lemon/connectivity.h
author Alpar Juttner <alpar@cs.elte.hu>
Wed, 17 Oct 2018 18:56:32 +0200
changeset 1169 2e0c2c25d63e
parent 1091 9eac00ea588f
permissions -rw-r--r--
Merge #1.3 related bugfix heads
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2013
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CONNECTIVITY_H
    20 #define LEMON_CONNECTIVITY_H
    21 
    22 #include <lemon/dfs.h>
    23 #include <lemon/bfs.h>
    24 #include <lemon/core.h>
    25 #include <lemon/maps.h>
    26 #include <lemon/adaptors.h>
    27 
    28 #include <lemon/concepts/digraph.h>
    29 #include <lemon/concepts/graph.h>
    30 #include <lemon/concept_check.h>
    31 
    32 #include <stack>
    33 #include <functional>
    34 
    35 /// \ingroup graph_properties
    36 /// \file
    37 /// \brief Connectivity algorithms
    38 ///
    39 /// Connectivity algorithms
    40 
    41 namespace lemon {
    42 
    43   /// \ingroup graph_properties
    44   ///
    45   /// \brief Check whether an undirected graph is connected.
    46   ///
    47   /// This function checks whether the given undirected graph is connected,
    48   /// i.e. there is a path between any two nodes in the graph.
    49   ///
    50   /// \return \c true if the graph is connected.
    51   /// \note By definition, the empty graph is connected.
    52   ///
    53   /// \see countConnectedComponents(), connectedComponents()
    54   /// \see stronglyConnected()
    55   template <typename Graph>
    56   bool connected(const Graph& graph) {
    57     checkConcept<concepts::Graph, Graph>();
    58     typedef typename Graph::NodeIt NodeIt;
    59     if (NodeIt(graph) == INVALID) return true;
    60     Dfs<Graph> dfs(graph);
    61     dfs.run(NodeIt(graph));
    62     for (NodeIt it(graph); it != INVALID; ++it) {
    63       if (!dfs.reached(it)) {
    64         return false;
    65       }
    66     }
    67     return true;
    68   }
    69 
    70   /// \ingroup graph_properties
    71   ///
    72   /// \brief Count the number of connected components of an undirected graph
    73   ///
    74   /// This function counts the number of connected components of the given
    75   /// undirected graph.
    76   ///
    77   /// The connected components are the classes of an equivalence relation
    78   /// on the nodes of an undirected graph. Two nodes are in the same class
    79   /// if they are connected with a path.
    80   ///
    81   /// \return The number of connected components.
    82   /// \note By definition, the empty graph consists
    83   /// of zero connected components.
    84   ///
    85   /// \see connected(), connectedComponents()
    86   template <typename Graph>
    87   int countConnectedComponents(const Graph &graph) {
    88     checkConcept<concepts::Graph, Graph>();
    89     typedef typename Graph::Node Node;
    90     typedef typename Graph::Arc Arc;
    91 
    92     typedef NullMap<Node, Arc> PredMap;
    93     typedef NullMap<Node, int> DistMap;
    94 
    95     int compNum = 0;
    96     typename Bfs<Graph>::
    97       template SetPredMap<PredMap>::
    98       template SetDistMap<DistMap>::
    99       Create bfs(graph);
   100 
   101     PredMap predMap;
   102     bfs.predMap(predMap);
   103 
   104     DistMap distMap;
   105     bfs.distMap(distMap);
   106 
   107     bfs.init();
   108     for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
   109       if (!bfs.reached(n)) {
   110         bfs.addSource(n);
   111         bfs.start();
   112         ++compNum;
   113       }
   114     }
   115     return compNum;
   116   }
   117 
   118   /// \ingroup graph_properties
   119   ///
   120   /// \brief Find the connected components of an undirected graph
   121   ///
   122   /// This function finds the connected components of the given undirected
   123   /// graph.
   124   ///
   125   /// The connected components are the classes of an equivalence relation
   126   /// on the nodes of an undirected graph. Two nodes are in the same class
   127   /// if they are connected with a path.
   128   ///
   129   /// \image html connected_components.png
   130   /// \image latex connected_components.eps "Connected components" width=\textwidth
   131   ///
   132   /// \param graph The undirected graph.
   133   /// \retval compMap A writable node map. The values will be set from 0 to
   134   /// the number of the connected components minus one. Each value of the map
   135   /// will be set exactly once, and the values of a certain component will be
   136   /// set continuously.
   137   /// \return The number of connected components.
   138   /// \note By definition, the empty graph consists
   139   /// of zero connected components.
   140   ///
   141   /// \see connected(), countConnectedComponents()
   142   template <class Graph, class NodeMap>
   143   int connectedComponents(const Graph &graph, NodeMap &compMap) {
   144     checkConcept<concepts::Graph, Graph>();
   145     typedef typename Graph::Node Node;
   146     typedef typename Graph::Arc Arc;
   147     checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
   148 
   149     typedef NullMap<Node, Arc> PredMap;
   150     typedef NullMap<Node, int> DistMap;
   151 
   152     int compNum = 0;
   153     typename Bfs<Graph>::
   154       template SetPredMap<PredMap>::
   155       template SetDistMap<DistMap>::
   156       Create bfs(graph);
   157 
   158     PredMap predMap;
   159     bfs.predMap(predMap);
   160 
   161     DistMap distMap;
   162     bfs.distMap(distMap);
   163 
   164     bfs.init();
   165     for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
   166       if(!bfs.reached(n)) {
   167         bfs.addSource(n);
   168         while (!bfs.emptyQueue()) {
   169           compMap.set(bfs.nextNode(), compNum);
   170           bfs.processNextNode();
   171         }
   172         ++compNum;
   173       }
   174     }
   175     return compNum;
   176   }
   177 
   178   namespace _connectivity_bits {
   179 
   180     template <typename Digraph, typename Iterator >
   181     struct LeaveOrderVisitor : public DfsVisitor<Digraph> {
   182     public:
   183       typedef typename Digraph::Node Node;
   184       LeaveOrderVisitor(Iterator it) : _it(it) {}
   185 
   186       void leave(const Node& node) {
   187         *(_it++) = node;
   188       }
   189 
   190     private:
   191       Iterator _it;
   192     };
   193 
   194     template <typename Digraph, typename Map>
   195     struct FillMapVisitor : public DfsVisitor<Digraph> {
   196     public:
   197       typedef typename Digraph::Node Node;
   198       typedef typename Map::Value Value;
   199 
   200       FillMapVisitor(Map& map, Value& value)
   201         : _map(map), _value(value) {}
   202 
   203       void reach(const Node& node) {
   204         _map.set(node, _value);
   205       }
   206     private:
   207       Map& _map;
   208       Value& _value;
   209     };
   210 
   211     template <typename Digraph, typename ArcMap>
   212     struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> {
   213     public:
   214       typedef typename Digraph::Node Node;
   215       typedef typename Digraph::Arc Arc;
   216 
   217       StronglyConnectedCutArcsVisitor(const Digraph& digraph,
   218                                       ArcMap& cutMap,
   219                                       int& cutNum)
   220         : _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum),
   221           _compMap(digraph, -1), _num(-1) {
   222       }
   223 
   224       void start(const Node&) {
   225         ++_num;
   226       }
   227 
   228       void reach(const Node& node) {
   229         _compMap.set(node, _num);
   230       }
   231 
   232       void examine(const Arc& arc) {
   233          if (_compMap[_digraph.source(arc)] !=
   234              _compMap[_digraph.target(arc)]) {
   235            _cutMap.set(arc, true);
   236            ++_cutNum;
   237          }
   238       }
   239     private:
   240       const Digraph& _digraph;
   241       ArcMap& _cutMap;
   242       int& _cutNum;
   243 
   244       typename Digraph::template NodeMap<int> _compMap;
   245       int _num;
   246     };
   247 
   248   }
   249 
   250 
   251   /// \ingroup graph_properties
   252   ///
   253   /// \brief Check whether a directed graph is strongly connected.
