lemon/matching.h
author Balazs Dezso <deba@inf.elte.hu>
Thu, 04 Mar 2010 15:20:59 +0100
changeset 872 41d7ac528c3a
parent 868 0513ccfea967
child 875 07ec2b52e53d
permissions -rw-r--r--
Uniforming primal scale to 2 (#314)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_MATCHING_H
    20 #define LEMON_MATCHING_H
    21 
    22 #include <vector>
    23 #include <queue>
    24 #include <set>
    25 #include <limits>
    26 
    27 #include <lemon/core.h>
    28 #include <lemon/unionfind.h>
    29 #include <lemon/bin_heap.h>
    30 #include <lemon/maps.h>
    31 #include <lemon/fractional_matching.h>
    32 
    33 ///\ingroup matching
    34 ///\file
    35 ///\brief Maximum matching algorithms in general graphs.
    36 
    37 namespace lemon {
    38 
    39   /// \ingroup matching
    40   ///
    41   /// \brief Maximum cardinality matching in general graphs
    42   ///
    43   /// This class implements Edmonds' alternating forest matching algorithm
    44   /// for finding a maximum cardinality matching in a general undirected graph.
    45   /// It can be started from an arbitrary initial matching
    46   /// (the default is the empty one).
    47   ///
    48   /// The dual solution of the problem is a map of the nodes to
    49   /// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D),
    50   /// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds
    51   /// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph
    52   /// with factor-critical components, the nodes in \c ODD/A form the
    53   /// canonical barrier, and the nodes in \c MATCHED/C induce a graph having
    54   /// a perfect matching. The number of the factor-critical components
    55   /// minus the number of barrier nodes is a lower bound on the
    56   /// unmatched nodes, and the matching is optimal if and only if this bound is
    57   /// tight. This decomposition can be obtained using \ref status() or
    58   /// \ref statusMap() after running the algorithm.
    59   ///
    60   /// \tparam GR The undirected graph type the algorithm runs on.
    61   template <typename GR>
    62   class MaxMatching {
    63   public:
    64 
    65     /// The graph type of the algorithm
    66     typedef GR Graph;
    67     /// The type of the matching map
    68     typedef typename Graph::template NodeMap<typename Graph::Arc>
    69     MatchingMap;
    70 
    71     ///\brief Status constants for Gallai-Edmonds decomposition.
    72     ///
    73     ///These constants are used for indicating the Gallai-Edmonds
    74     ///decomposition of a graph. The nodes with status \c EVEN (or \c D)
    75     ///induce a subgraph with factor-critical components, the nodes with
    76     ///status \c ODD (or \c A) form the canonical barrier, and the nodes
    77     ///with status \c MATCHED (or \c C) induce a subgraph having a
    78     ///perfect matching.
    79     enum Status {
    80       EVEN = 1,       ///< = 1. (\c D is an alias for \c EVEN.)
    81       D = 1,
    82       MATCHED = 0,    ///< = 0. (\c C is an alias for \c MATCHED.)
    83       C = 0,
    84       ODD = -1,       ///< = -1. (\c A is an alias for \c ODD.)
    85       A = -1,
    86       UNMATCHED = -2  ///< = -2.
    87     };
    88 
    89     /// The type of the status map
    90     typedef typename Graph::template NodeMap<Status> StatusMap;
    91 
    92   private:
    93 
    94     TEMPLATE_GRAPH_TYPEDEFS(Graph);
    95 
    96     typedef UnionFindEnum<IntNodeMap> BlossomSet;
    97     typedef ExtendFindEnum<IntNodeMap> TreeSet;
    98     typedef RangeMap<Node> NodeIntMap;
    99     typedef MatchingMap EarMap;
   100     typedef std::vector<Node> NodeQueue;
   101 
   102     const Graph& _graph;
   103     MatchingMap* _matching;
   104     StatusMap* _status;
   105 
   106     EarMap* _ear;
   107 
   108     IntNodeMap* _blossom_set_index;
   109     BlossomSet* _blossom_set;
   110     NodeIntMap* _blossom_rep;
   111 
   112     IntNodeMap* _tree_set_index;
   113     TreeSet* _tree_set;
   114 
   115     NodeQueue _node_queue;
   116     int _process, _postpone, _last;
   117 
   118     int _node_num;
   119 
   120   private:
   121 
   122     void createStructures() {
   123       _node_num = countNodes(_graph);
   124       if (!_matching) {
   125         _matching = new MatchingMap(_graph);
   126       }
   127       if (!_status) {
   128         _status = new StatusMap(_graph);
   129       }
   130       if (!_ear) {
   131         _ear = new EarMap(_graph);
   132       }
   133       if (!_blossom_set) {
   134         _blossom_set_index = new IntNodeMap(_graph);
   135         _blossom_set = new BlossomSet(*_blossom_set_index);
   136       }
   137       if (!_blossom_rep) {
   138         _blossom_rep = new NodeIntMap(_node_num);
   139       }
   140       if (!_tree_set) {
   141         _tree_set_index = new IntNodeMap(_graph);
   142         _tree_set = new TreeSet(*_tree_set_index);
   143       }
   144       _node_queue.resize(_node_num);
   145     }
   146 
   147     void destroyStructures() {
   148       if (_matching) {
   149         delete _matching;
   150       }
   151       if (_status) {
   152         delete _status;
   153       }
   154       if (_ear) {
   155         delete _ear;
   156       }
   157       if (_blossom_set) {
   158         delete _blossom_set;
   159         delete _blossom_set_index;
   160       }
   161       if (_blossom_rep) {
   162         delete _blossom_rep;
   163       }
   164       if (_tree_set) {
   165         delete _tree_set_index;
   166         delete _tree_set;
   167       }
   168     }
   169 
   170     void processDense(const Node& n) {
   171       _process = _postpone = _last = 0;
   172       _node_queue[_last++] = n;
   173 
   174       while (_process != _last) {
   175         Node u = _node_queue[_process++];
   176         for (OutArcIt a(_graph, u); a != INVALID; ++a) {
   177           Node v = _graph.target(a);
   178           if ((*_status)[v] == MATCHED) {
   179             extendOnArc(a);
   180           } else if ((*_status)[v] == UNMATCHED) {
   181             augmentOnArc(a);
   182             return;
   183           }
   184         }
   185       }
   186 
   187       while (_postpone != _last) {
   188         Node u = _node_queue[_postpone++];
   189 
   190         for (OutArcIt a(_graph, u); a != INVALID ; ++a) {
   191           Node v = _graph.target(a);
   192 
   193           if ((*_status)[v] == EVEN) {
   194             if (_blossom_set->find(u) != _blossom_set->find(v)) {
   195               shrinkOnEdge(a);
   196             }
   197           }
   198 
   199           while (_process != _last) {
   200             Node w = _node_queue[_process++];
   201             for (OutArcIt b(_graph, w); b != INVALID; ++b) {
   202               Node x = _graph.target(b);
   203               if ((*_status)[x] == MATCHED) {
   204                 extendOnArc(b);
   205               } else if ((*_status)[x] == UNMATCHED) {
   206                 augmentOnArc(b);
   207                 return;
   208               }
   209             }
   210           }
   211         }
   212       }
   213     }
   214 
   215     void processSparse(const Node& n) {
   216       _process = _last = 0;
   217       _node_queue[_last++] = n;
   218       while (_process != _last) {
   219         Node u = _node_queue[_process++];
   220         for (OutArcIt a(_graph, u); a != INVALID; ++a) {
   221           Node v = _graph.target(a);
   222 
   223           if ((*_status)[v] == EVEN) {
   224             if (_blossom_set->find(u) != _blossom_set->find(v)) {
   225               shrinkOnEdge(a);
   226             }
   227           } else if ((*_status)[v] == MATCHED) {
   228             extendOnArc(a);
   229           } else if ((*_status)[v] == UNMATCHED) {
   230             augmentOnArc(a);
   231             return;
   232           }
   233         }
   234       }
   235     }
   236 
   237     void shrinkOnEdge(const Edge& e) {
   238       Node nca = INVALID;
   239 
   240       {
   241         std::set<Node> left_set, right_set;
   242 
   243         Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))];
   244         left_set.insert(left);
   245 
   246         Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))];
   247         right_set.insert(right);
   248 
   249         while (true) {
   250           if ((*_matching)[left] == INVALID) break;
   251           left = _graph.target((*_matching)[left]);
   252           left = (*_blossom_rep)[_blossom_set->
   253                                  find(_graph.target((*_ear)[left]))];
   254           if (right_set.find(left) != right_set.end()) {
   255             nca = left;
   256             break;
   257           }
   258           left_set.insert(left);
   259 
   260           if ((*_matching)[right] == INVALID) break;
   261           right = _graph.target((*_matching)[right]);
   262           right = (*_blossom_rep)[_blossom_set->
   263                                   find(_graph.target((*_ear)[right]))];
   264           if (left_set.find(right) != left_set.end()) {
   265             nca = right;
   266             break;
   267           }
   268           right_set.insert(right);
   269         }
   270 
   271         if (nca == INVALID) {
   272           if ((*_matching)[left] == INVALID) {
   273             nca = right;
   274             while (left_set.find(nca) == left_set.end()) {
   275               nca = _graph.target((*_matching)[nca]);
   276               nca =(*_blossom_rep)[_blossom_set->
   277                                    find(_graph.target((*_ear)[nca]))];
   278             }
   279           } else {
   280             nca = left;
   281             while (right_set.find(nca) == right_set.end()) {
   282               nca = _graph.target((*_matching)[nca]);
   283               nca = (*_blossom_rep)[_blossom_set->
   284                                    find(_graph.target((*_ear)[nca]))];
   285             }
   286           }
   287         }
