test/connectivity_test.cc
author Daniel Poroszkai <poroszd@inf.elte.hu>
Sun, 05 Feb 2012 00:04:44 +0100
changeset 1029 374a9519986b
parent 877 141f9c0db4a3
parent 997 761fe0846f49
child 1084 8b2d4e5d96e4
permissions -rw-r--r--
Update LGF reader to work with typesafe bipartite node sets (#69)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #include <lemon/connectivity.h>
    20 #include <lemon/list_graph.h>
    21 #include <lemon/adaptors.h>
    22 
    23 #include "test_tools.h"
    24 
    25 using namespace lemon;
    26 
    27 
    28 int main()
    29 {
    30   typedef ListDigraph Digraph;
    31   typedef Undirector<Digraph> Graph;
    32 
    33   {
    34     Digraph d;
    35     Digraph::NodeMap<int> order(d);
    36     Graph g(d);
    37 
    38     check(stronglyConnected(d), "The empty digraph is strongly connected");
    39     check(countStronglyConnectedComponents(d) == 0,
    40           "The empty digraph has 0 strongly connected component");
    41     check(connected(g), "The empty graph is connected");
    42     check(countConnectedComponents(g) == 0,
    43           "The empty graph has 0 connected component");
    44 
    45     check(biNodeConnected(g), "The empty graph is bi-node-connected");
    46     check(countBiNodeConnectedComponents(g) == 0,
    47           "The empty graph has 0 bi-node-connected component");
    48     check(biEdgeConnected(g), "The empty graph is bi-edge-connected");
    49     check(countBiEdgeConnectedComponents(g) == 0,
    50           "The empty graph has 0 bi-edge-connected component");
    51 
    52     check(dag(d), "The empty digraph is DAG.");
    53     check(checkedTopologicalSort(d, order), "The empty digraph is DAG.");
    54     check(loopFree(d), "The empty digraph is loop-free.");
    55     check(parallelFree(d), "The empty digraph is parallel-free.");
    56     check(simpleGraph(d), "The empty digraph is simple.");
    57 
    58     check(acyclic(g), "The empty graph is acyclic.");
    59     check(tree(g), "The empty graph is tree.");
    60     check(bipartite(g), "The empty graph is bipartite.");
    61     check(loopFree(g), "The empty graph is loop-free.");
    62     check(parallelFree(g), "The empty graph is parallel-free.");
    63     check(simpleGraph(g), "The empty graph is simple.");
    64   }
    65 
    66   {
    67     Digraph d;
    68     Digraph::NodeMap<int> order(d);
    69     Graph g(d);
    70     Digraph::Node n = d.addNode();
    71     ignore_unused_variable_warning(n);
    72 
    73     check(stronglyConnected(d), "This digraph is strongly connected");
    74     check(countStronglyConnectedComponents(d) == 1,
    75           "This digraph has 1 strongly connected component");
    76     check(connected(g), "This graph is connected");
    77     check(countConnectedComponents(g) == 1,
    78           "This graph has 1 connected component");
    79 
    80     check(biNodeConnected(g), "This graph is bi-node-connected");
    81     check(countBiNodeConnectedComponents(g) == 0,
    82           "This graph has 0 bi-node-connected component");
    83     check(biEdgeConnected(g), "This graph is bi-edge-connected");
    84     check(countBiEdgeConnectedComponents(g) == 1,
    85           "This graph has 1 bi-edge-connected component");
    86 
    87     check(dag(d), "This digraph is DAG.");
    88     check(checkedTopologicalSort(d, order), "This digraph is DAG.");
    89     check(loopFree(d), "This digraph is loop-free.");
    90     check(parallelFree(d), "This digraph is parallel-free.");
    91     check(simpleGraph(d), "This digraph is simple.");
    92 
    93     check(acyclic(g), "This graph is acyclic.");
    94     check(tree(g), "This graph is tree.");
    95     check(bipartite(g), "This graph is bipartite.");
    96     check(loopFree(g), "This graph is loop-free.");
    97     check(parallelFree(g), "This graph is parallel-free.");
    98     check(simpleGraph(g), "This graph is simple.");
    99   }
   100 
   101   {
   102     Digraph d;
   103     Digraph::NodeMap<int> order(d);
   104     Graph g(d);
   105 