   254   ///
   255   /// This function checks whether the given directed graph is strongly
   256   /// connected, i.e. any two nodes of the digraph are
   257   /// connected with directed paths in both direction.
   258   ///
   259   /// \return \c true if the digraph is strongly connected.
   260   /// \note By definition, the empty digraph is strongly connected.
   261   ///
   262   /// \see countStronglyConnectedComponents(), stronglyConnectedComponents()
   263   /// \see connected()
   264   template <typename Digraph>
   265   bool stronglyConnected(const Digraph& digraph) {
   266     checkConcept<concepts::Digraph, Digraph>();
   267 
   268     typedef typename Digraph::Node Node;
   269     typedef typename Digraph::NodeIt NodeIt;
   270 
   271     typename Digraph::Node source = NodeIt(digraph);
   272     if (source == INVALID) return true;
   273 
   274     using namespace _connectivity_bits;
   275 
   276     typedef DfsVisitor<Digraph> Visitor;
   277     Visitor visitor;
   278 
   279     DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
   280     dfs.init();
   281     dfs.addSource(source);
   282     dfs.start();
   283 
   284     for (NodeIt it(digraph); it != INVALID; ++it) {
   285       if (!dfs.reached(it)) {
   286         return false;
   287       }
   288     }
   289 
   290     typedef ReverseDigraph<const Digraph> RDigraph;
   291     typedef typename RDigraph::NodeIt RNodeIt;
   292     RDigraph rdigraph(digraph);
   293 
   294     typedef DfsVisitor<RDigraph> RVisitor;
   295     RVisitor rvisitor;
   296 
   297     DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
   298     rdfs.init();
   299     rdfs.addSource(source);
   300     rdfs.start();
   301 
   302     for (RNodeIt it(rdigraph); it != INVALID; ++it) {
   303       if (!rdfs.reached(it)) {
   304         return false;
   305       }
   306     }
   307 
   308     return true;
   309   }
   310 
   311   /// \ingroup graph_properties
   312   ///
   313   /// \brief Count the number of strongly connected components of a
   314   /// directed graph
   315   ///
   316   /// This function counts the number of strongly connected components of
   317   /// the given directed graph.
   318   ///
   319   /// The strongly connected components are the classes of an
   320   /// equivalence relation on the nodes of a digraph. Two nodes are in
   321   /// the same class if they are connected with directed paths in both
   322   /// direction.
   323   ///
   324   /// \return The number of strongly connected components.
   325   /// \note By definition, the empty digraph has zero
   326   /// strongly connected components.
   327   ///
   328   /// \see stronglyConnected(), stronglyConnectedComponents()
   329   template <typename Digraph>
   330   int countStronglyConnectedComponents(const Digraph& digraph) {
   331     checkConcept<concepts::Digraph, Digraph>();
   332 
   333     using namespace _connectivity_bits;
   334 
   335     typedef typename Digraph::Node Node;
   336     typedef typename Digraph::Arc Arc;
   337     typedef typename Digraph::NodeIt NodeIt;
   338     typedef typename Digraph::ArcIt ArcIt;
   339 
   340     typedef std::vector<Node> Container;
   341     typedef typename Container::iterator Iterator;
   342 
   343     Container nodes(countNodes(digraph));
   344     typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
   345     Visitor visitor(nodes.begin());
   346 
   347     DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
   348     dfs.init();
   349     for (NodeIt it(digraph); it != INVALID; ++it) {
   350       if (!dfs.reached(it)) {
   351         dfs.addSource(it);
   352         dfs.start();
   353       }
   354     }
   355 
   356     typedef typename Container::reverse_iterator RIterator;
   357     typedef ReverseDigraph<const Digraph> RDigraph;
   358 
   359     RDigraph rdigraph(digraph);
   360 
   361     typedef DfsVisitor<Digraph> RVisitor;
   362     RVisitor rvisitor;
   363 
   364     DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
   365 
   366     int compNum = 0;
   367 
   368     rdfs.init();
   369     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   370       if (!rdfs.reached(*it)) {
   371         rdfs.addSource(*it);
   372         rdfs.start();
   373         ++compNum;
   374       }
   375     }
   376     return compNum;
   377   }
   378 
   379   /// \ingroup graph_properties
   380   ///
   381   /// \brief Find the strongly connected components of a directed graph
   382   ///
   383   /// This function finds the strongly connected components of the given
   384   /// directed graph. In addition, the numbering of the components will
   385   /// satisfy that there is no arc going from a higher numbered component
   386   /// to a lower one (i.e. it provides a topological order of the components).
   387   ///
   388   /// The strongly connected components are the classes of an
   389   /// equivalence relation on the nodes of a digraph. Two nodes are in
   390   /// the same class if they are connected with directed paths in both
   391   /// direction.
   392   ///
   393   /// \image html strongly_connected_components.png
   394   /// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth
   395   ///
   396   /// \param digraph The digraph.
   397   /// \retval compMap A writable node map. The values will be set from 0 to
   398   /// the number of the strongly connected components minus one. Each value
   399   /// of the map will be set exactly once, and the values of a certain
   400   /// component will be set continuously.
   401   /// \return The number of strongly connected components.
   402   /// \note By definition, the empty digraph has zero
   403   /// strongly connected components.
   404   ///
   405   /// \see stronglyConnected(), countStronglyConnectedComponents()
   406   template <typename Digraph, typename NodeMap>
   407   int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
   408     checkConcept<concepts::Digraph, Digraph>();
   409     typedef typename Digraph::Node Node;
   410     typedef typename Digraph::NodeIt NodeIt;
   411     checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
   412 
   413     using namespace _connectivity_bits;
   414 
   415     typedef std::vector<Node> Container;
   416     typedef typename Container::iterator Iterator;
   417 
   418     Container nodes(countNodes(digraph));
   419     typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
   420     Visitor visitor(nodes.begin());
   421 
   422     DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
   423     dfs.init();
   424     for (NodeIt it(digraph); it != INVALID; ++it) {
   425       if (!dfs.reached(it)) {
   426         dfs.addSource(it);
   427         dfs.start();
   428       }
   429     }
   430 
   431     typedef typename Container::reverse_iterator RIterator;
   432     typedef ReverseDigraph<const Digraph> RDigraph;
   433 
   434     RDigraph rdigraph(digraph);
   435 
   436     int compNum = 0;
   437 
   438     typedef FillMapVisitor<RDigraph, NodeMap> RVisitor;
   439     RVisitor rvisitor(compMap, compNum);
   440 
   441     DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
   442 
   443     rdfs.init();
   444     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   445       if (!rdfs.reached(*it)) {
   446         rdfs.addSource(*it);
   447         rdfs.start();
   448         ++compNum;
   449       }
   450     }
   451     return compNum;
   452   }
   453 
   454   /// \ingroup graph_properties
   455   ///
   456   /// \brief Find the cut arcs of the strongly connected components.