   288       }
   289 
   290       {
   291 
   292         Node node = _graph.u(e);
   293         Arc arc = _graph.direct(e, true);
   294         Node base = (*_blossom_rep)[_blossom_set->find(node)];
   295 
   296         while (base != nca) {
   297           (*_ear)[node] = arc;
   298 
   299           Node n = node;
   300           while (n != base) {
   301             n = _graph.target((*_matching)[n]);
   302             Arc a = (*_ear)[n];
   303             n = _graph.target(a);
   304             (*_ear)[n] = _graph.oppositeArc(a);
   305           }
   306           node = _graph.target((*_matching)[base]);
   307           _tree_set->erase(base);
   308           _tree_set->erase(node);
   309           _blossom_set->insert(node, _blossom_set->find(base));
   310           (*_status)[node] = EVEN;
   311           _node_queue[_last++] = node;
   312           arc = _graph.oppositeArc((*_ear)[node]);
   313           node = _graph.target((*_ear)[node]);
   314           base = (*_blossom_rep)[_blossom_set->find(node)];
   315           _blossom_set->join(_graph.target(arc), base);
   316         }
   317       }
   318 
   319       (*_blossom_rep)[_blossom_set->find(nca)] = nca;
   320 
   321       {
   322 
   323         Node node = _graph.v(e);
   324         Arc arc = _graph.direct(e, false);
   325         Node base = (*_blossom_rep)[_blossom_set->find(node)];
   326 
   327         while (base != nca) {
   328           (*_ear)[node] = arc;
   329 
   330           Node n = node;
   331           while (n != base) {
   332             n = _graph.target((*_matching)[n]);
   333             Arc a = (*_ear)[n];
   334             n = _graph.target(a);
   335             (*_ear)[n] = _graph.oppositeArc(a);
   336           }
   337           node = _graph.target((*_matching)[base]);
   338           _tree_set->erase(base);
   339           _tree_set->erase(node);
   340           _blossom_set->insert(node, _blossom_set->find(base));
   341           (*_status)[node] = EVEN;
   342           _node_queue[_last++] = node;
   343           arc = _graph.oppositeArc((*_ear)[node]);
   344           node = _graph.target((*_ear)[node]);
   345           base = (*_blossom_rep)[_blossom_set->find(node)];
   346           _blossom_set->join(_graph.target(arc), base);
   347         }
   348       }
   349 
   350       (*_blossom_rep)[_blossom_set->find(nca)] = nca;
   351     }
   352 
   353     void extendOnArc(const Arc& a) {
   354       Node base = _graph.source(a);
   355       Node odd = _graph.target(a);
   356 
   357       (*_ear)[odd] = _graph.oppositeArc(a);
   358       Node even = _graph.target((*_matching)[odd]);
   359       (*_blossom_rep)[_blossom_set->insert(even)] = even;
   360       (*_status)[odd] = ODD;
   361       (*_status)[even] = EVEN;
   362       int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]);
   363       _tree_set->insert(odd, tree);
   364       _tree_set->insert(even, tree);
   365       _node_queue[_last++] = even;
   366 
   367     }
   368 
   369     void augmentOnArc(const Arc& a) {
   370       Node even = _graph.source(a);
   371       Node odd = _graph.target(a);
   372 
   373       int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]);
   374 
   375       (*_matching)[odd] = _graph.oppositeArc(a);
   376       (*_status)[odd] = MATCHED;
   377 
   378       Arc arc = (*_matching)[even];
   379       (*_matching)[even] = a;
   380 
   381       while (arc != INVALID) {
   382         odd = _graph.target(arc);
   383         arc = (*_ear)[odd];
   384         even = _graph.target(arc);
   385         (*_matching)[odd] = arc;
   386         arc = (*_matching)[even];
   387         (*_matching)[even] = _graph.oppositeArc((*_matching)[odd]);
   388       }
   389 
   390       for (typename TreeSet::ItemIt it(*_tree_set, tree);
   391            it != INVALID; ++it) {
   392         if ((*_status)[it] == ODD) {
   393           (*_status)[it] = MATCHED;
   394         } else {
   395           int blossom = _blossom_set->find(it);
   396           for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom);
   397                jt != INVALID; ++jt) {
   398             (*_status)[jt] = MATCHED;
   399           }
   400           _blossom_set->eraseClass(blossom);
   401         }
   402       }
   403       _tree_set->eraseClass(tree);
   404 
   405     }
   406 
   407   public:
   408 
   409     /// \brief Constructor
   410     ///
   411     /// Constructor.
   412     MaxMatching(const Graph& graph)
   413       : _graph(graph), _matching(0), _status(0), _ear(0),
   414         _blossom_set_index(0), _blossom_set(0), _blossom_rep(0),
   415         _tree_set_index(0), _tree_set(0) {}
   416 
   417     ~MaxMatching() {
   418       destroyStructures();
   419     }
   420 
   421     /// \name Execution Control
   422     /// The simplest way to execute the algorithm is to use the
   423     /// \c run() member function.\n
   424     /// If you need better control on the execution, you have to call
   425     /// one of the functions \ref init(), \ref greedyInit() or
   426     /// \ref matchingInit() first, then you can start the algorithm with
   427     /// \ref startSparse() or \ref startDense().
   428 
   429     ///@{
   430 
   431     /// \brief Set the initial matching to the empty matching.
   432     ///
   433     /// This function sets the initial matching to the empty matching.
   434     void init() {
   435       createStructures();
   436       for(NodeIt n(_graph); n != INVALID; ++n) {
   437         (*_matching)[n] = INVALID;
   438         (*_status)[n] = UNMATCHED;
   439       }
   440     }
   441 
   442     /// \brief Find an initial matching in a greedy way.
   443     ///
   444     /// This function finds an initial matching in a greedy way.
   445     void greedyInit() {
   446       createStructures();
   447       for (NodeIt n(_graph); n != INVALID; ++n) {
   448         (*_matching)[n] = INVALID;
   449         (*_status)[n] = UNMATCHED;
   450       }
   451       for (NodeIt n(_graph); n != INVALID; ++n) {
   452         if ((*_matching)[n] == INVALID) {
   453           for (OutArcIt a(_graph, n); a != INVALID ; ++a) {
   454             Node v = _graph.target(a);
   455             if ((*_matching)[v] == INVALID && v != n) {
   456               (*_matching)[n] = a;
   457               (*_status)[n] = MATCHED;
   458               (*_matching)[v] = _graph.oppositeArc(a);
   459               (*_status)[v] = MATCHED;
   460               break;
   461             }
   462           }
   463         }
   464       }
   465     }
   466 
   467 
   468     /// \brief Initialize the matching from a map.
   469     ///
   470     /// This function initializes the matching from a \c bool valued edge
   471     /// map. This map should have the property that there are no two incident
   472     /// edges with \c true value, i.e. it really contains a matching.
   473     /// \return \c true if the map contains a matching.
   474     template <typename MatchingMap>
   475     bool matchingInit(const MatchingMap& matching) {
   476       createStructures();
   477 
   478       for (NodeIt n(_graph); n != INVALID; ++n) {
   479         (*_matching)[n] = INVALID;
   480         (*_status)[n] = UNMATCHED;
   481       }
   482       for(EdgeIt e(_graph); e!=INVALID; ++e) {
   483         if (matching[e]) {
   484 
   485           Node u = _graph.u(e);
   486           if ((*_matching)[u] != INVALID) return false;
   487           (*_matching)[u] = _graph.direct(e, true);
   488           (*_status)[u] = MATCHED;
   489 
   490           Node v = _graph.v(e);
   491           if ((*_matching)[v] != INVALID) return false;
   492           (*_matching)[v] = _graph.direct(e, false);
   493           (*_status)[v] = MATCHED;
   494         }
   495       }
   496       return true;
   497     }
   498 
   499     /// \brief Start Edmonds' algorithm
   500     ///
   501     /// This function runs the original Edmonds' algorithm.
   502     ///
   503     /// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be
   504     /// called before using this function.
   505     void startSparse() {
   506       for(NodeIt n(_graph); n != INVALID; ++n) {
   507         if ((*_status)[n] == UNMATCHED) {
   508           (*_blossom_rep)[_blossom_set->insert(n)] = n;
   509           _tree_set->insert(n);
   510           (*_status)[n] = EVEN;
   511           processSparse(n);
   512         }
   513       }
   514     }
   515 
   516     /// \brief Start Edmonds' algorithm with a heuristic improvement
   517     /// for dense graphs
   518     ///
   519     /// This function runs Edmonds' algorithm with a heuristic of postponing
   520     /// shrinks, therefore resulting in a faster algorithm for dense graphs.
   521     ///
   522     /// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be
   523     /// called before using this function.
   524     void startDense() {
   525       for(NodeIt n(_graph); n != INVALID; ++n) {
   526         if ((*_status)[n] == UNMATCHED) {
   527           (*_blossom_rep)[_blossom_set->insert(n)] = n;
   528           _tree_set->insert(n);
   529           (*_status)[n] = EVEN;
   530           processDense(n);
   531         }
   532       }
   533     }
   534 
   535 
   536     /// \brief Run Edmonds' algorithm
   537     ///
   538     /// This function runs Edmonds' algorithm. An additional heuristic of
   539     /// postponing shrinks is used for relatively dense graphs
   540     /// (for which <tt>m>=2*n</tt> holds).
   541     void run() {
   542       if (countEdges(_graph) < 2 * countNodes(_graph)) {
   543         greedyInit();
   544         startSparse();
   545       } else {
   546         init();
   547         startDense();
   548       }
   549     }
   550 
   551     /// @}
   552 
   553     /// \name Primal Solution
   554     /// Functions to get the primal solution, i.e. the maximum matching.
   555 
   556     /// @{
   557 
   558     /// \brief Return the size (cardinality) of the matching.
