. First, a new node is added
   467     ///to the digraph, then the source of each outgoing arc of node \c n
   468     ///is moved to this new node.
   469     ///If the second parameter \c connect is \c true (this is the default
   470     ///value), then a new arc from node \c n to the newly created node
   471     ///is also added.
   472     ///\return The newly created node.
   473     ///
   474     ///\note All iterators remain valid.
   475     ///
   476     ///\warning This functionality cannot be used together with the
   477     ///Snapshot feature.
   478     Node split(Node n, bool connect = true) {
   479       Node b = addNode();
   480       nodes[b.id].first_out=nodes[n.id].first_out;
   481       nodes[n.id].first_out=-1;
   482       for(int i=nodes[b.id].first_out; i!=-1; i=arcs[i].next_out) {
   483         arcs[i].source=b.id;
   484       }
   485       if (connect) addArc(n,b);
   486       return b;
   487     }
   488 
   489     ///Split an arc.
   490 
   491     ///This function splits the given arc. First, a new node \c v is
   492     ///added to the digraph, then the target node of the original arc
   493     ///is set to \c v. Finally, an arc from \c v to the original target
   494     ///is added.
   495     ///\return The newly created node.
   496     ///
   497     ///\note \c InArcIt iterators referencing the original arc are
   498     ///invalidated. Other iterators remain valid.
   499     ///
   500     ///\warning This functionality cannot be used together with the
   501     ///Snapshot feature.
   502     Node split(Arc a) {
   503       Node v = addNode();
   504       addArc(v,target(a));
   505       changeTarget(a,v);
   506       return v;
   507     }
   508 
   509     ///Clear the digraph.
   510 
   511     ///This function erases all nodes and arcs from the digraph.
   512     ///
   513     void clear() {
   514       Parent::clear();
   515     }
   516 
   517     /// Reserve memory for nodes.
   518 
   519     /// Using this function, it is possible to avoid superfluous memory
   520     /// allocation: if you know that the digraph you want to build will
   521     /// be large (e.g. it will contain millions of nodes and/or arcs),
   522     /// then it is worth reserving space for this amount before starting
   523     /// to build the digraph.
   524     /// \sa reserveArc()
   525     void reserveNode(int n) { nodes.reserve(n); };
   526 
   527     /// Reserve memory for arcs.
   528 
   529     /// Using this function, it is possible to avoid superfluous memory
   530     /// allocation: if you know that the digraph you want to build will
   531     /// be large (e.g. it will contain millions of nodes and/or arcs),
   532     /// then it is worth reserving space for this amount before starting
   533     /// to build the digraph.
   534     /// \sa reserveNode()
   535     void reserveArc(int m) { arcs.reserve(m); };
   536 
   537     /// \brief Class to make a snapshot of the digraph and restore
   538     /// it later.
   539     ///
   540     /// Class to make a snapshot of the digraph and restore it later.
   541     ///
   542     /// The newly added nodes and arcs can be removed using the
   543     /// restore() function.
   544     ///
   545     /// \note After a state is restored, you cannot restore a later state, 
   546     /// i.e. you cannot add the removed nodes and arcs again using
   547     /// another Snapshot instance.
   548     ///
   549     /// \warning Node and arc deletions and other modifications (e.g.
   550     /// reversing, contracting, splitting arcs or nodes) cannot be
   551     /// restored. These events invalidate the snapshot.
   552     /// However the arcs and nodes that were added to the digraph after
   553     /// making the current snapshot can be removed without invalidating it.
   554     class Snapshot {
   555     protected:
   556 
   557       typedef Parent::NodeNotifier NodeNotifier;
   558 
   559       class NodeObserverProxy : public NodeNotifier::ObserverBase {
   560       public:
   561 
   562         NodeObserverProxy(Snapshot& _snapshot)
   563           : snapshot(_snapshot) {}
   564 
   565         using NodeNotifier::ObserverBase::attach;
   566         using NodeNotifier::ObserverBase::detach;
   567         using NodeNotifier::ObserverBase::attached;
   568 
   569       protected:
   570 
   571         virtual void add(const Node& node) {
   572           snapshot.addNode(node);
   573         }
   574         virtual void add(const std::vector<Node>& nodes) {
   575           for (int i = nodes.size() - 1; i >= 0; ++i) {
   576             snapshot.addNode(nodes[i]);
   577           }
   578         }
   579         virtual void erase(const Node& node) {
   580           snapshot.eraseNode(node);
   581         }
   582         virtual void erase(const std::vector<Node>& nodes) {
   583           for (int i = 0; i < int(nodes.size()); ++i) {
   584             snapshot.eraseNode(nodes[i]);
   585           }
   586         }
   587         virtual void build() {
   588           Node node;
   589           std::vector<Node> nodes;
   590           for (notifier()->first(node); node != INVALID;
   591                notifier()->next(node)) {
   592             nodes.push_back(node);
   593           }
   594           for (int i = nodes.size() - 1; i >= 0; --i) {