   457   ///
   458   /// This function finds the cut arcs of the strongly connected components
   459   /// of the given digraph.
   460   ///
   461   /// The strongly connected components are the classes of an
   462   /// equivalence relation on the nodes of a digraph. Two nodes are in
   463   /// the same class if they are connected with directed paths in both
   464   /// direction.
   465   /// The strongly connected components are separated by the cut arcs.
   466   ///
   467   /// \param digraph The digraph.
   468   /// \retval cutMap A writable arc map. The values will be set to \c true
   469   /// for the cut arcs (exactly once for each cut arc), and will not be
   470   /// changed for other arcs.
   471   /// \return The number of cut arcs.
   472   ///
   473   /// \see stronglyConnected(), stronglyConnectedComponents()
   474   template <typename Digraph, typename ArcMap>
   475   int stronglyConnectedCutArcs(const Digraph& digraph, ArcMap& cutMap) {
   476     checkConcept<concepts::Digraph, Digraph>();
   477     typedef typename Digraph::Node Node;
   478     typedef typename Digraph::Arc Arc;
   479     typedef typename Digraph::NodeIt NodeIt;
   480     checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>();
   481 
   482     using namespace _connectivity_bits;
   483 
   484     typedef std::vector<Node> Container;
   485     typedef typename Container::iterator Iterator;
   486 
   487     Container nodes(countNodes(digraph));
   488     typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
   489     Visitor visitor(nodes.begin());
   490 
   491     DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
   492     dfs.init();
   493     for (NodeIt it(digraph); it != INVALID; ++it) {
   494       if (!dfs.reached(it)) {
   495         dfs.addSource(it);
   496         dfs.start();
   497       }
   498     }
   499 
   500     typedef typename Container::reverse_iterator RIterator;
   501     typedef ReverseDigraph<const Digraph> RDigraph;
   502 
   503     RDigraph rdigraph(digraph);
   504 
   505     int cutNum = 0;
   506 
   507     typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor;
   508     RVisitor rvisitor(rdigraph, cutMap, cutNum);
   509 
   510     DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
   511 
   512     rdfs.init();
   513     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   514       if (!rdfs.reached(*it)) {
   515         rdfs.addSource(*it);
   516         rdfs.start();
   517       }
   518     }
   519     return cutNum;
   520   }
   521 
   522   namespace _connectivity_bits {
   523 
   524     template <typename Digraph>
   525     class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
   526     public:
   527       typedef typename Digraph::Node Node;
   528       typedef typename Digraph::Arc Arc;
   529       typedef typename Digraph::Edge Edge;
   530 
   531       CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
   532         : _graph(graph), _compNum(compNum),
   533           _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   534 
   535       void start(const Node& node) {
   536         _predMap.set(node, INVALID);
   537       }
   538 
   539       void reach(const Node& node) {
   540         _numMap.set(node, _num);
   541         _retMap.set(node, _num);
   542         ++_num;
   543       }
   544 
   545       void discover(const Arc& edge) {
   546         _predMap.set(_graph.target(edge), _graph.source(edge));
   547       }
   548 
   549       void examine(const Arc& edge) {
   550         if (_graph.source(edge) == _graph.target(edge) &&
   551             _graph.direction(edge)) {
   552           ++_compNum;
   553           return;
   554         }
   555         if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
   556           return;
   557         }
   558         if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   559           _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   560         }
   561       }
   562 
   563       void backtrack(const Arc& edge) {
   564         if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   565           _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   566         }
   567         if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   568           ++_compNum;
   569         }
   570       }
   571 
   572     private:
   573       const Digraph& _graph;
   574       int& _compNum;
   575 
   576       typename Digraph::template NodeMap<int> _numMap;
   577       typename Digraph::template NodeMap<int> _retMap;
   578       typename Digraph::template NodeMap<Node> _predMap;
   579       int _num;
   580     };
   581 
   582     template <typename Digraph, typename ArcMap>
   583     class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
   584     public:
   585       typedef typename Digraph::Node Node;
   586       typedef typename Digraph::Arc Arc;
   587       typedef typename Digraph::Edge Edge;
   588 
   589       BiNodeConnectedComponentsVisitor(const Digraph& graph,
   590                                        ArcMap& compMap, int &compNum)
   591         : _graph(graph), _compMap(compMap), _compNum(compNum),
   592           _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   593 
   594       void start(const Node& node) {
   595         _predMap.set(node, INVALID);
   596       }
   597 
   598       void reach(const Node& node) {
   599         _numMap.set(node, _num);
   600         _retMap.set(node, _num);
   601         ++_num;
   602       }
   603 
   604       void discover(const Arc& edge) {
   605         Node target = _graph.target(edge);
   606         _predMap.set(target, edge);
   607         _edgeStack.push(edge);
   608       }
   609 
   610       void examine(const Arc& edge) {
   611         Node source = _graph.source(edge);
   612         Node target = _graph.target(edge);
   613         if (source == target && _graph.direction(edge)) {
   614           _compMap.set(edge, _compNum);
   615           ++_compNum;
   616           return;
   617         }
   618         if (_numMap[target] < _numMap[source]) {
   619           if (_predMap[source] != _graph.oppositeArc(edge)) {
   620             _edgeStack.push(edge);
   621           }
   622         }
   623         if (_predMap[source] != INVALID &&
   624             target == _graph.source(_predMap[source])) {
   625           return;
   626         }
   627         if (_retMap[source] > _numMap[target]) {
   628           _retMap.set(source, _numMap[target]);
   629         }
   630       }
   631 
   632       void backtrack(const Arc& edge) {
   633         Node source = _graph.source(edge);
   634         Node target = _graph.target(edge);
   635         if (_retMap[source] > _retMap[target]) {
   636           _retMap.set(source, _retMap[target]);
   637         }
   638         if (_numMap[source] <= _retMap[target]) {
   639           while (_edgeStack.top() != edge) {
   640             _compMap.set(_edgeStack.top(), _compNum);
   641             _edgeStack.pop();
   642           }
   643           _compMap.set(edge, _compNum);
   644           _edgeStack.pop();
   645           ++_compNum;
   646         }
   647       }
   648 
   649     private:
   650       const Digraph& _graph;
   651       ArcMap& _compMap;
   652       int& _compNum;
   653 
   654       typename Digraph::template NodeMap<int> _numMap;
   655       typename Digraph::template NodeMap<int> _retMap;
   656       typename Digraph::template NodeMap<Arc> _predMap;
   657       std::stack<Edge> _edgeStack;
   658       int _num;
   659     };
   660 
   661 
   662     template <typename Digraph, typename NodeMap>
   663     class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> {
   664     public:
   665       typedef typename Digraph::Node Node;
   666       typedef typename Digraph::Arc Arc;
   667       typedef typename Digraph::Edge Edge;
   668 
   669       BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap,
   670                                      int& cutNum)
   671         : _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