   559     ///
   560     /// This function returns the size (cardinality) of the current matching.
   561     /// After run() it returns the size of the maximum matching in the graph.
   562     int matchingSize() const {
   563       int size = 0;
   564       for (NodeIt n(_graph); n != INVALID; ++n) {
   565         if ((*_matching)[n] != INVALID) {
   566           ++size;
   567         }
   568       }
   569       return size / 2;
   570     }
   571 
   572     /// \brief Return \c true if the given edge is in the matching.
   573     ///
   574     /// This function returns \c true if the given edge is in the current
   575     /// matching.
   576     bool matching(const Edge& edge) const {
   577       return edge == (*_matching)[_graph.u(edge)];
   578     }
   579 
   580     /// \brief Return the matching arc (or edge) incident to the given node.
   581     ///
   582     /// This function returns the matching arc (or edge) incident to the
   583     /// given node in the current matching or \c INVALID if the node is
   584     /// not covered by the matching.
   585     Arc matching(const Node& n) const {
   586       return (*_matching)[n];
   587     }
   588 
   589     /// \brief Return a const reference to the matching map.
   590     ///
   591     /// This function returns a const reference to a node map that stores
   592     /// the matching arc (or edge) incident to each node.
   593     const MatchingMap& matchingMap() const {
   594       return *_matching;
   595     }
   596 
   597     /// \brief Return the mate of the given node.
   598     ///
   599     /// This function returns the mate of the given node in the current
   600     /// matching or \c INVALID if the node is not covered by the matching.
   601     Node mate(const Node& n) const {
   602       return (*_matching)[n] != INVALID ?
   603         _graph.target((*_matching)[n]) : INVALID;
   604     }
   605 
   606     /// @}
   607 
   608     /// \name Dual Solution
   609     /// Functions to get the dual solution, i.e. the Gallai-Edmonds
   610     /// decomposition.
   611 
   612     /// @{
   613 
   614     /// \brief Return the status of the given node in the Edmonds-Gallai
   615     /// decomposition.
   616     ///
   617     /// This function returns the \ref Status "status" of the given node
   618     /// in the Edmonds-Gallai decomposition.
   619     Status status(const Node& n) const {
   620       return (*_status)[n];
   621     }
   622 
   623     /// \brief Return a const reference to the status map, which stores
   624     /// the Edmonds-Gallai decomposition.
   625     ///
   626     /// This function returns a const reference to a node map that stores the
   627     /// \ref Status "status" of each node in the Edmonds-Gallai decomposition.
   628     const StatusMap& statusMap() const {
   629       return *_status;
   630     }
   631 
   632     /// \brief Return \c true if the given node is in the barrier.
   633     ///
   634     /// This function returns \c true if the given node is in the barrier.
   635     bool barrier(const Node& n) const {
   636       return (*_status)[n] == ODD;
   637     }
   638 
   639     /// @}
   640 
   641   };
   642 
   643   /// \ingroup matching
   644   ///
   645   /// \brief Weighted matching in general graphs
   646   ///
   647   /// This class provides an efficient implementation of Edmond's
   648   /// maximum weighted matching algorithm. The implementation is based
   649   /// on extensive use of priority queues and provides
   650   /// \f$O(nm\log n)\f$ time complexity.
   651   ///
   652   /// The maximum weighted matching problem is to find a subset of the
   653   /// edges in an undirected graph with maximum overall weight for which
   654   /// each node has at most one incident edge.
   655   /// It can be formulated with the following linear program.
   656   /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
   657   /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
   658       \quad \forall B\in\mathcal{O}\f] */
   659   /// \f[x_e \ge 0\quad \forall e\in E\f]
   660   /// \f[\max \sum_{e\in E}x_ew_e\f]
   661   /// where \f$\delta(X)\f$ is the set of edges incident to a node in
   662   /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
   663   /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
   664   /// subsets of the nodes.
   665   ///
   666   /// The algorithm calculates an optimal matching and a proof of the
   667   /// optimality. The solution of the dual problem can be used to check
   668   /// the result of the algorithm. The dual linear problem is the
   669   /// following.
   670   /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}
   671       z_B \ge w_{uv} \quad \forall uv\in E\f] */
   672   /// \f[y_u \ge 0 \quad \forall u \in V\f]
   673   /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
   674   /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
   675       \frac{\vert B \vert - 1}{2}z_B\f] */
   676   ///
   677   /// The algorithm can be executed with the run() function.
   678   /// After it the matching (the primal solution) and the dual solution
   679   /// can be obtained using the query functions and the
   680   /// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class,
   681   /// which is able to iterate on the nodes of a blossom.
   682   /// If the value type is integer, then the dual solution is multiplied
   683   /// by \ref MaxWeightedMatching::dualScale "4".
   684   ///
   685   /// \tparam GR The undirected graph type the algorithm runs on.
   686   /// \tparam WM The type edge weight map. The default type is
   687   /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
   688 #ifdef DOXYGEN
   689   template <typename GR, typename WM>
   690 #else
   691   template <typename GR,
   692             typename WM = typename GR::template EdgeMap<int> >
   693 #endif
   694   class MaxWeightedMatching {
   695   public:
   696 
   697     /// The graph type of the algorithm
   698     typedef GR Graph;
   699     /// The type of the edge weight map
   700     typedef WM WeightMap;
   701     /// The value type of the edge weights
   702     typedef typename WeightMap::Value Value;
   703 
   704     /// The type of the matching map
   705     typedef typename Graph::template NodeMap<typename Graph::Arc>
   706     MatchingMap;
   707 
   708     /// \brief Scaling factor for dual solution
   709     ///
   710     /// Scaling factor for dual solution. It is equal to 4 or 1
   711     /// according to the value type.
   712     static const int dualScale =
   713       std::numeric_limits<Value>::is_integer ? 4 : 1;
   714 
   715   private:
   716 
   717     TEMPLATE_GRAPH_TYPEDEFS(Graph);
   718 
   719     typedef typename Graph::template NodeMap<Value> NodePotential;
   720     typedef std::vector<Node> BlossomNodeList;
   721 
   722     struct BlossomVariable {
   723       int begin, end;
   724       Value value;
   725 
   726       BlossomVariable(int _begin, int _end, Value _value)
   727         : begin(_begin), end(_end), value(_value) {}
   728 
   729     };
   730 
   731     typedef std::vector<BlossomVariable> BlossomPotential;
   732 
   733     const Graph& _graph;
   734     const WeightMap& _weight;
   735 
   736     MatchingMap* _matching;
   737 
   738     NodePotential* _node_potential;
   739 
   740     BlossomPotential _blossom_potential;
   741     BlossomNodeList _blossom_node_list;
   742 
   743     int _node_num;
   744     int _blossom_num;
   745 
   746     typedef RangeMap<int> IntIntMap;
   747 
   748     enum Status {
   749       EVEN = -1, MATCHED = 0, ODD = 1
   750     };
   751 
   752     typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
   753     struct BlossomData {
   754       int tree;
   755       Status status;
   756       Arc pred, next;
   757       Value pot, offset;
   758       Node base;
   759     };
   760 
   761     IntNodeMap *_blossom_index;
   762     BlossomSet *_blossom_set;
   763     RangeMap<BlossomData>* _blossom_data;
   764 
   765     IntNodeMap *_node_index;
   766     IntArcMap *_node_heap_index;
   767 
   768     struct NodeData {
   769 
   770       NodeData(IntArcMap& node_heap_index)
   771         : heap(node_heap_index) {}
   772 
   773       int blossom;
   774       Value pot;
   775       BinHeap<Value, IntArcMap> heap;
   776       std::map<int, Arc> heap_index;
   777 
   778       int tree;
   779     };
   780 
   781     RangeMap<NodeData>* _node_data;
   782 
   783     typedef ExtendFindEnum<IntIntMap> TreeSet;
   784 
   785     IntIntMap *_tree_set_index;
   786     TreeSet *_tree_set;
   787 
   788     IntNodeMap *_delta1_index;
   789     BinHeap<Value, IntNodeMap> *_delta1;
   790 
   791     IntIntMap *_delta2_index;
   792     BinHeap<Value, IntIntMap> *_delta2;
   793 
   794     IntEdgeMap *_delta3_index;
   795     BinHeap<Value, IntEdgeMap> *_delta3;
   796 
   797     IntIntMap *_delta4_index;
   798     BinHeap<Value, IntIntMap> *_delta4;
   799 
   800     Value _delta_sum;
   801     int _unmatched;
   802 
   803     typedef MaxWeightedFractionalMatching<Graph, WeightMap> FractionalMatching;
   804     FractionalMatching *_fractional;
   805 
   806     void createStructures() {
   807       _node_num = countNodes(_graph);
   808       _blossom_num = _node_num * 3 / 2;
   809 
   810       if (!_matching) {
   811         _matching = new MatchingMap(_graph);
   812       }
   813       if (!_node_potential) {
   814         _node_potential = new NodePotential(_graph);
   815       }
   816       if (!_blossom_set) {
   817         _blossom_index = new IntNodeMap(_graph);
   818         _blossom_set = new BlossomSet(*_blossom_index);
   819         _blossom_data = new RangeMap<BlossomData>(_blossom_num);
   820       }
   821 
   822       if (!_node_index) {
   823         _node_index = new IntNodeMap(_graph);
   824         _node_heap_index = new IntArcMap(_graph);
   825         _node_data = new RangeMap<NodeData>(_node_num,
   826                                               NodeData(*_node_heap_index));
   827       }
   828 
   829       if (!_tree_set) {
   830         _tree_set_index = new IntIntMap(_blossom_num);
   831         _tree_set = new TreeSet(*_tree_set_index);
   832       }
   833       if (!_delta1) {
   834         _delta1_index = new IntNodeMap(_graph);
   835         _delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index);
   836       }
   837       if (!_delta2) {
   838         _delta2_index = new IntIntMap(_blossom_num);
   839         _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