   595             snapshot.addNode(nodes[i]);
   596           }
   597         }
   598         virtual void clear() {
   599           Node node;
   600           for (notifier()->first(node); node != INVALID;
   601                notifier()->next(node)) {
   602             snapshot.eraseNode(node);
   603           }
   604         }
   605 
   606         Snapshot& snapshot;
   607       };
   608 
   609       class ArcObserverProxy : public ArcNotifier::ObserverBase {
   610       public:
   611 
   612         ArcObserverProxy(Snapshot& _snapshot)
   613           : snapshot(_snapshot) {}
   614 
   615         using ArcNotifier::ObserverBase::attach;
   616         using ArcNotifier::ObserverBase::detach;
   617         using ArcNotifier::ObserverBase::attached;
   618 
   619       protected:
   620 
   621         virtual void add(const Arc& arc) {
   622           snapshot.addArc(arc);
   623         }
   624         virtual void add(const std::vector<Arc>& arcs) {
   625           for (int i = arcs.size() - 1; i >= 0; ++i) {
   626             snapshot.addArc(arcs[i]);
   627           }
   628         }
   629         virtual void erase(const Arc& arc) {
   630           snapshot.eraseArc(arc);
   631         }
   632         virtual void erase(const std::vector<Arc>& arcs) {
   633           for (int i = 0; i < int(arcs.size()); ++i) {
   634             snapshot.eraseArc(arcs[i]);
   635           }
   636         }
   637         virtual void build() {
   638           Arc arc;
   639           std::vector<Arc> arcs;
   640           for (notifier()->first(arc); arc != INVALID;
   641                notifier()->next(arc)) {
   642             arcs.push_back(arc);
   643           }
   644           for (int i = arcs.size() - 1; i >= 0; --i) {
   645             snapshot.addArc(arcs[i]);
   646           }
   647         }
   648         virtual void clear() {
   649           Arc arc;
   650           for (notifier()->first(arc); arc != INVALID;
   651                notifier()->next(arc)) {
   652             snapshot.eraseArc(arc);
   653           }
   654         }
   655 
   656         Snapshot& snapshot;
   657       };
   658 
   659       ListDigraph *digraph;
   660 
   661       NodeObserverProxy node_observer_proxy;
   662       ArcObserverProxy arc_observer_proxy;
   663 
   664       std::list<Node> added_nodes;
   665       std::list<Arc> added_arcs;
   666 
   667 
   668       void addNode(const Node& node) {
   669         added_nodes.push_front(node);
   670       }
   671       void eraseNode(const Node& node) {
   672         std::list<Node>::iterator it =
   673           std::find(added_nodes.begin(), added_nodes.end(), node);
   674         if (it == added_nodes.end()) {
   675           clear();
   676           arc_observer_proxy.detach();
   677           throw NodeNotifier::ImmediateDetach();
   678         } else {
   679           added_nodes.erase(it);
   680         }
   681       }
   682 
   683       void addArc(const Arc& arc) {
   684         added_arcs.push_front(arc);
   685       }
   686       void eraseArc(const Arc& arc) {
   687         std::list<Arc>::iterator it =
   688           std::find(added_arcs.begin(), added_arcs.end(), arc);
   689         if (it == added_arcs.end()) {
   690           clear();
   691           node_observer_proxy.detach();
   692           throw ArcNotifier::ImmediateDetach();
   693         } else {
   694           added_arcs.erase(it);
   695         }
   696       }
   697 
   698       void attach(ListDigraph &_digraph) {
   699         digraph = &_digraph;
   700         node_observer_proxy.attach(digraph->notifier(Node()));
   701         arc_observer_proxy.attach(digraph->notifier(Arc()));
   702       }
   703 
   704       void detach() {
   705         node_observer_proxy.detach();
   706         arc_observer_proxy.detach();
   707       }
   708 
   709       bool attached() const {
   710         return node_observer_proxy.attached();
   711       }
   712 
   713       void clear() {
   714         added_nodes.clear();
   715         added_arcs.clear();
   716       }
   717 
   718     public:
   719 
   720       /// \brief Default constructor.
   721       ///
   722       /// Default constructor.
   723       /// You have to call save() to actually make a snapshot.
   724       Snapshot()
   725         : digraph(0), node_observer_proxy(*this),
   726           arc_observer_proxy(*this) {}
   727 
   728       /// \brief Constructor that immediately makes a snapshot.
   729       ///
   730       /// This constructor immediately makes a snapshot of the given digraph.
   731       Snapshot(ListDigraph &gr)
   732         : node_observer_proxy(*this),
   733           arc_observer_proxy(*this) {
   734         attach(gr);
   735       }
   736 
   737       /// \brief Make a snapshot.
   738       ///
   739       /// This function makes a snapshot of the given digraph.
   740       /// It can be called more than once. In case of a repeated
   741       /// call, the previous snapshot gets lost.
   742       void save(ListDigraph &gr) {
   743         if (attached()) {
   744           detach();
   745           clear();
   746         }
   747         attach(gr);
   748       }
   749 
   750       /// \brief Undo the changes until the last snapshot.