   672           _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   673 
   674       void start(const Node& node) {
   675         _predMap.set(node, INVALID);
   676         rootCut = false;
   677       }
   678 
   679       void reach(const Node& node) {
   680         _numMap.set(node, _num);
   681         _retMap.set(node, _num);
   682         ++_num;
   683       }
   684 
   685       void discover(const Arc& edge) {
   686         _predMap.set(_graph.target(edge), _graph.source(edge));
   687       }
   688 
   689       void examine(const Arc& edge) {
   690         if (_graph.source(edge) == _graph.target(edge) &&
   691             _graph.direction(edge)) {
   692           if (!_cutMap[_graph.source(edge)]) {
   693             _cutMap.set(_graph.source(edge), true);
   694             ++_cutNum;
   695           }
   696           return;
   697         }
   698         if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
   699         if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   700           _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   701         }
   702       }
   703 
   704       void backtrack(const Arc& edge) {
   705         if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   706           _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   707         }
   708         if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   709           if (_predMap[_graph.source(edge)] != INVALID) {
   710             if (!_cutMap[_graph.source(edge)]) {
   711               _cutMap.set(_graph.source(edge), true);
   712               ++_cutNum;
   713             }
   714           } else if (rootCut) {
   715             if (!_cutMap[_graph.source(edge)]) {
   716               _cutMap.set(_graph.source(edge), true);
   717               ++_cutNum;
   718             }
   719           } else {
   720             rootCut = true;
   721           }
   722         }
   723       }
   724 
   725     private:
   726       const Digraph& _graph;
   727       NodeMap& _cutMap;
   728       int& _cutNum;
   729 
   730       typename Digraph::template NodeMap<int> _numMap;
   731       typename Digraph::template NodeMap<int> _retMap;
   732       typename Digraph::template NodeMap<Node> _predMap;
   733       std::stack<Edge> _edgeStack;
   734       int _num;
   735       bool rootCut;
   736     };
   737 
   738   }
   739 
   740   template <typename Graph>
   741   int countBiNodeConnectedComponents(const Graph& graph);
   742 
   743   /// \ingroup graph_properties
   744   ///
   745   /// \brief Check whether an undirected graph is bi-node-connected.
   746   ///
   747   /// This function checks whether the given undirected graph is
   748   /// bi-node-connected, i.e. a connected graph without articulation
   749   /// node.
   750   ///
   751   /// \return \c true if the graph bi-node-connected.
   752   ///
   753   /// \note By definition,
   754   /// \li a graph consisting of zero or one node is bi-node-connected,
   755   /// \li a graph consisting of two isolated nodes
   756   /// is \e not bi-node-connected and
   757   /// \li a graph consisting of two nodes connected by an edge
   758   /// is bi-node-connected.
   759   ///
   760   /// \see countBiNodeConnectedComponents(), biNodeConnectedComponents()
   761   template <typename Graph>
   762   bool biNodeConnected(const Graph& graph) {
   763     bool hasNonIsolated = false, hasIsolated = false;
   764     for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
   765       if (typename Graph::OutArcIt(graph, n) == INVALID) {
   766         if (hasIsolated || hasNonIsolated) {
   767           return false;
   768         } else {
   769           hasIsolated = true;
   770         }
   771       } else {
   772         if (hasIsolated) {
   773           return false;
   774         } else {
   775           hasNonIsolated = true;
   776         }
   777       }
   778     }
   779     return countBiNodeConnectedComponents(graph) <= 1;
   780   }
   781 
   782   /// \ingroup graph_properties
   783   ///
   784   /// \brief Count the number of bi-node-connected components of an
   785   /// undirected graph.
   786   ///
   787   /// This function counts the number of bi-node-connected components of
   788   /// the given undirected graph.
   789   ///
   790   /// The bi-node-connected components are the classes of an equivalence
   791   /// relation on the edges of a undirected graph. Two edges are in the
   792   /// same class if they are on same circle.
   793   ///
   794   /// \return The number of bi-node-connected components.
   795   ///
   796   /// \see biNodeConnected(), biNodeConnectedComponents()
   797   template <typename Graph>
   798   int countBiNodeConnectedComponents(const Graph& graph) {
   799     checkConcept<concepts::Graph, Graph>();
   800     typedef typename Graph::NodeIt NodeIt;
   801 
   802     using namespace _connectivity_bits;
   803 
   804     typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor;
   805 
   806     int compNum = 0;
   807     Visitor visitor(graph, compNum);
   808 
   809     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   810     dfs.init();
   811 
   812     for (NodeIt it(graph); it != INVALID; ++it) {
   813       if (!dfs.reached(it)) {
   814         dfs.addSource(it);
   815         dfs.start();
   816       }
   817     }
   818     return compNum;
   819   }
   820 
   821   /// \ingroup graph_properties
   822   ///
   823   /// \brief Find the bi-node-connected components of an undirected graph.
   824   ///
   825   /// This function finds the bi-node-connected components of the given
   826   /// undirected graph.
   827   ///
   828   /// The bi-node-connected components are the classes of an equivalence
   829   /// relation on the edges of a undirected graph. Two edges are in the
   830   /// same class if they are on same circle.
   831   ///
   832   /// \image html node_biconnected_components.png
   833   /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth
   834   ///
   835   /// \param graph The undirected graph.
   836   /// \retval compMap A writable edge map. The values will be set from 0
   837   /// to the number of the bi-node-connected components minus one. Each
   838   /// value of the map will be set exactly once, and the values of a
   839   /// certain component will be set continuously.
   840   /// \return The number of bi-node-connected components.
   841   ///
   842   /// \see biNodeConnected(), countBiNodeConnectedComponents()
   843   template <typename Graph, typename EdgeMap>
   844   int biNodeConnectedComponents(const Graph& graph,
   845                                 EdgeMap& compMap) {
   846     checkConcept<concepts::Graph, Graph>();
   847     typedef typename Graph::NodeIt NodeIt;
   848     typedef typename Graph::Edge Edge;
   849     checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>();
   850 
   851     using namespace _connectivity_bits;
   852 
   853     typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor;
   854 
   855     int compNum = 0;
   856     Visitor visitor(graph, compMap, compNum);
   857 
   858     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   859     dfs.init();
   860 
   861     for (NodeIt it(graph); it != INVALID; ++it) {
   862       if (!dfs.reached(it)) {
   863         dfs.addSource(it);
   864         dfs.start();
   865       }
   866     }
   867     return compNum;
   868   }
   869 
   870   /// \ingroup graph_properties
   871   ///
   872   /// \brief Find the bi-node-connected cut nodes in an undirected graph.
   873   ///
   874   /// This function finds the bi-node-connected cut nodes in the given
   875   /// undirected graph.
   876   ///
   877   /// The bi-node-connected components are the classes of an equivalence
   878   /// relation on the edges of a undirected graph. Two edges are in the
   879   /// same class if they are on same circle.
   880   /// The bi-node-connected components are separted by the cut nodes of
   881   /// the components.
   882   ///
   883   /// \param graph The undirected graph.