   840       }
   841       if (!_delta3) {
   842         _delta3_index = new IntEdgeMap(_graph);
   843         _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
   844       }
   845       if (!_delta4) {
   846         _delta4_index = new IntIntMap(_blossom_num);
   847         _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
   848       }
   849     }
   850 
   851     void destroyStructures() {
   852       if (_matching) {
   853         delete _matching;
   854       }
   855       if (_node_potential) {
   856         delete _node_potential;
   857       }
   858       if (_blossom_set) {
   859         delete _blossom_index;
   860         delete _blossom_set;
   861         delete _blossom_data;
   862       }
   863 
   864       if (_node_index) {
   865         delete _node_index;
   866         delete _node_heap_index;
   867         delete _node_data;
   868       }
   869 
   870       if (_tree_set) {
   871         delete _tree_set_index;
   872         delete _tree_set;
   873       }
   874       if (_delta1) {
   875         delete _delta1_index;
   876         delete _delta1;
   877       }
   878       if (_delta2) {
   879         delete _delta2_index;
   880         delete _delta2;
   881       }
   882       if (_delta3) {
   883         delete _delta3_index;
   884         delete _delta3;
   885       }
   886       if (_delta4) {
   887         delete _delta4_index;
   888         delete _delta4;
   889       }
   890     }
   891 
   892     void matchedToEven(int blossom, int tree) {
   893       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   894         _delta2->erase(blossom);
   895       }
   896 
   897       if (!_blossom_set->trivial(blossom)) {
   898         (*_blossom_data)[blossom].pot -=
   899           2 * (_delta_sum - (*_blossom_data)[blossom].offset);
   900       }
   901 
   902       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   903            n != INVALID; ++n) {
   904 
   905         _blossom_set->increase(n, std::numeric_limits<Value>::max());
   906         int ni = (*_node_index)[n];
   907 
   908         (*_node_data)[ni].heap.clear();
   909         (*_node_data)[ni].heap_index.clear();
   910 
   911         (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
   912 
   913         _delta1->push(n, (*_node_data)[ni].pot);
   914 
   915         for (InArcIt e(_graph, n); e != INVALID; ++e) {
   916           Node v = _graph.source(e);
   917           int vb = _blossom_set->find(v);
   918           int vi = (*_node_index)[v];
   919 
   920           Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   921             dualScale * _weight[e];
   922 
   923           if ((*_blossom_data)[vb].status == EVEN) {
   924             if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
   925               _delta3->push(e, rw / 2);
   926             }
   927           } else {
   928             typename std::map<int, Arc>::iterator it =
   929               (*_node_data)[vi].heap_index.find(tree);
   930 
   931             if (it != (*_node_data)[vi].heap_index.end()) {
   932               if ((*_node_data)[vi].heap[it->second] > rw) {
   933                 (*_node_data)[vi].heap.replace(it->second, e);
   934                 (*_node_data)[vi].heap.decrease(e, rw);
   935                 it->second = e;
   936               }
   937             } else {
   938               (*_node_data)[vi].heap.push(e, rw);
   939               (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
   940             }
   941 
   942             if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
   943               _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
   944 
   945               if ((*_blossom_data)[vb].status == MATCHED) {
   946                 if (_delta2->state(vb) != _delta2->IN_HEAP) {
   947                   _delta2->push(vb, _blossom_set->classPrio(vb) -
   948                                (*_blossom_data)[vb].offset);
   949                 } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
   950                            (*_blossom_data)[vb].offset) {
   951                   _delta2->decrease(vb, _blossom_set->classPrio(vb) -
   952                                    (*_blossom_data)[vb].offset);
   953                 }
   954               }
   955             }
   956           }
   957         }
   958       }
   959       (*_blossom_data)[blossom].offset = 0;
   960     }
   961 
   962     void matchedToOdd(int blossom) {
   963       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   964         _delta2->erase(blossom);
   965       }
   966       (*_blossom_data)[blossom].offset += _delta_sum;
   967       if (!_blossom_set->trivial(blossom)) {
   968         _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
   969                       (*_blossom_data)[blossom].offset);
   970       }
   971     }
   972 
   973     void evenToMatched(int blossom, int tree) {
   974       if (!_blossom_set->trivial(blossom)) {
   975         (*_blossom_data)[blossom].pot += 2 * _delta_sum;
   976       }
   977 
   978       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   979            n != INVALID; ++n) {
   980         int ni = (*_node_index)[n];
   981         (*_node_data)[ni].pot -= _delta_sum;
   982 
   983         _delta1->erase(n);
   984 
   985         for (InArcIt e(_graph, n); e != INVALID; ++e) {
   986           Node v = _graph.source(e);
   987           int vb = _blossom_set->find(v);
   988           int vi = (*_node_index)[v];
   989 
   990           Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   991             dualScale * _weight[e];
   992 
   993           if (vb == blossom) {
   994             if (_delta3->state(e) == _delta3->IN_HEAP) {
   995               _delta3->erase(e);
   996             }
   997           } else if ((*_blossom_data)[vb].status == EVEN) {
   998 
   999             if (_delta3->state(e) == _delta3->IN_HEAP) {
  1000               _delta3->erase(e);
  1001             }
  1002 
  1003             int vt = _tree_set->find(vb);
  1004 
  1005             if (vt != tree) {
  1006 
  1007               Arc r = _graph.oppositeArc(e);
  1008 
  1009               typename std::map<int, Arc>::iterator it =
  1010                 (*_node_data)[ni].heap_index.find(vt);
  1011 
  1012               if (it != (*_node_data)[ni].heap_index.end()) {
  1013                 if ((*_node_data)[ni].heap[it->second] > rw) {
  1014                   (*_node_data)[ni].heap.replace(it->second, r);
  1015                   (*_node_data)[ni].heap.decrease(r, rw);
  1016                   it->second = r;
  1017                 }
  1018               } else {
  1019                 (*_node_data)[ni].heap.push(r, rw);
  1020                 (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  1021               }
  1022 
  1023               if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  1024                 _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  1025 
  1026                 if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  1027                   _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  1028                                (*_blossom_data)[blossom].offset);
  1029                 } else if ((*_delta2)[blossom] >
  1030                            _blossom_set->classPrio(blossom) -
  1031                            (*_blossom_data)[blossom].offset){
  1032                   _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  1033                                    (*_blossom_data)[blossom].offset);
  1034                 }
  1035               }
  1036             }
  1037           } else {
  1038 
  1039             typename std::map<int, Arc>::iterator it =
  1040               (*_node_data)[vi].heap_index.find(tree);
  1041 
  1042             if (it != (*_node_data)[vi].heap_index.end()) {
  1043               (*_node_data)[vi].heap.erase(it->second);
  1044               (*_node_data)[vi].heap_index.erase(it);
  1045               if ((*_node_data)[vi].heap.empty()) {
  1046                 _blossom_set->increase(v, std::numeric_limits<Value>::max());
  1047               } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
  1048                 _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
  1049               }
  1050 
  1051               if ((*_blossom_data)[vb].status == MATCHED) {
  1052                 if (_blossom_set->classPrio(vb) ==
  1053                     std::numeric_limits<Value>::max()) {
  1054                   _delta2->erase(vb);
  1055                 } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
  1056                            (*_blossom_data)[vb].offset) {
  1057                   _delta2->increase(vb, _blossom_set->classPrio(vb) -
  1058                                    (*_blossom_data)[vb].offset);
  1059                 }
  1060               }
  1061             }
  1062           }
  1063         }
  1064       }
  1065     }
  1066 
  1067     void oddToMatched(int blossom) {
  1068       (*_blossom_data)[blossom].offset -= _delta_sum;
  1069 
  1070       if (_blossom_set->classPrio(blossom) !=
  1071           std::numeric_limits<Value>::max()) {
  1072         _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  1073                       (*_blossom_data)[blossom].offset);
  1074       }
  1075 
  1076       if (!_blossom_set->trivial(blossom)) {
  1077         _delta4->erase(blossom);
  1078       }
  1079     }
  1080 
  1081     void oddToEven(int blossom, int tree) {
  1082       if (!_blossom_set->trivial(blossom)) {
  1083         _delta4->erase(blossom);
  1084         (*_blossom_data)[blossom].pot -=
  1085           2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
  1086       }
  1087 
  1088       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  1089            n != INVALID; ++n) {
  1090         int ni = (*_node_index)[n];
  1091 
  1092         _blossom_set->increase(n, std::numeric_limits<Value>::max());
  1093 
  1094         (*_node_data)[ni].heap.clear();
  1095         (*_node_data)[ni].heap_index.clear();
  1096         (*_node_data)[ni].pot +=
  1097           2 * _delta_sum - (*_blossom_data)[blossom].offset;
  1098 
  1099         _delta1->push(n, (*_node_data)[ni].pot);
  1100 
  1101         for (InArcIt e(_graph, n); e != INVALID; ++e) {
  1102           Node v = _graph.source(e);
  1103           int vb = _blossom_set->find(v);
  1104           int vi = (*_node_index)[v];
  1105 
  1106           Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  1107             dualScale * _weight[e];
  1108 