   106     Digraph::Node n1 = d.addNode();
   107     Digraph::Node n2 = d.addNode();
   108     Digraph::Node n3 = d.addNode();
   109     Digraph::Node n4 = d.addNode();
   110     Digraph::Node n5 = d.addNode();
   111     Digraph::Node n6 = d.addNode();
   112 
   113     d.addArc(n1, n3);
   114     d.addArc(n3, n2);
   115     d.addArc(n2, n1);
   116     d.addArc(n4, n2);
   117     d.addArc(n4, n3);
   118     d.addArc(n5, n6);
   119     d.addArc(n6, n5);
   120 
   121     check(!stronglyConnected(d), "This digraph is not strongly connected");
   122     check(countStronglyConnectedComponents(d) == 3,
   123           "This digraph has 3 strongly connected components");
   124     check(!connected(g), "This graph is not connected");
   125     check(countConnectedComponents(g) == 2,
   126           "This graph has 2 connected components");
   127 
   128     check(!dag(d), "This digraph is not DAG.");
   129     check(!checkedTopologicalSort(d, order), "This digraph is not DAG.");
   130     check(loopFree(d), "This digraph is loop-free.");
   131     check(parallelFree(d), "This digraph is parallel-free.");
   132     check(simpleGraph(d), "This digraph is simple.");
   133 
   134     check(!acyclic(g), "This graph is not acyclic.");
   135     check(!tree(g), "This graph is not tree.");
   136     check(!bipartite(g), "This graph is not bipartite.");
   137     check(loopFree(g), "This graph is loop-free.");
   138     check(!parallelFree(g), "This graph is not parallel-free.");
   139     check(!simpleGraph(g), "This graph is not simple.");
   140 
   141     d.addArc(n3, n3);
   142 
   143     check(!loopFree(d), "This digraph is not loop-free.");
   144     check(!loopFree(g), "This graph is not loop-free.");
   145     check(!simpleGraph(d), "This digraph is not simple.");
   146 
   147     d.addArc(n3, n2);
   148 
   149     check(!parallelFree(d), "This digraph is not parallel-free.");
   150   }
   151 
   152   {
   153     Digraph d;
   154     Digraph::ArcMap<bool> cutarcs(d, false);
   155     Graph g(d);
   156 
   157     Digraph::Node n1 = d.addNode();
   158     Digraph::Node n2 = d.addNode();
   159     Digraph::Node n3 = d.addNode();
   160     Digraph::Node n4 = d.addNode();
   161     Digraph::Node n5 = d.addNode();
   162     Digraph::Node n6 = d.addNode();
   163     Digraph::Node n7 = d.addNode();
   164     Digraph::Node n8 = d.addNode();
   165 
   166     d.addArc(n1, n2);
   167     d.addArc(n5, n1);
   168     d.addArc(n2, n8);
   169     d.addArc(n8, n5);
   170     d.addArc(n6, n4);
   171     d.addArc(n4, n6);
   172     d.addArc(n2, n5);
   173     d.addArc(n1, n8);
   174     d.addArc(n6, n7);
   175     d.addArc(n7, n6);
   176 
   177     check(!stronglyConnected(d), "This digraph is not strongly connected");
   178     check(countStronglyConnectedComponents(d) == 3,
   179           "This digraph has 3 strongly connected components");
   180     Digraph::NodeMap<int> scomp1(d);
   181     check(stronglyConnectedComponents(d, scomp1) == 3,
   182           "This digraph has 3 strongly connected components");
   183     check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] &&
   184           scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()");
   185     check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] &&
   186           scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()");
   187     check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7],
   188           "Wrong stronglyConnectedComponents()");
   189     Digraph::ArcMap<bool> scut1(d, false);
   190     check(stronglyConnectedCutArcs(d, scut1) == 0,
   191           "This digraph has 0 strongly connected cut arc.");
   192     for (Digraph::ArcIt a(d); a != INVALID; ++a) {
   193       check(!scut1[a], "Wrong stronglyConnectedCutArcs()");
   194     }
   195 
   196     check(!connected(g), "This graph is not connected");
   197     check(countConnectedComponents(g) == 3,
   198           "This graph has 3 connected components");
   199     Graph::NodeMap<int> comp(g);
   200     check(connectedComponents(g, comp) == 3,