   884   /// \retval cutMap A writable node map. The values will be set to
   885   /// \c true for the nodes that separate two or more components
   886   /// (exactly once for each cut node), and will not be changed for
   887   /// other nodes.
   888   /// \return The number of the cut nodes.
   889   ///
   890   /// \see biNodeConnected(), biNodeConnectedComponents()
   891   template <typename Graph, typename NodeMap>
   892   int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
   893     checkConcept<concepts::Graph, Graph>();
   894     typedef typename Graph::Node Node;
   895     typedef typename Graph::NodeIt NodeIt;
   896     checkConcept<concepts::WriteMap<Node, bool>, NodeMap>();
   897 
   898     using namespace _connectivity_bits;
   899 
   900     typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor;
   901 
   902     int cutNum = 0;
   903     Visitor visitor(graph, cutMap, cutNum);
   904 
   905     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   906     dfs.init();
   907 
   908     for (NodeIt it(graph); it != INVALID; ++it) {
   909       if (!dfs.reached(it)) {
   910         dfs.addSource(it);
   911         dfs.start();
   912       }
   913     }
   914     return cutNum;
   915   }
   916 
   917   namespace _connectivity_bits {
   918 
   919     template <typename Digraph>
   920     class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
   921     public:
   922       typedef typename Digraph::Node Node;
   923       typedef typename Digraph::Arc Arc;
   924       typedef typename Digraph::Edge Edge;
   925 
   926       CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
   927         : _graph(graph), _compNum(compNum),
   928           _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   929 
   930       void start(const Node& node) {
   931         _predMap.set(node, INVALID);
   932       }
   933 
   934       void reach(const Node& node) {
   935         _numMap.set(node, _num);
   936         _retMap.set(node, _num);
   937         ++_num;
   938       }
   939 
   940       void leave(const Node& node) {
   941         if (_numMap[node] <= _retMap[node]) {
   942           ++_compNum;
   943         }
   944       }
   945 
   946       void discover(const Arc& edge) {
   947         _predMap.set(_graph.target(edge), edge);
   948       }
   949 
   950       void examine(const Arc& edge) {
   951         if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
   952           return;
   953         }
   954         if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   955           _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   956         }
   957       }
   958 
   959       void backtrack(const Arc& edge) {
   960         if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   961           _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   962         }
   963       }
   964 
   965     private:
   966       const Digraph& _graph;
   967       int& _compNum;
   968 
   969       typename Digraph::template NodeMap<int> _numMap;
   970       typename Digraph::template NodeMap<int> _retMap;
   971       typename Digraph::template NodeMap<Arc> _predMap;
   972       int _num;
   973     };
   974 
   975     template <typename Digraph, typename NodeMap>
   976     class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
   977     public:
   978       typedef typename Digraph::Node Node;
   979       typedef typename Digraph::Arc Arc;
   980       typedef typename Digraph::Edge Edge;
   981 
   982       BiEdgeConnectedComponentsVisitor(const Digraph& graph,
   983                                        NodeMap& compMap, int &compNum)
   984         : _graph(graph), _compMap(compMap), _compNum(compNum),
   985           _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   986 
   987       void start(const Node& node) {
   988         _predMap.set(node, INVALID);
   989       }
   990 
   991       void reach(const Node& node) {
   992         _numMap.set(node, _num);
   993         _retMap.set(node, _num);
   994         _nodeStack.push(node);
   995         ++_num;
   996       }
   997 
   998       void leave(const Node& node) {
   999         if (_numMap[node] <= _retMap[node]) {
  1000           while (_nodeStack.top() != node) {
  1001             _compMap.set(_nodeStack.top(), _compNum);
  1002             _nodeStack.pop();
  1003           }
  1004           _compMap.set(node, _compNum);
  1005           _nodeStack.pop();
  1006           ++_compNum;
  1007         }
  1008       }
  1009 
  1010       void discover(const Arc& edge) {
  1011         _predMap.set(_graph.target(edge), edge);
  1012       }
  1013 
  1014       void examine(const Arc& edge) {
  1015         if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
  1016           return;
  1017         }
  1018         if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  1019           _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1020         }
  1021       }
  1022 
  1023       void backtrack(const Arc& edge) {
  1024         if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  1025           _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1026         }
  1027       }
  1028 
  1029     private:
  1030       const Digraph& _graph;
  1031       NodeMap& _compMap;
  1032       int& _compNum;
  1033 
  1034       typename Digraph::template NodeMap<int> _numMap;
  1035       typename Digraph::template NodeMap<int> _retMap;
  1036       typename Digraph::template NodeMap<Arc> _predMap;
  1037       std::stack<Node> _nodeStack;
  1038       int _num;
  1039     };
  1040 
  1041 
  1042     template <typename Digraph, typename ArcMap>
  1043     class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
  1044     public:
  1045       typedef typename Digraph::Node Node;
  1046       typedef typename Digraph::Arc Arc;
  1047       typedef typename Digraph::Edge Edge;
  1048 
  1049       BiEdgeConnectedCutEdgesVisitor(const Digraph& graph,
  1050                                      ArcMap& cutMap, int &cutNum)
  1051         : _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
  1052           _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
  1053 
  1054       void start(const Node& node) {
  1055         _predMap[node] = INVALID;
  1056       }
  1057 
  1058       void reach(const Node& node) {
  1059         _numMap.set(node, _num);
  1060         _retMap.set(node, _num);
  1061         ++_num;
  1062       }
  1063 
  1064       void leave(const Node& node) {
  1065         if (_numMap[node] <= _retMap[node]) {
  1066           if (_predMap[node] != INVALID) {
  1067             _cutMap.set(_predMap[node], true);
  1068             ++_cutNum;
  1069           }
  1070         }
  1071       }
  1072 
  1073       void discover(const Arc& edge) {
  1074         _predMap.set(_graph.target(edge), edge);
  1075       }
  1076 
  1077       void examine(const Arc& edge) {
  1078         if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
  1079           return;
  1080         }
  1081         if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  1082           _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1083         }
  1084       }
  1085 
  1086       void backtrack(const Arc& edge) {
  1087         if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  1088           _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1089         }
  1090       }
  1091 
  1092     private:
  1093       const Digraph& _graph;
  1094       ArcMap& _cutMap;
  1095       int& _cutNum;
  1096 
  1097       typename Digraph::template NodeMap<int> _numMap;
  1098       typename Digraph::template NodeMap<int> _retMap;
  1099       typename Digraph::template NodeMap<Arc> _predMap;
  1100       int _num;
  1101     };
  1102   }
  1103 
  1104   template <typename Graph>
  1105   int countBiEdgeConnectedComponents(const Graph& graph);
  1106 
  1107   /// \ingroup graph_properties
  1108   ///
  1109   /// \brief Check whether an undirected graph is bi-edge-connected.
  1110   ///
  1111   /// This function checks whether the given undirected graph is
  1112   /// bi-edge-connected, i.e. any two nodes are connected with at least
  1113   /// two edge-disjoint paths.
  1114   ///
  1115   /// \return \c true if the graph is bi-edge-connected.
  1116   /// \note By definition, the empty graph is bi-edge-connected.