  1109           if ((*_blossom_data)[vb].status == EVEN) {
  1110             if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  1111               _delta3->push(e, rw / 2);
  1112             }
  1113           } else {
  1114 
  1115             typename std::map<int, Arc>::iterator it =
  1116               (*_node_data)[vi].heap_index.find(tree);
  1117 
  1118             if (it != (*_node_data)[vi].heap_index.end()) {
  1119               if ((*_node_data)[vi].heap[it->second] > rw) {
  1120                 (*_node_data)[vi].heap.replace(it->second, e);
  1121                 (*_node_data)[vi].heap.decrease(e, rw);
  1122                 it->second = e;
  1123               }
  1124             } else {
  1125               (*_node_data)[vi].heap.push(e, rw);
  1126               (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  1127             }
  1128 
  1129             if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  1130               _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  1131 
  1132               if ((*_blossom_data)[vb].status == MATCHED) {
  1133                 if (_delta2->state(vb) != _delta2->IN_HEAP) {
  1134                   _delta2->push(vb, _blossom_set->classPrio(vb) -
  1135                                (*_blossom_data)[vb].offset);
  1136                 } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  1137                            (*_blossom_data)[vb].offset) {
  1138                   _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  1139                                    (*_blossom_data)[vb].offset);
  1140                 }
  1141               }
  1142             }
  1143           }
  1144         }
  1145       }
  1146       (*_blossom_data)[blossom].offset = 0;
  1147     }
  1148 
  1149     void alternatePath(int even, int tree) {
  1150       int odd;
  1151 
  1152       evenToMatched(even, tree);
  1153       (*_blossom_data)[even].status = MATCHED;
  1154 
  1155       while ((*_blossom_data)[even].pred != INVALID) {
  1156         odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
  1157         (*_blossom_data)[odd].status = MATCHED;
  1158         oddToMatched(odd);
  1159         (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
  1160 
  1161         even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
  1162         (*_blossom_data)[even].status = MATCHED;
  1163         evenToMatched(even, tree);
  1164         (*_blossom_data)[even].next =
  1165           _graph.oppositeArc((*_blossom_data)[odd].pred);
  1166       }
  1167 
  1168     }
  1169 
  1170     void destroyTree(int tree) {
  1171       for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
  1172         if ((*_blossom_data)[b].status == EVEN) {
  1173           (*_blossom_data)[b].status = MATCHED;
  1174           evenToMatched(b, tree);
  1175         } else if ((*_blossom_data)[b].status == ODD) {
  1176           (*_blossom_data)[b].status = MATCHED;
  1177           oddToMatched(b);
  1178         }
  1179       }
  1180       _tree_set->eraseClass(tree);
  1181     }
  1182 
  1183 
  1184     void unmatchNode(const Node& node) {
  1185       int blossom = _blossom_set->find(node);
  1186       int tree = _tree_set->find(blossom);
  1187 
  1188       alternatePath(blossom, tree);
  1189       destroyTree(tree);
  1190 
  1191       (*_blossom_data)[blossom].base = node;
  1192       (*_blossom_data)[blossom].next = INVALID;
  1193     }
  1194 
  1195     void augmentOnEdge(const Edge& edge) {
  1196 
  1197       int left = _blossom_set->find(_graph.u(edge));
  1198       int right = _blossom_set->find(_graph.v(edge));
  1199 
  1200       int left_tree = _tree_set->find(left);
  1201       alternatePath(left, left_tree);
  1202       destroyTree(left_tree);
  1203 
  1204       int right_tree = _tree_set->find(right);
  1205       alternatePath(right, right_tree);
  1206       destroyTree(right_tree);
  1207 
  1208       (*_blossom_data)[left].next = _graph.direct(edge, true);
  1209       (*_blossom_data)[right].next = _graph.direct(edge, false);
  1210     }
  1211 
  1212     void augmentOnArc(const Arc& arc) {
  1213 
  1214       int left = _blossom_set->find(_graph.source(arc));
  1215       int right = _blossom_set->find(_graph.target(arc));
  1216 
  1217       (*_blossom_data)[left].status = MATCHED;
  1218 
  1219       int right_tree = _tree_set->find(right);
  1220       alternatePath(right, right_tree);
  1221       destroyTree(right_tree);
  1222 
  1223       (*_blossom_data)[left].next = arc;
  1224       (*_blossom_data)[right].next = _graph.oppositeArc(arc);
  1225     }
  1226 
  1227     void extendOnArc(const Arc& arc) {
  1228       int base = _blossom_set->find(_graph.target(arc));
  1229       int tree = _tree_set->find(base);
  1230 
  1231       int odd = _blossom_set->find(_graph.source(arc));
  1232       _tree_set->insert(odd, tree);
  1233       (*_blossom_data)[odd].status = ODD;
  1234       matchedToOdd(odd);
  1235       (*_blossom_data)[odd].pred = arc;
  1236 
  1237       int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
  1238       (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
  1239       _tree_set->insert(even, tree);
  1240       (*_blossom_data)[even].status = EVEN;
  1241       matchedToEven(even, tree);
  1242     }
  1243 
  1244     void shrinkOnEdge(const Edge& edge, int tree) {
  1245       int nca = -1;
  1246       std::vector<int> left_path, right_path;
  1247 
  1248       {
  1249         std::set<int> left_set, right_set;
  1250         int left = _blossom_set->find(_graph.u(edge));
  1251         left_path.push_back(left);
  1252         left_set.insert(left);
  1253 
  1254         int right = _blossom_set->find(_graph.v(edge));
  1255         right_path.push_back(right);
  1256         right_set.insert(right);
  1257 
  1258         while (true) {
  1259 
  1260           if ((*_blossom_data)[left].pred == INVALID) break;
  1261 
  1262           left =
  1263             _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  1264           left_path.push_back(left);
  1265           left =
  1266             _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  1267           left_path.push_back(left);
  1268 
  1269           left_set.insert(left);
  1270 
  1271           if (right_set.find(left) != right_set.end()) {
  1272             nca = left;
  1273             break;
  1274           }
  1275 
  1276           if ((*_blossom_data)[right].pred == INVALID) break;
  1277 
  1278           right =
  1279             _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  1280           right_path.push_back(right);
  1281           right =
  1282             _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  1283           right_path.push_back(right);
  1284 
  1285           right_set.insert(right);
  1286 
  1287           if (left_set.find(right) != left_set.end()) {
  1288             nca = right;
  1289             break;
  1290           }
  1291 
  1292         }
  1293 
  1294         if (nca == -1) {
  1295           if ((*_blossom_data)[left].pred == INVALID) {
  1296             nca = right;
  1297             while (left_set.find(nca) == left_set.end()) {
  1298               nca =
  1299                 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1300               right_path.push_back(nca);
  1301               nca =
  1302                 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1303               right_path.push_back(nca);
  1304             }
  1305           } else {
  1306             nca = left;
  1307             while (right_set.find(nca) == right_set.end()) {
  1308               nca =
  1309                 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1310               left_path.push_back(nca);
  1311               nca =
  1312                 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1313               left_path.push_back(nca);
  1314             }
  1315           }
  1316         }
  1317       }
  1318 
  1319       std::vector<int> subblossoms;
  1320       Arc prev;
  1321 
  1322       prev = _graph.direct(edge, true);
  1323       for (int i = 0; left_path[i] != nca; i += 2) {
  1324         subblossoms.push_back(left_path[i]);
  1325         (*_blossom_data)[left_path[i]].next = prev;
  1326         _tree_set->erase(left_path[i]);
  1327 
  1328         subblossoms.push_back(left_path[i + 1]);
  1329         (*_blossom_data)[left_path[i + 1]].status = EVEN;
  1330         oddToEven(left_path[i + 1], tree);
  1331         _tree_set->erase(left_path[i + 1]);
  1332         prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
  1333       }
  1334 
  1335       int k = 0;
  1336       while (right_path[k] != nca) ++k;
  1337 
  1338       subblossoms.push_back(nca);
  1339       (*_blossom_data)[nca].next = prev;
  1340 
  1341       for (int i = k - 2; i >= 0; i -= 2) {
  1342         subblossoms.push_back(right_path[i + 1]);
  1343         (*_blossom_data)[right_path[i + 1]].status = EVEN;
  1344         oddToEven(right_path[i + 1], tree);
  1345         _tree_set->erase(right_path[i + 1]);
  1346 
  1347         (*_blossom_data)[right_path[i + 1]].next =
  1348           (*_blossom_data)[right_path[i + 1]].pred;
  1349 
  1350         subblossoms.push_back(right_path[i]);
  1351         _tree_set->erase(right_path[i]);
  1352       }
  1353 
  1354       int surface =
  1355         _blossom_set->join(subblossoms.begin(), subblossoms.end());
  1356 
  1357       for (int i = 0; i < int(subblossoms.size()); ++i) {
  1358         if (!_blossom_set->trivial(subblossoms[i])) {
  1359           (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
  1360         }
  1361         (*_blossom_data)[subblossoms[i]].status = MATCHED;
  1362       }
  1363 
  1364       (*_blossom_data)[surface].pot = -2 * _delta_sum;
  1365       (*_blossom_data)[surface].offset = 0;
  1366       (*_blossom_data)[surface].status = EVEN;
  1367       (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
  1368       (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
  1369 
  1370       _tree_set->insert(surface, tree);
  1371       _tree_set->erase(nca);
  1372     }
  1373 
  1374     void splitBlossom(int blossom) {
  1375       Arc next = (*_blossom_data)[blossom].next;
  1376       Arc pred = (*_blossom_data)[blossom].pred;
  1377 
  1378       int tree = _tree_set->find(blossom);
  1379 
  1380       (*_blossom_data)[blossom].status = MATCHED;
  1381       oddToMatched(blossom);
  1382       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  1383         _delta2->erase(blossom);