   751       ///
   752       /// This function undos the changes until the last snapshot
   753       /// created by save() or Snapshot(ListDigraph&).
   754       ///
   755       /// \warning This method invalidates the snapshot, i.e. repeated
   756       /// restoring is not supported unless you call save() again.
   757       void restore() {
   758         detach();
   759         for(std::list<Arc>::iterator it = added_arcs.begin();
   760             it != added_arcs.end(); ++it) {
   761           digraph->erase(*it);
   762         }
   763         for(std::list<Node>::iterator it = added_nodes.begin();
   764             it != added_nodes.end(); ++it) {
   765           digraph->erase(*it);
   766         }
   767         clear();
   768       }
   769 
   770       /// \brief Returns \c true if the snapshot is valid.
   771       ///
   772       /// This function returns \c true if the snapshot is valid.
   773       bool valid() const {
   774         return attached();
   775       }
   776     };
   777 
   778   };
   779 
   780   ///@}
   781 
   782   class ListGraphBase {
   783 
   784   protected:
   785 
   786     struct NodeT {
   787       int first_out;
   788       int prev, next;
   789     };
   790 
   791     struct ArcT {
   792       int target;
   793       int prev_out, next_out;
   794     };
   795 
   796     std::vector<NodeT> nodes;
   797 
   798     int first_node;
   799 
   800     int first_free_node;
   801 
   802     std::vector<ArcT> arcs;
   803 
   804     int first_free_arc;
   805 
   806   public:
   807 
   808     typedef ListGraphBase Graph;
   809 
   810     class Node {
   811       friend class ListGraphBase;
   812     protected:
   813 
   814       int id;
   815       explicit Node(int pid) { id = pid;}
   816 
   817     public:
   818       Node() {}
   819       Node (Invalid) { id = -1; }
   820       bool operator==(const Node& node) const {return id == node.id;}
   821       bool operator!=(const Node& node) const {return id != node.id;}
   822       bool operator<(const Node& node) const {return id < node.id;}
   823     };
   824 
   825     class Edge {
   826       friend class ListGraphBase;
   827     protected:
   828 
   829       int id;
   830       explicit Edge(int pid) { id = pid;}
   831 
   832     public:
   833       Edge() {}
   834       Edge (Invalid) { id = -1; }
   835       bool operator==(const Edge& edge) const {return id == edge.id;}
   836       bool operator!=(const Edge& edge) const {return id != edge.id;}
   837       bool operator<(const Edge& edge) const {return id < edge.id;}
   838     };
   839 
   840     class Arc {
   841       friend class ListGraphBase;
   842     protected:
   843 
   844       int id;
   845       explicit Arc(int pid) { id = pid;}
   846 
   847     public:
   848       operator Edge() const {
   849         return id != -1 ? edgeFromId(id / 2) : INVALID;
   850       }
   851 
   852       Arc() {}
   853       Arc (Invalid) { id = -1; }
   854       bool operator==(const Arc& arc) const {return id == arc.id;}
   855       bool operator!=(const Arc& arc) const {return id != arc.id;}
   856       bool operator<(const Arc& arc) const {return id < arc.id;}
   857     };
   858 
   859     ListGraphBase()
   860       : nodes(), first_node(-1),
   861         first_free_node(-1), arcs(), first_free_arc(-1) {}
   862 
   863 
   864     int maxNodeId() const { return nodes.size()-1; }
   865     int maxEdgeId() const { return arcs.size() / 2 - 1; }
   866     int maxArcId() const { return arcs.size()-1; }
   867 
   868     Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); }
   869     Node target(Arc e) const { return Node(arcs[e.id].target); }
   870 
   871     Node u(Edge e) const { return Node(arcs[2 * e.id].target); }
   872     Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); }
   873 
   874     static bool direction(Arc e) {
   875       return (e.id & 1) == 1;
   876     }
   877 
   878     static Arc direct(Edge e, bool d) {
   879       return Arc(e.id * 2 + (d ? 1 : 0));
   880     }
   881 
   882     void first(Node& node) const {
   883       node.id = first_node;
   884     }
   885 
   886     void next(Node& node) const {
   887       node.id = nodes[node.id].next;
   888     }
   889 
   890     void first(Arc& e) const {
   891       int n = first_node;
   892       while (n != -1 && nodes[n].first_out == -1) {
   893         n = nodes[n].next;
   894       }
   895       e.id = (n == -1) ? -1 : nodes[n].first_out;
   896     }
   897 
   898     void next(Arc& e) const {
   899       if (arcs[e.id].next_out != -1) {
   900         e.id = arcs[e.id].next_out;
   901       } else {