  1117   ///
  1118   /// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents()
  1119   template <typename Graph>
  1120   bool biEdgeConnected(const Graph& graph) {
  1121     return countBiEdgeConnectedComponents(graph) <= 1;
  1122   }
  1123 
  1124   /// \ingroup graph_properties
  1125   ///
  1126   /// \brief Count the number of bi-edge-connected components of an
  1127   /// undirected graph.
  1128   ///
  1129   /// This function counts the number of bi-edge-connected components of
  1130   /// the given undirected graph.
  1131   ///
  1132   /// The bi-edge-connected components are the classes of an equivalence
  1133   /// relation on the nodes of an undirected graph. Two nodes are in the
  1134   /// same class if they are connected with at least two edge-disjoint
  1135   /// paths.
  1136   ///
  1137   /// \return The number of bi-edge-connected components.
  1138   ///
  1139   /// \see biEdgeConnected(), biEdgeConnectedComponents()
  1140   template <typename Graph>
  1141   int countBiEdgeConnectedComponents(const Graph& graph) {
  1142     checkConcept<concepts::Graph, Graph>();
  1143     typedef typename Graph::NodeIt NodeIt;
  1144 
  1145     using namespace _connectivity_bits;
  1146 
  1147     typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor;
  1148 
  1149     int compNum = 0;
  1150     Visitor visitor(graph, compNum);
  1151 
  1152     DfsVisit<Graph, Visitor> dfs(graph, visitor);
  1153     dfs.init();
  1154 
  1155     for (NodeIt it(graph); it != INVALID; ++it) {
  1156       if (!dfs.reached(it)) {
  1157         dfs.addSource(it);
  1158         dfs.start();
  1159       }
  1160     }
  1161     return compNum;
  1162   }
  1163 
  1164   /// \ingroup graph_properties
  1165   ///
  1166   /// \brief Find the bi-edge-connected components of an undirected graph.
  1167   ///
  1168   /// This function finds the bi-edge-connected components of the given
  1169   /// undirected graph.
  1170   ///
  1171   /// The bi-edge-connected components are the classes of an equivalence
  1172   /// relation on the nodes of an undirected graph. Two nodes are in the
  1173   /// same class if they are connected with at least two edge-disjoint
  1174   /// paths.
  1175   ///
  1176   /// \image html edge_biconnected_components.png
  1177   /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
  1178   ///
  1179   /// \param graph The undirected graph.
  1180   /// \retval compMap A writable node map. The values will be set from 0 to
  1181   /// the number of the bi-edge-connected components minus one. Each value
  1182   /// of the map will be set exactly once, and the values of a certain
  1183   /// component will be set continuously.
  1184   /// \return The number of bi-edge-connected components.
  1185   ///
  1186   /// \see biEdgeConnected(), countBiEdgeConnectedComponents()
  1187   template <typename Graph, typename NodeMap>
  1188   int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
  1189     checkConcept<concepts::Graph, Graph>();
  1190     typedef typename Graph::NodeIt NodeIt;
  1191     typedef typename Graph::Node Node;
  1192     checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
  1193 
  1194     using namespace _connectivity_bits;
  1195 
  1196     typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor;
  1197 
  1198     int compNum = 0;
  1199     Visitor visitor(graph, compMap, compNum);
  1200 
  1201     DfsVisit<Graph, Visitor> dfs(graph, visitor);
  1202     dfs.init();
  1203 
  1204     for (NodeIt it(graph); it != INVALID; ++it) {
  1205       if (!dfs.reached(it)) {
  1206         dfs.addSource(it);
  1207         dfs.start();
  1208       }
  1209     }
  1210     return compNum;
  1211   }
  1212 
  1213   /// \ingroup graph_properties
  1214   ///
  1215   /// \brief Find the bi-edge-connected cut edges in an undirected graph.
  1216   ///
  1217   /// This function finds the bi-edge-connected cut edges in the given
  1218   /// undirected graph.
  1219   ///
  1220   /// The bi-edge-connected components are the classes of an equivalence
  1221   /// relation on the nodes of an undirected graph. Two nodes are in the
  1222   /// same class if they are connected with at least two edge-disjoint
  1223   /// paths.
  1224   /// The bi-edge-connected components are separted by the cut edges of
  1225   /// the components.
  1226   ///
  1227   /// \param graph The undirected graph.
  1228   /// \retval cutMap A writable edge map. The values will be set to \c true
  1229   /// for the cut edges (exactly once for each cut edge), and will not be
  1230   /// changed for other edges.
  1231   /// \return The number of cut edges.
  1232   ///
  1233   /// \see biEdgeConnected(), biEdgeConnectedComponents()
  1234   template <typename Graph, typename EdgeMap>
  1235   int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
  1236     checkConcept<concepts::Graph, Graph>();
  1237     typedef typename Graph::NodeIt NodeIt;
  1238     typedef typename Graph::Edge Edge;
  1239     checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>();
  1240 
  1241     using namespace _connectivity_bits;
  1242 
  1243     typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor;
  1244 
  1245     int cutNum = 0;
  1246     Visitor visitor(graph, cutMap, cutNum);
  1247 
  1248     DfsVisit<Graph, Visitor> dfs(graph, visitor);
  1249     dfs.init();
  1250 
  1251     for (NodeIt it(graph); it != INVALID; ++it) {
  1252       if (!dfs.reached(it)) {
  1253         dfs.addSource(it);
  1254         dfs.start();
  1255       }
  1256     }
  1257     return cutNum;
  1258   }
  1259 
  1260 
  1261   namespace _connectivity_bits {
  1262 
  1263     template <typename Digraph, typename IntNodeMap>
  1264     class TopologicalSortVisitor : public DfsVisitor<Digraph> {
  1265     public:
  1266       typedef typename Digraph::Node Node;
  1267       typedef typename Digraph::Arc edge;
  1268 
  1269       TopologicalSortVisitor(IntNodeMap& order, int num)
  1270         : _order(order), _num(num) {}
  1271 
  1272       void leave(const Node& node) {
  1273         _order.set(node, --_num);
  1274       }
  1275 
  1276     private:
  1277       IntNodeMap& _order;
  1278       int _num;
  1279     };
  1280 
  1281   }
  1282 
  1283   /// \ingroup graph_properties
  1284   ///
  1285   /// \brief Check whether a digraph is DAG.
  1286   ///
  1287   /// This function checks whether the given digraph is DAG, i.e.
  1288   /// \e Directed \e Acyclic \e Graph.
  1289   /// \return \c true if there is no directed cycle in the digraph.
  1290   /// \see acyclic()
  1291   template <typename Digraph>
  1292   bool dag(const Digraph& digraph) {
  1293 
  1294     checkConcept<concepts::Digraph, Digraph>();
  1295 
  1296     typedef typename Digraph::Node Node;
  1297     typedef typename Digraph::NodeIt NodeIt;
  1298     typedef typename Digraph::Arc Arc;
  1299 
  1300     typedef typename Digraph::template NodeMap<bool> ProcessedMap;
  1301 
  1302     typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
  1303       Create dfs(digraph);
  1304 
  1305     ProcessedMap processed(digraph);
  1306     dfs.processedMap(processed);
  1307 
  1308     dfs.init();
  1309     for (NodeIt it(digraph); it != INVALID; ++it) {
  1310       if (!dfs.reached(it)) {
  1311         dfs.addSource(it);
  1312         while (!dfs.emptyQueue()) {
  1313           Arc arc = dfs.nextArc();
  1314           Node target = digraph.target(arc);
  1315           if (dfs.reached(target) && !processed[target]) {
  1316             return false;
  1317           }
  1318           dfs.processNextArc();
  1319         }
  1320       }
  1321     }
  1322     return true;
  1323   }
  1324 
  1325   /// \ingroup graph_properties
  1326   ///
  1327   /// \brief Sort the nodes of a DAG into topolgical order.