  1384       }
  1385 
  1386       std::vector<int> subblossoms;
  1387       _blossom_set->split(blossom, std::back_inserter(subblossoms));
  1388 
  1389       Value offset = (*_blossom_data)[blossom].offset;
  1390       int b = _blossom_set->find(_graph.source(pred));
  1391       int d = _blossom_set->find(_graph.source(next));
  1392 
  1393       int ib = -1, id = -1;
  1394       for (int i = 0; i < int(subblossoms.size()); ++i) {
  1395         if (subblossoms[i] == b) ib = i;
  1396         if (subblossoms[i] == d) id = i;
  1397 
  1398         (*_blossom_data)[subblossoms[i]].offset = offset;
  1399         if (!_blossom_set->trivial(subblossoms[i])) {
  1400           (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
  1401         }
  1402         if (_blossom_set->classPrio(subblossoms[i]) !=
  1403             std::numeric_limits<Value>::max()) {
  1404           _delta2->push(subblossoms[i],
  1405                         _blossom_set->classPrio(subblossoms[i]) -
  1406                         (*_blossom_data)[subblossoms[i]].offset);
  1407         }
  1408       }
  1409 
  1410       if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
  1411         for (int i = (id + 1) % subblossoms.size();
  1412              i != ib; i = (i + 2) % subblossoms.size()) {
  1413           int sb = subblossoms[i];
  1414           int tb = subblossoms[(i + 1) % subblossoms.size()];
  1415           (*_blossom_data)[sb].next =
  1416             _graph.oppositeArc((*_blossom_data)[tb].next);
  1417         }
  1418 
  1419         for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
  1420           int sb = subblossoms[i];
  1421           int tb = subblossoms[(i + 1) % subblossoms.size()];
  1422           int ub = subblossoms[(i + 2) % subblossoms.size()];
  1423 
  1424           (*_blossom_data)[sb].status = ODD;
  1425           matchedToOdd(sb);
  1426           _tree_set->insert(sb, tree);
  1427           (*_blossom_data)[sb].pred = pred;
  1428           (*_blossom_data)[sb].next =
  1429             _graph.oppositeArc((*_blossom_data)[tb].next);
  1430 
  1431           pred = (*_blossom_data)[ub].next;
  1432 
  1433           (*_blossom_data)[tb].status = EVEN;
  1434           matchedToEven(tb, tree);
  1435           _tree_set->insert(tb, tree);
  1436           (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
  1437         }
  1438 
  1439         (*_blossom_data)[subblossoms[id]].status = ODD;
  1440         matchedToOdd(subblossoms[id]);
  1441         _tree_set->insert(subblossoms[id], tree);
  1442         (*_blossom_data)[subblossoms[id]].next = next;
  1443         (*_blossom_data)[subblossoms[id]].pred = pred;
  1444 
  1445       } else {
  1446 
  1447         for (int i = (ib + 1) % subblossoms.size();
  1448              i != id; i = (i + 2) % subblossoms.size()) {
  1449           int sb = subblossoms[i];
  1450           int tb = subblossoms[(i + 1) % subblossoms.size()];
  1451           (*_blossom_data)[sb].next =
  1452             _graph.oppositeArc((*_blossom_data)[tb].next);
  1453         }
  1454 
  1455         for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
  1456           int sb = subblossoms[i];
  1457           int tb = subblossoms[(i + 1) % subblossoms.size()];
  1458           int ub = subblossoms[(i + 2) % subblossoms.size()];
  1459 
  1460           (*_blossom_data)[sb].status = ODD;
  1461           matchedToOdd(sb);
  1462           _tree_set->insert(sb, tree);
  1463           (*_blossom_data)[sb].next = next;
  1464           (*_blossom_data)[sb].pred =
  1465             _graph.oppositeArc((*_blossom_data)[tb].next);
  1466 
  1467           (*_blossom_data)[tb].status = EVEN;
  1468           matchedToEven(tb, tree);
  1469           _tree_set->insert(tb, tree);
  1470           (*_blossom_data)[tb].pred =
  1471             (*_blossom_data)[tb].next =
  1472             _graph.oppositeArc((*_blossom_data)[ub].next);
  1473           next = (*_blossom_data)[ub].next;
  1474         }
  1475 
  1476         (*_blossom_data)[subblossoms[ib]].status = ODD;
  1477         matchedToOdd(subblossoms[ib]);
  1478         _tree_set->insert(subblossoms[ib], tree);
  1479         (*_blossom_data)[subblossoms[ib]].next = next;
  1480         (*_blossom_data)[subblossoms[ib]].pred = pred;
  1481       }
  1482       _tree_set->erase(blossom);
  1483     }
  1484 
  1485     void extractBlossom(int blossom, const Node& base, const Arc& matching) {
  1486       if (_blossom_set->trivial(blossom)) {
  1487         int bi = (*_node_index)[base];
  1488         Value pot = (*_node_data)[bi].pot;
  1489 
  1490         (*_matching)[base] = matching;
  1491         _blossom_node_list.push_back(base);
  1492         (*_node_potential)[base] = pot;
  1493       } else {
  1494 
  1495         Value pot = (*_blossom_data)[blossom].pot;
  1496         int bn = _blossom_node_list.size();
  1497 
  1498         std::vector<int> subblossoms;
  1499         _blossom_set->split(blossom, std::back_inserter(subblossoms));
  1500         int b = _blossom_set->find(base);
  1501         int ib = -1;
  1502         for (int i = 0; i < int(subblossoms.size()); ++i) {
  1503           if (subblossoms[i] == b) { ib = i; break; }
  1504         }
  1505 
  1506         for (int i = 1; i < int(subblossoms.size()); i += 2) {
  1507           int sb = subblossoms[(ib + i) % subblossoms.size()];
  1508           int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
  1509 
  1510           Arc m = (*_blossom_data)[tb].next;
  1511           extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
  1512           extractBlossom(tb, _graph.source(m), m);
  1513         }
  1514         extractBlossom(subblossoms[ib], base, matching);
  1515 
  1516         int en = _blossom_node_list.size();
  1517 
  1518         _blossom_potential.push_back(BlossomVariable(bn, en, pot));
  1519       }
  1520     }
  1521 
  1522     void extractMatching() {
  1523       std::vector<int> blossoms;
  1524       for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
  1525         blossoms.push_back(c);
  1526       }
  1527 
  1528       for (int i = 0; i < int(blossoms.size()); ++i) {
  1529         if ((*_blossom_data)[blossoms[i]].next != INVALID) {
  1530 
  1531           Value offset = (*_blossom_data)[blossoms[i]].offset;
  1532           (*_blossom_data)[blossoms[i]].pot += 2 * offset;
  1533           for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
  1534                n != INVALID; ++n) {
  1535             (*_node_data)[(*_node_index)[n]].pot -= offset;
  1536           }
  1537 
  1538           Arc matching = (*_blossom_data)[blossoms[i]].next;
  1539           Node base = _graph.source(matching);
  1540           extractBlossom(blossoms[i], base, matching);
  1541         } else {
  1542           Node base = (*_blossom_data)[blossoms[i]].base;
  1543           extractBlossom(blossoms[i], base, INVALID);
  1544         }
  1545       }
  1546     }
  1547 
  1548   public:
  1549 
  1550     /// \brief Constructor
  1551     ///
  1552     /// Constructor.
  1553     MaxWeightedMatching(const Graph& graph, const WeightMap& weight)
  1554       : _graph(graph), _weight(weight), _matching(0),
  1555         _node_potential(0), _blossom_potential(), _blossom_node_list(),
  1556         _node_num(0), _blossom_num(0),
  1557 
  1558         _blossom_index(0), _blossom_set(0), _blossom_data(0),
  1559         _node_index(0), _node_heap_index(0), _node_data(0),
  1560         _tree_set_index(0), _tree_set(0),
  1561 
  1562         _delta1_index(0), _delta1(0),
  1563         _delta2_index(0), _delta2(0),
  1564         _delta3_index(0), _delta3(0),
  1565         _delta4_index(0), _delta4(0),
  1566 
  1567         _delta_sum(), _unmatched(0),
  1568 
  1569         _fractional(0)
  1570     {}
  1571 
  1572     ~MaxWeightedMatching() {
  1573       destroyStructures();
  1574       if (_fractional) {
  1575         delete _fractional;
  1576       }
  1577     }
  1578 
  1579     /// \name Execution Control
  1580     /// The simplest way to execute the algorithm is to use the
  1581     /// \ref run() member function.
  1582 
  1583     ///@{
  1584 
  1585     /// \brief Initialize the algorithm
  1586     ///
  1587     /// This function initializes the algorithm.
  1588     void init() {
  1589       createStructures();
  1590 
  1591       for (ArcIt e(_graph); e != INVALID; ++e) {
  1592         (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
  1593       }
  1594       for (NodeIt n(_graph); n != INVALID; ++n) {
  1595         (*_delta1_index)[n] = _delta1->PRE_HEAP;
  1596       }
  1597       for (EdgeIt e(_graph); e != INVALID; ++e) {
  1598         (*_delta3_index)[e] = _delta3->PRE_HEAP;
  1599       }
  1600       for (int i = 0; i < _blossom_num; ++i) {
  1601         (*_delta2_index)[i] = _delta2->PRE_HEAP;
  1602         (*_delta4_index)[i] = _delta4->PRE_HEAP;
  1603       }
  1604 
  1605       _unmatched = _node_num;
  1606 
  1607       int index = 0;
  1608       for (NodeIt n(_graph); n != INVALID; ++n) {
  1609         Value max = 0;
  1610         for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  1611           if (_graph.target(e) == n) continue;
  1612           if ((dualScale * _weight[e]) / 2 > max) {
  1613             max = (dualScale * _weight[e]) / 2;
  1614           }
  1615         }
  1616         (*_node_index)[n] = index;
  1617         (*_node_data)[index].pot = max;
  1618         _delta1->push(n, max);
  1619         int blossom =
  1620           _blossom_set->insert(n, std::numeric_limits<Value>::max());
  1621 
  1622         _tree_set->insert(blossom);
  1623 
  1624         (*_blossom_data)[blossom].status = EVEN;
  1625         (*_blossom_data)[blossom].pred = INVALID;
  1626         (*_blossom_data)[blossom].next = INVALID;
  1627         (*_blossom_data)[blossom].pot = 0;
  1628         (*_blossom_data)[blossom].offset = 0;
  1629         ++index;
  1630       }
  1631       for (EdgeIt e(_graph); e != INVALID; ++e) {
  1632         int si = (*_node_index)[_graph.u(e)];
  1633         int ti = (*_node_index)[_graph.v(e)];
  1634         if (_graph.u(e) != _graph.v(e)) {
  1635           _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
  1636                             dualScale * _weight[e]) / 2);
  1637         }
  1638       }
  1639     }
  1640 
  1641     /// \brief Initialize the algorithm with fractional matching
  1642     ///
  1643     /// This function initializes the algorithm with a fractional
  1644     /// matching. This initialization is also called jumpstart heuristic.