   902         int n = nodes[arcs[e.id ^ 1].target].next;
   903         while(n != -1 && nodes[n].first_out == -1) {
   904           n = nodes[n].next;
   905         }
   906         e.id = (n == -1) ? -1 : nodes[n].first_out;
   907       }
   908     }
   909 
   910     void first(Edge& e) const {
   911       int n = first_node;
   912       while (n != -1) {
   913         e.id = nodes[n].first_out;
   914         while ((e.id & 1) != 1) {
   915           e.id = arcs[e.id].next_out;
   916         }
   917         if (e.id != -1) {
   918           e.id /= 2;
   919           return;
   920         }
   921         n = nodes[n].next;
   922       }
   923       e.id = -1;
   924     }
   925 
   926     void next(Edge& e) const {
   927       int n = arcs[e.id * 2].target;
   928       e.id = arcs[(e.id * 2) | 1].next_out;
   929       while ((e.id & 1) != 1) {
   930         e.id = arcs[e.id].next_out;
   931       }
   932       if (e.id != -1) {
   933         e.id /= 2;
   934         return;
   935       }
   936       n = nodes[n].next;
   937       while (n != -1) {
   938         e.id = nodes[n].first_out;
   939         while ((e.id & 1) != 1) {
   940           e.id = arcs[e.id].next_out;
   941         }
   942         if (e.id != -1) {
   943           e.id /= 2;
   944           return;
   945         }
   946         n = nodes[n].next;
   947       }
   948       e.id = -1;
   949     }
   950 
   951     void firstOut(Arc &e, const Node& v) const {
   952       e.id = nodes[v.id].first_out;
   953     }
   954     void nextOut(Arc &e) const {
   955       e.id = arcs[e.id].next_out;
   956     }
   957 
   958     void firstIn(Arc &e, const Node& v) const {
   959       e.id = ((nodes[v.id].first_out) ^ 1);
   960       if (e.id == -2) e.id = -1;
   961     }
   962     void nextIn(Arc &e) const {
   963       e.id = ((arcs[e.id ^ 1].next_out) ^ 1);
   964       if (e.id == -2) e.id = -1;
   965     }
   966 
   967     void firstInc(Edge &e, bool& d, const Node& v) const {
   968       int a = nodes[v.id].first_out;
   969       if (a != -1 ) {
   970         e.id = a / 2;
   971         d = ((a & 1) == 1);
   972       } else {
   973         e.id = -1;
   974         d = true;
   975       }
   976     }
   977     void nextInc(Edge &e, bool& d) const {
   978       int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out);
   979       if (a != -1 ) {
   980         e.id = a / 2;
   981         d = ((a & 1) == 1);
   982       } else {
   983         e.id = -1;
   984         d = true;
   985       }
   986     }
   987 
   988     static int id(Node v) { return v.id; }
   989     static int id(Arc e) { return e.id; }
   990     static int id(Edge e) { return e.id; }
   991 
   992     static Node nodeFromId(int id) { return Node(id);}
   993     static Arc arcFromId(int id) { return Arc(id);}
   994     static Edge edgeFromId(int id) { return Edge(id);}
   995 
   996     bool valid(Node n) const {
   997       return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
   998         nodes[n.id].prev != -2;
   999     }
  1000 
  1001     bool valid(Arc a) const {
  1002       return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
  1003         arcs[a.id].prev_out != -2;
  1004     }
  1005 
  1006     bool valid(Edge e) const {
  1007       return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) &&
  1008         arcs[2 * e.id].prev_out != -2;
  1009     }
  1010 
  1011     Node addNode() {
  1012       int n;
  1013 
  1014       if(first_free_node==-1) {
  1015         n = nodes.size();
  1016         nodes.push_back(NodeT());
  1017       } else {
  1018         n = first_free_node;
  1019         first_free_node = nodes[n].next;
  1020       }
  1021 
  1022       nodes[n].next = first_node;
  1023       if (first_node != -1) nodes[first_node].prev = n;
  1024       first_node = n;
  1025       nodes[n].prev = -1;
  1026 
  1027       nodes[n].first_out = -1;
  1028 
  1029       return Node(n);
  1030     }
  1031 
  1032     Edge addEdge(Node u, Node v) {
  1033       int n;
  1034 
  1035       if (first_free_arc == -1) {
  1036         n = arcs.size();
  1037         arcs.push_back(ArcT());
  1038         arcs.push_back(ArcT());
  1039       } else {
  1040         n = first_free_arc;
  1041         first_free_arc = arcs[n].next_out;
  1042       }
  1043 
  1044       arcs[n].target = u.id;
  1045       arcs[n | 1].target = v.id;
  1046 
  1047       arcs[n].next_out = nodes[v.id].first_out;
  1048       if (nodes[v.id].first_out != -1) {
  1049         arcs[nodes[v.id].first_out].prev_out = n;
  1050       }
  1051       arcs[n].prev_out = -1;
  1052       nodes[v.id].first_out = n;
  1053 