  1328   ///
  1329   /// This function sorts the nodes of the given acyclic digraph (DAG)
  1330   /// into topolgical order.
  1331   ///
  1332   /// \param digraph The digraph, which must be DAG.
  1333   /// \retval order A writable node map. The values will be set from 0 to
  1334   /// the number of the nodes in the digraph minus one. Each value of the
  1335   /// map will be set exactly once, and the values will be set descending
  1336   /// order.
  1337   ///
  1338   /// \see dag(), checkedTopologicalSort()
  1339   template <typename Digraph, typename NodeMap>
  1340   void topologicalSort(const Digraph& digraph, NodeMap& order) {
  1341     using namespace _connectivity_bits;
  1342 
  1343     checkConcept<concepts::Digraph, Digraph>();
  1344     checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>();
  1345 
  1346     typedef typename Digraph::Node Node;
  1347     typedef typename Digraph::NodeIt NodeIt;
  1348     typedef typename Digraph::Arc Arc;
  1349 
  1350     TopologicalSortVisitor<Digraph, NodeMap>
  1351       visitor(order, countNodes(digraph));
  1352 
  1353     DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
  1354       dfs(digraph, visitor);
  1355 
  1356     dfs.init();
  1357     for (NodeIt it(digraph); it != INVALID; ++it) {
  1358       if (!dfs.reached(it)) {
  1359         dfs.addSource(it);
  1360         dfs.start();
  1361       }
  1362     }
  1363   }
  1364 
  1365   /// \ingroup graph_properties
  1366   ///
  1367   /// \brief Sort the nodes of a DAG into topolgical order.
  1368   ///
  1369   /// This function sorts the nodes of the given acyclic digraph (DAG)
  1370   /// into topolgical order and also checks whether the given digraph
  1371   /// is DAG.
  1372   ///
  1373   /// \param digraph The digraph.
  1374   /// \retval order A readable and writable node map. The values will be
  1375   /// set from 0 to the number of the nodes in the digraph minus one.
  1376   /// Each value of the map will be set exactly once, and the values will
  1377   /// be set descending order.
  1378   /// \return \c false if the digraph is not DAG.
  1379   ///
  1380   /// \see dag(), topologicalSort()
  1381   template <typename Digraph, typename NodeMap>
  1382   bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
  1383     using namespace _connectivity_bits;
  1384 
  1385     checkConcept<concepts::Digraph, Digraph>();
  1386     checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>,
  1387       NodeMap>();
  1388 
  1389     typedef typename Digraph::Node Node;
  1390     typedef typename Digraph::NodeIt NodeIt;
  1391     typedef typename Digraph::Arc Arc;
  1392 
  1393     for (NodeIt it(digraph); it != INVALID; ++it) {
  1394       order.set(it, -1);
  1395     }
  1396 
  1397     TopologicalSortVisitor<Digraph, NodeMap>
  1398       visitor(order, countNodes(digraph));
  1399 
  1400     DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
  1401       dfs(digraph, visitor);
  1402 
  1403     dfs.init();
  1404     for (NodeIt it(digraph); it != INVALID; ++it) {
  1405       if (!dfs.reached(it)) {
  1406         dfs.addSource(it);
  1407         while (!dfs.emptyQueue()) {
  1408            Arc arc = dfs.nextArc();
  1409            Node target = digraph.target(arc);
  1410            if (dfs.reached(target) && order[target] == -1) {
  1411              return false;
  1412            }
  1413            dfs.processNextArc();
  1414          }
  1415       }
  1416     }
  1417     return true;
  1418   }
  1419 
  1420   /// \ingroup graph_properties
  1421   ///
  1422   /// \brief Check whether an undirected graph is acyclic.
  1423   ///
  1424   /// This function checks whether the given undirected graph is acyclic.
  1425   /// \return \c true if there is no cycle in the graph.
  1426   /// \see dag()
  1427   template <typename Graph>
  1428   bool acyclic(const Graph& graph) {
  1429     checkConcept<concepts::Graph, Graph>();
  1430     typedef typename Graph::Node Node;
  1431     typedef typename Graph::NodeIt NodeIt;
  1432     typedef typename Graph::Arc Arc;
  1433     Dfs<Graph> dfs(graph);
  1434     dfs.init();
  1435     for (NodeIt it(graph); it != INVALID; ++it) {
  1436       if (!dfs.reached(it)) {
  1437         dfs.addSource(it);
  1438         while (!dfs.emptyQueue()) {
  1439           Arc arc = dfs.nextArc();
  1440           Node source = graph.source(arc);
  1441           Node target = graph.target(arc);
  1442           if (dfs.reached(target) &&
  1443               dfs.predArc(source) != graph.oppositeArc(arc)) {
  1444             return false;
  1445           }
  1446           dfs.processNextArc();
  1447         }
  1448       }
  1449     }
  1450     return true;
  1451   }
  1452 
  1453   /// \ingroup graph_properties
  1454   ///
  1455   /// \brief Check whether an undirected graph is tree.
  1456   ///
  1457   /// This function checks whether the given undirected graph is tree.
  1458   /// \return \c true if the graph is acyclic and connected.