  1645     void fractionalInit() {
  1646       createStructures();
  1647       
  1648       if (_fractional == 0) {
  1649         _fractional = new FractionalMatching(_graph, _weight, false);
  1650       }
  1651       _fractional->run();
  1652 
  1653       for (ArcIt e(_graph); e != INVALID; ++e) {
  1654         (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
  1655       }
  1656       for (NodeIt n(_graph); n != INVALID; ++n) {
  1657         (*_delta1_index)[n] = _delta1->PRE_HEAP;
  1658       }
  1659       for (EdgeIt e(_graph); e != INVALID; ++e) {
  1660         (*_delta3_index)[e] = _delta3->PRE_HEAP;
  1661       }
  1662       for (int i = 0; i < _blossom_num; ++i) {
  1663         (*_delta2_index)[i] = _delta2->PRE_HEAP;
  1664         (*_delta4_index)[i] = _delta4->PRE_HEAP;
  1665       }
  1666 
  1667       _unmatched = 0;
  1668 
  1669       int index = 0;
  1670       for (NodeIt n(_graph); n != INVALID; ++n) {
  1671         Value pot = _fractional->nodeValue(n);
  1672         (*_node_index)[n] = index;
  1673         (*_node_data)[index].pot = pot;
  1674         int blossom =
  1675           _blossom_set->insert(n, std::numeric_limits<Value>::max());
  1676 
  1677         (*_blossom_data)[blossom].status = MATCHED;
  1678         (*_blossom_data)[blossom].pred = INVALID;
  1679         (*_blossom_data)[blossom].next = _fractional->matching(n);
  1680         if (_fractional->matching(n) == INVALID) {
  1681           (*_blossom_data)[blossom].base = n;
  1682         }
  1683         (*_blossom_data)[blossom].pot = 0;
  1684         (*_blossom_data)[blossom].offset = 0;
  1685         ++index;
  1686       }
  1687 
  1688       typename Graph::template NodeMap<bool> processed(_graph, false);
  1689       for (NodeIt n(_graph); n != INVALID; ++n) {
  1690         if (processed[n]) continue;
  1691         processed[n] = true;
  1692         if (_fractional->matching(n) == INVALID) continue;
  1693         int num = 1;
  1694         Node v = _graph.target(_fractional->matching(n));
  1695         while (n != v) {
  1696           processed[v] = true;
  1697           v = _graph.target(_fractional->matching(v));
  1698           ++num;
  1699         }
  1700 
  1701         if (num % 2 == 1) {
  1702           std::vector<int> subblossoms(num);
  1703 
  1704           subblossoms[--num] = _blossom_set->find(n);
  1705           _delta1->push(n, _fractional->nodeValue(n));
  1706           v = _graph.target(_fractional->matching(n));
  1707           while (n != v) {
  1708             subblossoms[--num] = _blossom_set->find(v);
  1709             _delta1->push(v, _fractional->nodeValue(v));
  1710             v = _graph.target(_fractional->matching(v));            
  1711           }
  1712           
  1713           int surface = 
  1714             _blossom_set->join(subblossoms.begin(), subblossoms.end());
  1715           (*_blossom_data)[surface].status = EVEN;
  1716           (*_blossom_data)[surface].pred = INVALID;
  1717           (*_blossom_data)[surface].next = INVALID;
  1718           (*_blossom_data)[surface].pot = 0;
  1719           (*_blossom_data)[surface].offset = 0;
  1720           
  1721           _tree_set->insert(surface);
  1722           ++_unmatched;
  1723         }
  1724       }
  1725 
  1726       for (EdgeIt e(_graph); e != INVALID; ++e) {
  1727         int si = (*_node_index)[_graph.u(e)];
  1728         int sb = _blossom_set->find(_graph.u(e));
  1729         int ti = (*_node_index)[_graph.v(e)];
  1730         int tb = _blossom_set->find(_graph.v(e));
  1731         if ((*_blossom_data)[sb].status == EVEN &&
  1732             (*_blossom_data)[tb].status == EVEN && sb != tb) {
  1733           _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
  1734                             dualScale * _weight[e]) / 2);
  1735         }
  1736       }
  1737 
  1738       for (NodeIt n(_graph); n != INVALID; ++n) {
  1739         int nb = _blossom_set->find(n);
  1740         if ((*_blossom_data)[nb].status != MATCHED) continue;
  1741         int ni = (*_node_index)[n];
  1742 
  1743         for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  1744           Node v = _graph.target(e);
  1745           int vb = _blossom_set->find(v);
  1746           int vi = (*_node_index)[v];
  1747 
  1748           Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  1749             dualScale * _weight[e];
  1750 
  1751           if ((*_blossom_data)[vb].status == EVEN) {
  1752 
  1753             int vt = _tree_set->find(vb);
  1754 
  1755             typename std::map<int, Arc>::iterator it =
  1756               (*_node_data)[ni].heap_index.find(vt);
  1757 
  1758             if (it != (*_node_data)[ni].heap_index.end()) {
  1759               if ((*_node_data)[ni].heap[it->second] > rw) {
  1760                 (*_node_data)[ni].heap.replace(it->second, e);
  1761                 (*_node_data)[ni].heap.decrease(e, rw);
  1762                 it->second = e;
  1763               }
  1764             } else {
  1765               (*_node_data)[ni].heap.push(e, rw);
  1766               (*_node_data)[ni].heap_index.insert(std::make_pair(vt, e));
  1767             }
  1768           }
  1769         }
  1770             
  1771         if (!(*_node_data)[ni].heap.empty()) {
  1772           _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  1773           _delta2->push(nb, _blossom_set->classPrio(nb));
  1774         }
  1775       }
  1776     }
  1777 
  1778     /// \brief Start the algorithm
  1779     ///
  1780     /// This function starts the algorithm.
  1781     ///
  1782     /// \pre \ref init() or \ref fractionalInit() must be called
  1783     /// before using this function.
  1784     void start() {
  1785       enum OpType {
  1786         D1, D2, D3, D4
  1787       };
  1788 
  1789       while (_unmatched > 0) {
  1790         Value d1 = !_delta1->empty() ?
  1791           _delta1->prio() : std::numeric_limits<Value>::max();
  1792 
  1793         Value d2 = !_delta2->empty() ?
  1794           _delta2->prio() : std::numeric_limits<Value>::max();
  1795 
  1796         Value d3 = !_delta3->empty() ?
  1797           _delta3->prio() : std::numeric_limits<Value>::max();
  1798 
  1799         Value d4 = !_delta4->empty() ?
  1800           _delta4->prio() : std::numeric_limits<Value>::max();
  1801 
  1802         _delta_sum = d3; OpType ot = D3;
  1803         if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; }
  1804         if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
  1805         if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  1806 
  1807         switch (ot) {
  1808         case D1:
  1809           {
  1810             Node n = _delta1->top();
  1811             unmatchNode(n);
  1812             --_unmatched;
  1813           }
  1814           break;
  1815         case D2:
  1816           {
  1817             int blossom = _delta2->top();
  1818             Node n = _blossom_set->classTop(blossom);
  1819             Arc a = (*_node_data)[(*_node_index)[n]].heap.top();
  1820             if ((*_blossom_data)[blossom].next == INVALID) {
  1821               augmentOnArc(a);
  1822               --_unmatched;
  1823             } else {
  1824               extendOnArc(a);
  1825             }
  1826           }
  1827           break;
  1828         case D3:
  1829           {
  1830             Edge e = _delta3->top();
  1831 
  1832             int left_blossom = _blossom_set->find(_graph.u(e));
  1833             int right_blossom = _blossom_set->find(_graph.v(e));
  1834 
  1835             if (left_blossom == right_blossom) {
  1836               _delta3->pop();
  1837             } else {
  1838               int left_tree = _tree_set->find(left_blossom);
  1839               int right_tree = _tree_set->find(right_blossom);
  1840 
  1841               if (left_tree == right_tree) {
  1842                 shrinkOnEdge(e, left_tree);
  1843               } else {
  1844                 augmentOnEdge(e);
  1845                 _unmatched -= 2;
  1846               }
  1847             }
  1848           } break;
  1849         case D4:
  1850           splitBlossom(_delta4->top());
  1851           break;
  1852         }
  1853       }
  1854       extractMatching();
  1855     }
  1856 
  1857     /// \brief Run the algorithm.
  1858     ///
  1859     /// This method runs the \c %MaxWeightedMatching algorithm.
  1860     ///
  1861     /// \note mwm.run() is just a shortcut of the following code.
  1862     /// \code
  1863     ///   mwm.fractionalInit();
  1864     ///   mwm.start();
  1865     /// \endcode
  1866     void run() {
  1867       fractionalInit();
  1868       start();
  1869     }
  1870 
  1871     /// @}
  1872 
  1873     /// \name Primal Solution
  1874     /// Functions to get the primal solution, i.e. the maximum weighted
  1875     /// matching.\n
  1876     /// Either \ref run() or \ref start() function should be called before
  1877     /// using them.