   201           "This graph has 3 connected components");
   202     check(comp[n1] != comp[n3] && comp[n1] != comp[n4] &&
   203           comp[n3] != comp[n4], "Wrong connectedComponents()");
   204     check(comp[n1] == comp[n2] && comp[n1] == comp[n5] &&
   205           comp[n1] == comp[n8], "Wrong connectedComponents()");
   206     check(comp[n4] == comp[n6] && comp[n4] == comp[n7],
   207           "Wrong connectedComponents()");
   208 
   209     cutarcs[d.addArc(n3, n1)] = true;
   210     cutarcs[d.addArc(n3, n5)] = true;
   211     cutarcs[d.addArc(n3, n8)] = true;
   212     cutarcs[d.addArc(n8, n6)] = true;
   213     cutarcs[d.addArc(n8, n7)] = true;
   214 
   215     check(!stronglyConnected(d), "This digraph is not strongly connected");
   216     check(countStronglyConnectedComponents(d) == 3,
   217           "This digraph has 3 strongly connected components");
   218     Digraph::NodeMap<int> scomp2(d);
   219     check(stronglyConnectedComponents(d, scomp2) == 3,
   220           "This digraph has 3 strongly connected components");
   221     check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()");
   222     check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 &&
   223           scomp2[n8] == 1, "Wrong stronglyConnectedComponents()");
   224     check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2,
   225           "Wrong stronglyConnectedComponents()");
   226     Digraph::ArcMap<bool> scut2(d, false);
   227     check(stronglyConnectedCutArcs(d, scut2) == 5,
   228           "This digraph has 5 strongly connected cut arcs.");
   229     for (Digraph::ArcIt a(d); a != INVALID; ++a) {
   230       check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()");
   231     }
   232   }
   233 
   234   {
   235     // DAG example for topological sort from the book New Algorithms
   236     // (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein)
   237     Digraph d;
   238     Digraph::NodeMap<int> order(d);
   239 
   240     Digraph::Node belt = d.addNode();
   241     Digraph::Node trousers = d.addNode();
   242     Digraph::Node necktie = d.addNode();
   243     Digraph::Node coat = d.addNode();
   244     Digraph::Node socks = d.addNode();
   245     Digraph::Node shirt = d.addNode();
   246     Digraph::Node shoe = d.addNode();
   247     Digraph::Node watch = d.addNode();
   248     Digraph::Node pants = d.addNode();
   249     ignore_unused_variable_warning(watch);
   250 
   251     d.addArc(socks, shoe);
   252     d.addArc(pants, shoe);
   253     d.addArc(pants, trousers);
   254     d.addArc(trousers, shoe);
   255     d.addArc(trousers, belt);
   256     d.addArc(belt, coat);
   257     d.addArc(shirt, belt);
   258     d.addArc(shirt, necktie);
   259     d.addArc(necktie, coat);
   260 
   261     check(dag(d), "This digraph is DAG.");
   262     topologicalSort(d, order);
   263     for (Digraph::ArcIt a(d); a != INVALID; ++a) {
   264       check(order[d.source(a)] < order[d.target(a)],
   265             "Wrong topologicalSort()");
   266     }
   267   }
   268 
   269   {
   270     ListGraph g;
   271     ListGraph::NodeMap<bool> map(g);
   272 
   273     ListGraph::Node n1 = g.addNode();
   274     ListGraph::Node n2 = g.addNode();
   275     ListGraph::Node n3 = g.addNode();
   276     ListGraph::Node n4 = g.addNode();
   277     ListGraph::Node n5 = g.addNode();
   278     ListGraph::Node n6 = g.addNode();
   279     ListGraph::Node n7 = g.addNode();
   280 
   281     g.addEdge(n1, n3);
   282     g.addEdge(n1, n4);
   283     g.addEdge(n2, n5);
   284     g.addEdge(n3, n6);
   285     g.addEdge(n4, n6);
   286     g.addEdge(n4, n7);
   287     g.addEdge(n5, n7);
   288 
   289     check(bipartite(g), "This graph is bipartite");
   290     check(bipartitePartitions(g, map), "This graph is bipartite");
   291 
   292     check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7],
   293           "Wrong bipartitePartitions()");
   294     check(map[n3] == map[n4] && map[n3] == map[n5],
   295           "Wrong bipartitePartitions()");
   296   }
   297 
   298   return 0;
   299 }