  1054       arcs[n | 1].next_out = nodes[u.id].first_out;
  1055       if (nodes[u.id].first_out != -1) {
  1056         arcs[nodes[u.id].first_out].prev_out = (n | 1);
  1057       }
  1058       arcs[n | 1].prev_out = -1;
  1059       nodes[u.id].first_out = (n | 1);
  1060 
  1061       return Edge(n / 2);
  1062     }
  1063 
  1064     void erase(const Node& node) {
  1065       int n = node.id;
  1066 
  1067       if(nodes[n].next != -1) {
  1068         nodes[nodes[n].next].prev = nodes[n].prev;
  1069       }
  1070 
  1071       if(nodes[n].prev != -1) {
  1072         nodes[nodes[n].prev].next = nodes[n].next;
  1073       } else {
  1074         first_node = nodes[n].next;
  1075       }
  1076 
  1077       nodes[n].next = first_free_node;
  1078       first_free_node = n;
  1079       nodes[n].prev = -2;
  1080     }
  1081 
  1082     void erase(const Edge& edge) {
  1083       int n = edge.id * 2;
  1084 
  1085       if (arcs[n].next_out != -1) {
  1086         arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
  1087       }
  1088 
  1089       if (arcs[n].prev_out != -1) {
  1090         arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
  1091       } else {
  1092         nodes[arcs[n | 1].target].first_out = arcs[n].next_out;
  1093       }
  1094 
  1095       if (arcs[n | 1].next_out != -1) {
  1096         arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out;
  1097       }
  1098 
  1099       if (arcs[n | 1].prev_out != -1) {
  1100         arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out;
  1101       } else {
  1102         nodes[arcs[n].target].first_out = arcs[n | 1].next_out;
  1103       }
  1104 
  1105       arcs[n].next_out = first_free_arc;
  1106       first_free_arc = n;
  1107       arcs[n].prev_out = -2;
  1108       arcs[n | 1].prev_out = -2;
  1109 
  1110     }
  1111 
  1112     void clear() {
  1113       arcs.clear();
  1114       nodes.clear();
  1115       first_node = first_free_node = first_free_arc = -1;
  1116     }
  1117 
  1118   protected:
  1119 
  1120     void changeV(Edge e, Node n) {
  1121       if(arcs[2 * e.id].next_out != -1) {
  1122         arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out;
  1123       }
  1124       if(arcs[2 * e.id].prev_out != -1) {
  1125         arcs[arcs[2 * e.id].prev_out].next_out =
  1126           arcs[2 * e.id].next_out;
  1127       } else {
  1128         nodes[arcs[(2 * e.id) | 1].target].first_out =
  1129           arcs[2 * e.id].next_out;
  1130       }
  1131 
  1132       if (nodes[n.id].first_out != -1) {
  1133         arcs[nodes[n.id].first_out].prev_out = 2 * e.id;
  1134       }
  1135       arcs[(2 * e.id) | 1].target = n.id;
  1136       arcs[2 * e.id].prev_out = -1;
  1137       arcs[2 * e.id].next_out = nodes[n.id].first_out;
  1138       nodes[n.id].first_out = 2 * e.id;
  1139     }
  1140 
  1141     void changeU(Edge e, Node n) {
  1142       if(arcs[(2 * e.id) | 1].next_out != -1) {
  1143         arcs[arcs[(2 * e.id) | 1].next_out].prev_out =
  1144           arcs[(2 * e.id) | 1].prev_out;
  1145       }
  1146       if(arcs[(2 * e.id) | 1].prev_out != -1) {
  1147         arcs[arcs[(2 * e.id) | 1].prev_out].next_out =
  1148           arcs[(2 * e.id) | 1].next_out;
  1149       } else {
  1150         nodes[arcs[2 * e.id].target].first_out =
  1151           arcs[(2 * e.id) | 1].next_out;
  1152       }
  1153 
  1154       if (nodes[n.id].first_out != -1) {
  1155         arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1);
  1156       }
  1157       arcs[2 * e.id].target = n.id;
  1158       arcs[(2 * e.id) | 1].prev_out = -1;
  1159       arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out;
  1160       nodes[n.id].first_out = ((2 * e.id) | 1);
  1161     }
  1162 
  1163   };
  1164 
  1165   typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
  1166 
  1167 
  1168   /// \addtogroup graphs
  1169   /// @{
  1170 
  1171   ///A general undirected graph structure.
  1172 
  1173   ///\ref ListGraph is a versatile and fast undirected graph
  1174   ///implementation based on linked lists that are stored in
  1175   ///\c std::vector structures.
  1176   ///
  1177   ///This type fully conforms to the \ref concepts::Graph "Graph concept"
  1178   ///and it also provides several useful additional functionalities.
  1179   ///Most of its member functions and nested classes are documented
  1180   ///only in the concept class.
  1181   ///
  1182   ///\sa concepts::Graph
  1183   ///\sa ListDigraph
  1184   class ListGraph : public ExtendedListGraphBase {
  1185     typedef ExtendedListGraphBase Parent;
  1186 
  1187   private:
  1188     /// Graphs are \e not copy constructible. Use GraphCopy instead.