  1459   /// \see acyclic(), connected()
  1460   template <typename Graph>
  1461   bool tree(const Graph& graph) {
  1462     checkConcept<concepts::Graph, Graph>();
  1463     typedef typename Graph::Node Node;
  1464     typedef typename Graph::NodeIt NodeIt;
  1465     typedef typename Graph::Arc Arc;
  1466     if (NodeIt(graph) == INVALID) return true;
  1467     Dfs<Graph> dfs(graph);
  1468     dfs.init();
  1469     dfs.addSource(NodeIt(graph));
  1470     while (!dfs.emptyQueue()) {
  1471       Arc arc = dfs.nextArc();
  1472       Node source = graph.source(arc);
  1473       Node target = graph.target(arc);
  1474       if (dfs.reached(target) &&
  1475           dfs.predArc(source) != graph.oppositeArc(arc)) {
  1476         return false;
  1477       }
  1478       dfs.processNextArc();
  1479     }
  1480     for (NodeIt it(graph); it != INVALID; ++it) {
  1481       if (!dfs.reached(it)) {
  1482         return false;
  1483       }
  1484     }
  1485     return true;
  1486   }
  1487 
  1488   namespace _connectivity_bits {
  1489 
  1490     template <typename Digraph>
  1491     class BipartiteVisitor : public BfsVisitor<Digraph> {
  1492     public:
  1493       typedef typename Digraph::Arc Arc;
  1494       typedef typename Digraph::Node Node;
  1495 
  1496       BipartiteVisitor(const Digraph& graph, bool& bipartite)
  1497         : _graph(graph), _part(graph), _bipartite(bipartite) {}
  1498 
  1499       void start(const Node& node) {
  1500         _part[node] = true;
  1501       }
  1502       void discover(const Arc& edge) {
  1503         _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
  1504       }
  1505       void examine(const Arc& edge) {
  1506         _bipartite = _bipartite &&
  1507           _part[_graph.target(edge)] != _part[_graph.source(edge)];
  1508       }
  1509 
  1510     private:
  1511 
  1512       const Digraph& _graph;
  1513       typename Digraph::template NodeMap<bool> _part;
  1514       bool& _bipartite;
  1515     };
  1516 
  1517     template <typename Digraph, typename PartMap>
  1518     class BipartitePartitionsVisitor : public BfsVisitor<Digraph> {
  1519     public:
  1520       typedef typename Digraph::Arc Arc;
  1521       typedef typename Digraph::Node Node;
  1522 
  1523       BipartitePartitionsVisitor(const Digraph& graph,
  1524                                  PartMap& part, bool& bipartite)
  1525         : _graph(graph), _part(part), _bipartite(bipartite) {}
  1526 
  1527       void start(const Node& node) {
  1528         _part.set(node, true);
  1529       }
  1530       void discover(const Arc& edge) {
  1531         _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
  1532       }
  1533       void examine(const Arc& edge) {
  1534         _bipartite = _bipartite &&
  1535           _part[_graph.target(edge)] != _part[_graph.source(edge)];
  1536       }
  1537 
  1538     private:
  1539 
  1540       const Digraph& _graph;
  1541       PartMap& _part;
  1542       bool& _bipartite;
  1543     };
  1544   }
  1545 
  1546   /// \ingroup graph_properties
  1547   ///
  1548   /// \brief Check whether an undirected graph is bipartite.
  1549   ///
  1550   /// The function checks whether the given undirected graph is bipartite.
  1551   /// \return \c true if the graph is bipartite.
  1552   ///
  1553   /// \see bipartitePartitions()
  1554   template<typename Graph>
  1555   bool bipartite(const Graph &graph){
  1556     using namespace _connectivity_bits;
  1557 
  1558     checkConcept<concepts::Graph, Graph>();
  1559 
  1560     typedef typename Graph::NodeIt NodeIt;
  1561     typedef typename Graph::ArcIt ArcIt;
  1562 
  1563     bool bipartite = true;
  1564 
  1565     BipartiteVisitor<Graph>
  1566       visitor(graph, bipartite);
  1567     BfsVisit<Graph, BipartiteVisitor<Graph> >
  1568       bfs(graph, visitor);
  1569     bfs.init();
  1570     for(NodeIt it(graph); it != INVALID; ++it) {
  1571       if(!bfs.reached(it)){
  1572         bfs.addSource(it);
  1573         while (!bfs.emptyQueue()) {
  1574           bfs.processNextNode();
  1575           if (!bipartite) return false;
  1576         }
  1577       }
  1578     }
  1579     return true;
  1580   }
  1581 
  1582   /// \ingroup graph_properties
  1583   ///
  1584   /// \brief Find the bipartite partitions of an undirected graph.
  1585   ///
  1586   /// This function checks whether the given undirected graph is bipartite
  1587   /// and gives back the bipartite partitions.
  1588   ///
  1589   /// \image html bipartite_partitions.png
  1590   /// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth
  1591   ///
  1592   /// \param graph The undirected graph.
  1593   /// \retval partMap A writable node map of \c bool (or convertible) value
  1594   /// type. The values will be set to \c true for one component and
  1595   /// \c false for the other one.
  1596   /// \return \c true if the graph is bipartite, \c false otherwise.
  1597   ///
  1598   /// \see bipartite()
  1599   template<typename Graph, typename NodeMap>
  1600   bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
  1601     using namespace _connectivity_bits;
  1602 
  1603     checkConcept<concepts::Graph, Graph>();
  1604     checkConcept<concepts::WriteMap<typename Graph::Node, bool>, NodeMap>();
  1605 
  1606     typedef typename Graph::Node Node;
  1607     typedef typename Graph::NodeIt NodeIt;
  1608     typedef typename Graph::ArcIt ArcIt;
  1609 
  1610     bool bipartite = true;
  1611 
  1612     BipartitePartitionsVisitor<Graph, NodeMap>
  1613       visitor(graph, partMap, bipartite);
  1614     BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> >
  1615       bfs(graph, visitor);
  1616     bfs.init();
  1617     for(NodeIt it(graph); it != INVALID; ++it) {
  1618       if(!bfs.reached(it)){
  1619         bfs.addSource(it);
  1620         while (!bfs.emptyQueue()) {
  1621           bfs.processNextNode();
  1622           if (!bipartite) return false;
  1623         }
  1624       }
  1625     }
  1626     return true;
  1627   }
  1628 
  1629   /// \ingroup graph_properties
  1630   ///
  1631   /// \brief Check whether the given graph contains no loop arcs/edges.
  1632   ///
  1633   /// This function returns \c true if there are no loop arcs/edges in
  1634   /// the given graph. It works for both directed and undirected graphs.
  1635   template <typename Graph>
  1636   bool loopFree(const Graph& graph) {
  1637     for (typename Graph::ArcIt it(graph); it != INVALID; ++it) {
  1638       if (graph.source(it) == graph.target(it)) return false;
  1639     }
  1640     return true;
  1641   }
  1642 
  1643   /// \ingroup graph_properties
  1644   ///
  1645   /// \brief Check whether the given graph contains no parallel arcs/edges.
  1646   ///
  1647   /// This function returns \c true if there are no parallel arcs/edges in
  1648   /// the given graph. It works for both directed and undirected graphs.
  1649   template <typename Graph>
  1650   bool parallelFree(const Graph& graph) {
  1651     typename Graph::template NodeMap<int> reached(graph, 0);
  1652     int cnt = 1;
  1653     for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
  1654       for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
  1655         if (reached[graph.target(a)] == cnt) return false;
  1656         reached[graph.target(a)] = cnt;
  1657       }
  1658       ++cnt;
  1659     }
  1660     return true;
  1661   }
  1662 
  1663   /// \ingroup graph_properties
  1664   ///
  1665   /// \brief Check whether the given graph is simple.
  1666   ///
  1667   /// This function returns \c true if the given graph is simple, i.e.
  1668   /// it contains no loop arcs/edges and no parallel arcs/edges.
  1669   /// The function works for both directed and undirected graphs.
  1670   /// \see loopFree(), parallelFree()
  1671   template <typename Graph>
  1672   bool simpleGraph(const Graph& graph) {
  1673     typename Graph::template NodeMap<int> reached(graph, 0);
  1674     int cnt = 1;
  1675     for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
  1676       reached[n] = cnt;
  1677       for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
  1678         if (reached[graph.target(a)] == cnt) return false;
  1679         reached[graph.target(a)] = cnt;
  1680       }
  1681       ++cnt;
  1682     }
  1683     return true;
  1684   }
  1685 
  1686 } //namespace lemon
  1687 
  1688 #endif //LEMON_CONNECTIVITY_H