  1189     ListGraph(const ListGraph &) :ExtendedListGraphBase()  {};
  1190     /// \brief Assignment of a graph to another one is \e not allowed.
  1191     /// Use GraphCopy instead.
  1192     void operator=(const ListGraph &) {}
  1193   public:
  1194     /// Constructor
  1195 
  1196     /// Constructor.
  1197     ///
  1198     ListGraph() {}
  1199 
  1200     typedef Parent::OutArcIt IncEdgeIt;
  1201 
  1202     /// \brief Add a new node to the graph.
  1203     ///
  1204     /// This function adds a new node to the graph.
  1205     /// \return The new node.
  1206     Node addNode() { return Parent::addNode(); }
  1207 
  1208     /// \brief Add a new edge to the graph.
  1209     ///
  1210     /// This function adds a new edge to the graph between nodes
  1211     /// \c u and \c v with inherent orientation from node \c u to
  1212     /// node \c v.
  1213     /// \return The new edge.
  1214     Edge addEdge(Node u, Node v) {
  1215       return Parent::addEdge(u, v);
  1216     }
  1217 
  1218     ///\brief Erase a node from the graph.
  1219     ///
  1220     /// This function erases the given node from the graph.
  1221     void erase(Node n) { Parent::erase(n); }
  1222 
  1223     ///\brief Erase an edge from the graph.
  1224     ///
  1225     /// This function erases the given edge from the graph.
  1226     void erase(Edge e) { Parent::erase(e); }
  1227     /// Node validity check
  1228 
  1229     /// This function gives back \c true if the given node is valid,
  1230     /// i.e. it is a real node of the graph.
  1231     ///
  1232     /// \warning A removed node could become valid again if new nodes are
  1233     /// added to the graph.
  1234     bool valid(Node n) const { return Parent::valid(n); }
  1235     /// Edge validity check
  1236 
  1237     /// This function gives back \c true if the given edge is valid,
  1238     /// i.e. it is a real edge of the graph.
  1239     ///
  1240     /// \warning A removed edge could become valid again if new edges are
  1241     /// added to the graph.
  1242     bool valid(Edge e) const { return Parent::valid(e); }
  1243     /// Arc validity check
  1244 
  1245     /// This function gives back \c true if the given arc is valid,
  1246     /// i.e. it is a real arc of the graph.
  1247     ///
  1248     /// \warning A removed arc could become valid again if new edges are
  1249     /// added to the graph.
  1250     bool valid(Arc a) const { return Parent::valid(a); }
  1251 
  1252     /// \brief Change the first node of an edge.
  1253     ///
  1254     /// This function changes the first node of the given edge \c e to \c n.
  1255     ///
  1256     ///\note \c EdgeIt and \c ArcIt iterators referencing the
  1257     ///changed edge are invalidated and all other iterators whose
  1258     ///base node is the changed node are also invalidated.
  1259     ///
  1260     ///\warning This functionality cannot be used together with the
  1261     ///Snapshot feature.
  1262     void changeU(Edge e, Node n) {
  1263       Parent::changeU(e,n);
  1264     }
  1265     /// \brief Change the second node of an edge.
  1266     ///
  1267     /// This function changes the second node of the given edge \c e to \c n.
  1268     ///
  1269     ///\note \c EdgeIt iterators referencing the changed edge remain
  1270     ///valid, however \c ArcIt iterators referencing the changed edge and
  1271     ///all other iterators whose base node is the changed node are also
  1272     ///invalidated.
  1273     ///
  1274     ///\warning This functionality cannot be used together with the
  1275     ///Snapshot feature.
  1276     void changeV(Edge e, Node n) {
  1277       Parent::changeV(e,n);
  1278     }
  1279 
  1280     /// \brief Contract two nodes.
  1281     ///
  1282     /// This function contracts the given two nodes.
  1283     /// Node \c b is removed, but instead of deleting
  1284     /// its incident edges, they are joined to node \c a.
  1285     /// If the last parameter \c r is \c true (this is the default value),
  1286     /// then the newly created loops are removed.
  1287     ///
  1288     /// \note The moved edges are joined to node \c a using changeU()
  1289     /// or changeV(), thus all edge and arc iterators whose base node is
  1290     /// \c b are invalidated.
  1291     /// Moreover all iterators referencing node \c b or the removed 
  1292     /// loops are also invalidated. Other iterators remain valid.
  1293     ///
  1294     ///\warning This functionality cannot be used together with the
  1295     ///Snapshot feature.
  1296     void contract(Node a, Node b, bool r = true) {
  1297       for(IncEdgeIt e(*this, b); e!=INVALID;) {
  1298         IncEdgeIt f = e; ++f;
  1299         if (r && runningNode(e) == a) {
  1300           erase(e);
  1301         } else if (u(e) == b) {
  1302           changeU(e, a);
  1303         } else {
  1304           changeV(e, a);
  1305         }
  1306         e = f;
  1307       }
  1308       erase(b);
  1309     }
  1310 
  1311     ///Clear the graph.
  1312 
  1313     ///This function erases all nodes and arcs from the graph.
  1314     ///
  1315     void clear() {
  1316       Parent::clear();
  1317     }
  1318 
  1319     /// Reserve memory for nodes.
  1320 
  1321     /// Using this function, it is possible to avoid superfluous memory
  1322     /// allocation: if you know that the graph you want to build will
  1323     /// be large (e.g. it will contain millions of nodes and/or edges),
  1324     /// then it is worth reserving space for this amount before starting
  1325     /// to build the graph.
  1326     /// \sa reserveEdge()
  1327     void reserveNode(int n) { nodes.reserve(n); };
  1328 
  1329     /// Reserve memory for edges.
  1330 
  1331     /// Using this function, it is possible to avoid superfluous memory
  1332     /// allocation: if you know that the graph you want to build will
  1333     /// be large (e.g. it will contain millions of nodes and/or edges),
  1334     /// then it is worth reserving space for this amount before starting
  1335     /// to build the graph.
  1336     /// \sa reserveNode()
  1337     void reserveEdge(int m) { arcs.reserve(2 * m); };
  1338 
  1339     /// \brief Class to make a snapshot of the graph and restore
  1340     /// it later.
  1341     ///
  1342     /// Class to make a snapshot of the graph and restore it later.
  1343     ///
  1344     /// The newly added nodes and edges can be removed
  1345     /// using the restore() function.
  1346     ///
  1347     /// \note After a state is restored, you cannot restore a later state, 
  1348     /// i.e. you cannot add the removed nodes and edges again using
  1349     /// another Snapshot instance.
  1350     ///
  1351     /// \warning Node and edge deletions and other modifications
  1352     /// (e.g. changing the end-nodes of edges or contracting nodes)
  1353     /// cannot be restored. These events invalidate the snapshot.
  1354     /// However the edges and nodes that were added to the graph after
  1355     /// making the current snapshot can be removed without invalidating it.
  1356     class Snapshot {
  1357     protected:
  1358 
  1359       typedef Parent::NodeNotifier NodeNotifier;
  1360 
  1361       class NodeObserverProxy : public NodeNotifier::ObserverBase {
  1362       public:
  1363 
  1364         NodeObserverProxy(Snapshot& _snapshot)
  1365           : snapshot(_snapshot) {}
  1366 
  1367         using NodeNotifier::ObserverBase::attach;
  1368         using NodeNotifier::ObserverBase::detach;
  1369         using NodeNotifier::ObserverBase::attached;
  1370 
  1371       protected:
  1372 
  1373         virtual void add(const Node& node) {
  1374           snapshot.addNode(node);
  1375         }
  1376         virtual void add(const std::vector<Node>& nodes) {
  1377           for (int i = nodes.size() - 1; i >= 0; ++i) {
  1378             snapshot.addNode(nodes[i]);
  1379           }
  1380         }
  1381         virtual void erase(const Node& node) {
  1382           snapshot.eraseNode(node);
  1383         }
  1384         virtual void erase(const std::vector<Node>& nodes) {
  1385           for (int i = 0; i < int(nodes.size()); ++i) {
  1386             snapshot.eraseNode(nodes[i]);
  1387           }
  1388         }
  1389         virtual void build() {
  1390           Node node;
  1391           std::vector<Node> nodes;
  1392           for (notifier()->first(node); node != INVALID;
  1393                notifier()->next(node)) {
  1394             nodes.push_back(node);
  1395           }
  1396           for (int i = nodes.size() - 1; i >= 0; --i) {
  1397             snapshot.addNode(nodes[i]);
  1398           }
  1399         }
  1400         virtual void clear() {
  1401           Node node;
  1402           for (notifier()->first(node); node != INVALID;
  1403                notifier()->next(node)) {
  1404             snapshot.eraseNode(node);
  1405           }
  1406         }
  1407 
  1408         Snapshot& snapshot;
  1409       };
  1410 
  1411       class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
  1412       public:
  1413 
  1414         EdgeObserverProxy(Snapshot& _snapshot)
  1415           : snapshot(_snapshot) {}
  1416 
  1417         using EdgeNotifier::ObserverBase::attach;
  1418         using EdgeNotifier::ObserverBase::detach;
  1419         using EdgeNotifier::ObserverBase::attached;
  1420 
  1421       protected:
  1422 
  1423         virtual void add(const Edge& edge) {
  1424           snapshot.addEdge(edge);
  1425         }
  1426         virtual void add(const std::vector<Edge>& edges) {
  1427           for (int i = edges.size() - 1; i >= 0; ++i) {
  1428             snapshot.addEdge(edges[i]);
  1429           }
  1430         }
  1431         virtual void erase(const Edge& edge) {
  1432           snapshot.eraseEdge(edge);
  1433         }
  1434         virtual void erase(const std::vector<Edge>& edges) {
  1435           for (int i = 0; i < int(edges.size()); ++i) {
  1436             snapshot.eraseEdge(edges[i]);
  1437           }
  1438         }
  1439         virtual void build() {
  1440           Edge edge;
  1441           std::vector<Edge> edges;
  1442           for (notifier()->first(edge); edge != INVALID;
  1443                notifier()->next(edge)) {
  1444             edges.push_back(edge);
  1445           }
  1446           for (int i = edges.size() - 1; i >= 0; --i) {
  1447             snapshot.addEdge(edges[i]);
  1448           }
  1449         }
  1450         virtual void clear() {
  1451           Edge edge;
  1452           for (notifier()->first(edge); edge != INVALID;
  1453                notifier()->next(edge)) {
  1454             snapshot.eraseEdge(edge);
  1455           }
  1456         }
  1457 
  1458         Snapshot& snapshot;
  1459       };
  1460 
  1461       ListGraph *graph;
  1462 
  1463       NodeObserverProxy node_observer_proxy;
  1464       EdgeObserverProxy edge_observer_proxy;
  1465 
  1466       std::list<Node> added_nodes;
  1467       std::list<Edge> added_edges;
  1468 
  1469 
  1470       void addNode(const Node& node) {
  1471         added_nodes.push_front(node);
  1472       }
  1473       void eraseNode(const Node& node) {
  1474         std::list<Node>::iterator it =
  1475           std::find(added_nodes.begin(), added_nodes.end(), node);
  1476         if (it == added_nodes.end()) {
  1477           clear();
  1478           edge_observer_proxy.detach();
  1479           throw NodeNotifier::ImmediateDetach();
  1480         } else {
  1481           added_nodes.erase(it);
  1482         }
  1483       }
  1484 
  1485       void addEdge(const Edge& edge) {
  1486         added_edges.push_front(edge);
  1487       }
  1488       void eraseEdge(const Edge& edge) {
  1489         std::list<Edge>::iterator it =
  1490           std::find(added_edges.begin(), added_edges.end(), edge);
  1491         if (it == added_edges.end()) {
  1492           clear();
  1493           node_observer_proxy.detach();
  1494           throw EdgeNotifier::ImmediateDetach();
  1495         } else {
  1496           added_edges.erase(it);
  1497         }
  1498       }
  1499 
  1500       void attach(ListGraph &_graph) {
  1501         graph = &_graph;
  1502         node_observer_proxy.attach(graph->notifier(Node()));
  1503         edge_observer_proxy.attach(graph->notifier(Edge()));
  1504       }
  1505 
  1506       void detach() {
  1507         node_observer_proxy.detach();
  1508         edge_observer_proxy.detach();
  1509       }
  1510 
  1511       bool attached() const {
  1512         return node_observer_proxy.attached();
  1513       }
  1514 
  1515       void clear() {
  1516         added_nodes.clear();
  1517         added_edges.clear();
  1518       }
  1519 
  1520     public:
  1521 
  1522       /// \brief Default constructor.
  1523       ///
  1524       /// Default constructor.
  1525       /// You have to call save() to actually make a snapshot.
  1526       Snapshot()
  1527         : graph(0), node_observer_proxy(*this),
  1528           edge_observer_proxy(*this) {}
  1529 
  1530       /// \brief Constructor that immediately makes a snapshot.
  1531       ///
  1532       /// This constructor immediately makes a snapshot of the given graph.
  1533       Snapshot(ListGraph &gr)
  1534         : node_observer_proxy(*this),
  1535           edge_observer_proxy(*this) {
  1536         attach(gr);
  1537       }
  1538 
  1539       /// \brief Make a snapshot.
  1540       ///
  1541       /// This function makes a snapshot of the given graph.
  1542       /// It can be called more than once. In case of a repeated
  1543       /// call, the previous snapshot gets lost.
  1544       void save(ListGraph &gr) {
  1545         if (attached()) {
  1546           detach();
  1547           clear();
  1548         }
  1549         attach(gr);
  1550       }
  1551 
  1552       /// \brief Undo the changes until the last snapshot.
  1553       ///
  1554       /// This function undos the changes until the last snapshot
  1555       /// created by save() or Snapshot(ListGraph&).
  1556       ///
  1557       /// \warning This method invalidates the snapshot, i.e. repeated
  1558       /// restoring is not supported unless you call save() again.
  1559       void restore() {
  1560         detach();
  1561         for(std::list<Edge>::iterator it = added_edges.begin();
  1562             it != added_edges.end(); ++it) {
  1563           graph->erase(*it);
  1564         }
  1565         for(std::list<Node>::iterator it = added_nodes.begin();
  1566             it != added_nodes.end(); ++it) {
  1567           graph->erase(*it);
  1568         }
  1569         clear();
  1570       }
  1571 
  1572       /// \brief Returns \c true if the snapshot is valid.
  1573       ///
  1574       /// This function returns \c true if the snapshot is valid.
  1575       bool valid() const {
  1576         return attached();
  1577       }
  1578     };
  1579   };
  1580 
  1581   /// @}
  1582 } //namespace lemon
  1583 
  1584 
  1585 #endif