  1878 
  1879     /// @{
  1880 
  1881     /// \brief Return the weight of the matching.
  1882     ///
  1883     /// This function returns the weight of the found matching.
  1884     ///
  1885     /// \pre Either run() or start() must be called before using this function.
  1886     Value matchingWeight() const {
  1887       Value sum = 0;
  1888       for (NodeIt n(_graph); n != INVALID; ++n) {
  1889         if ((*_matching)[n] != INVALID) {
  1890           sum += _weight[(*_matching)[n]];
  1891         }
  1892       }
  1893       return sum / 2;
  1894     }
  1895 
  1896     /// \brief Return the size (cardinality) of the matching.
  1897     ///
  1898     /// This function returns the size (cardinality) of the found matching.
  1899     ///
  1900     /// \pre Either run() or start() must be called before using this function.
  1901     int matchingSize() const {
  1902       int num = 0;
  1903       for (NodeIt n(_graph); n != INVALID; ++n) {
  1904         if ((*_matching)[n] != INVALID) {
  1905           ++num;
  1906         }
  1907       }
  1908       return num /= 2;
  1909     }
  1910 
  1911     /// \brief Return \c true if the given edge is in the matching.
  1912     ///
  1913     /// This function returns \c true if the given edge is in the found
  1914     /// matching.
  1915     ///
  1916     /// \pre Either run() or start() must be called before using this function.
  1917     bool matching(const Edge& edge) const {
  1918       return edge == (*_matching)[_graph.u(edge)];
  1919     }
  1920 
  1921     /// \brief Return the matching arc (or edge) incident to the given node.
  1922     ///
  1923     /// This function returns the matching arc (or edge) incident to the
  1924     /// given node in the found matching or \c INVALID if the node is
  1925     /// not covered by the matching.
  1926     ///
  1927     /// \pre Either run() or start() must be called before using this function.
  1928     Arc matching(const Node& node) const {
  1929       return (*_matching)[node];
  1930     }
  1931 
  1932     /// \brief Return a const reference to the matching map.
  1933     ///
  1934     /// This function returns a const reference to a node map that stores
  1935     /// the matching arc (or edge) incident to each node.
  1936     const MatchingMap& matchingMap() const {
  1937       return *_matching;
  1938     }
  1939 
  1940     /// \brief Return the mate of the given node.
  1941     ///
  1942     /// This function returns the mate of the given node in the found
  1943     /// matching or \c INVALID if the node is not covered by the matching.
  1944     ///
  1945     /// \pre Either run() or start() must be called before using this function.
  1946     Node mate(const Node& node) const {
  1947       return (*_matching)[node] != INVALID ?
  1948         _graph.target((*_matching)[node]) : INVALID;
  1949     }
  1950 
  1951     /// @}
  1952 
  1953     /// \name Dual Solution
  1954     /// Functions to get the dual solution.\n
  1955     /// Either \ref run() or \ref start() function should be called before
  1956     /// using them.
  1957 
  1958     /// @{
  1959 
  1960     /// \brief Return the value of the dual solution.
  1961     ///
  1962     /// This function returns the value of the dual solution.
  1963     /// It should be equal to the primal value scaled by \ref dualScale
  1964     /// "dual scale".
  1965     ///
  1966     /// \pre Either run() or start() must be called before using this function.
  1967     Value dualValue() const {
  1968       Value sum = 0;
  1969       for (NodeIt n(_graph); n != INVALID; ++n) {
  1970         sum += nodeValue(n);
  1971       }
  1972       for (int i = 0; i < blossomNum(); ++i) {
  1973         sum += blossomValue(i) * (blossomSize(i) / 2);
  1974       }
  1975       return sum;
  1976     }
  1977 
  1978     /// \brief Return the dual value (potential) of the given node.
  1979     ///
  1980     /// This function returns the dual value (potential) of the given node.
  1981     ///
  1982     /// \pre Either run() or start() must be called before using this function.
  1983     Value nodeValue(const Node& n) const {
  1984       return (*_node_potential)[n];
  1985     }
  1986 
  1987     /// \brief Return the number of the blossoms in the basis.
  1988     ///
  1989     /// This function returns the number of the blossoms in the basis.
  1990     ///
  1991     /// \pre Either run() or start() must be called before using this function.
  1992     /// \see BlossomIt
  1993     int blossomNum() const {
  1994       return _blossom_potential.size();
  1995     }
  1996 
  1997     /// \brief Return the number of the nodes in the given blossom.
  1998     ///
  1999     /// This function returns the number of the nodes in the given blossom.
  2000     ///
  2001     /// \pre Either run() or start() must be called before using this function.
  2002     /// \see BlossomIt
  2003     int blossomSize(int k) const {
  2004       return _blossom_potential[k].end - _blossom_potential[k].begin;
  2005     }
  2006 
  2007     /// \brief Return the dual value (ptential) of the given blossom.
  2008     ///
  2009     /// This function returns the dual value (ptential) of the given blossom.
  2010     ///
  2011     /// \pre Either run() or start() must be called before using this function.
  2012     Value blossomValue(int k) const {
  2013       return _blossom_potential[k].value;
  2014     }
  2015 
  2016     /// \brief Iterator for obtaining the nodes of a blossom.
  2017     ///
  2018     /// This class provides an iterator for obtaining the nodes of the
  2019     /// given blossom. It lists a subset of the nodes.
  2020     /// Before using this iterator, you must allocate a
  2021     /// MaxWeightedMatching class and execute it.
  2022     class BlossomIt {
  2023     public:
  2024 
  2025       /// \brief Constructor.
  2026       ///
  2027       /// Constructor to get the nodes of the given variable.
  2028       ///
  2029       /// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or
  2030       /// \ref MaxWeightedMatching::start() "algorithm.start()" must be
  2031       /// called before initializing this iterator.
  2032       BlossomIt(const MaxWeightedMatching& algorithm, int variable)
  2033         : _algorithm(&algorithm)
  2034       {
  2035         _index = _algorithm->_blossom_potential[variable].begin;
  2036         _last = _algorithm->_blossom_potential[variable].end;
  2037       }
  2038 
  2039       /// \brief Conversion to \c Node.
  2040       ///
  2041       /// Conversion to \c Node.
  2042       operator Node() const {
  2043         return _algorithm->_blossom_node_list[_index];
  2044       }
  2045 
  2046       /// \brief Increment operator.
  2047       ///
  2048       /// Increment operator.
  2049       BlossomIt& operator++() {
  2050         ++_index;
  2051         return *this;
  2052       }
  2053 
  2054       /// \brief Validity checking
  2055       ///
  2056       /// Checks whether the iterator is invalid.
  2057       bool operator==(Invalid) const { return _index == _last; }
  2058 
  2059       /// \brief Validity checking
  2060       ///
  2061       /// Checks whether the iterator is valid.
  2062       bool operator!=(Invalid) const { return _index != _last; }
  2063 
  2064     private:
  2065       const MaxWeightedMatching* _algorithm;
  2066       int _last;
  2067       int _index;
  2068     };
  2069 
  2070     /// @}
  2071 
  2072   };
  2073 
  2074   /// \ingroup matching
  2075   ///
  2076   /// \brief Weighted perfect matching in general graphs
  2077   ///
  2078   /// This class provides an efficient implementation of Edmond's
  2079   /// maximum weighted perfect matching algorithm. The implementation
  2080   /// is based on extensive use of priority queues and provides
  2081   /// \f$O(nm\log n)\f$ time complexity.
  2082   ///
  2083   /// The maximum weighted perfect matching problem is to find a subset of
  2084   /// the edges in an undirected graph with maximum overall weight for which
  2085   /// each node has exactly one incident edge.
  2086   /// It can be formulated with the following linear program.
  2087   /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
  2088   /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
  2089       \quad \forall B\in\mathcal{O}\f] */
  2090   /// \f[x_e \ge 0\quad \forall e\in E\f]
  2091   /// \f[\max \sum_{e\in E}x_ew_e\f]
  2092   /// where \f$\delta(X)\f$ is the set of edges incident to a node in
  2093   /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
  2094   /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
  2095   /// subsets of the nodes.
  2096   ///
  2097   /// The algorithm calculates an optimal matching and a proof of the
  2098   /// optimality. The solution of the dual problem can be used to check
  2099   /// the result of the algorithm. The dual linear problem is the
  2100   /// following.
  2101   /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
  2102       w_{uv} \quad \forall uv\in E\f] */
  2103   /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
  2104   /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
  2105       \frac{\vert B \vert - 1}{2}z_B\f] */
  2106   ///
  2107   /// The algorithm can be executed with the run() function.
  2108   /// After it the matching (the primal solution) and the dual solution
  2109   /// can be obtained using the query functions and the
  2110   /// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class,
  2111   /// which is able to iterate on the nodes of a blossom.
  2112   /// If the value type is integer, then the dual solution is multiplied
  2113   /// by \ref MaxWeightedMatching::dualScale "4".
  2114   ///
  2115   /// \tparam GR The undirected graph type the algorithm runs on.
  2116   /// \tparam WM The type edge weight map. The default type is
  2117   /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
  2118 #ifdef DOXYGEN
  2119   template <typename GR, typename WM>
  2120 #else
  2121   template <typename GR,
  2122             typename WM = typename GR::template EdgeMap<int> >
  2123 #endif
  2124   class MaxWeightedPerfectMatching {
  2125   public:
  2126 
  2127     /// The graph type of the algorithm
  2128     typedef GR Graph;
  2129     /// The type of the edge weight map
  2130     typedef WM WeightMap;
  2131     /// The value type of the edge weights
  2132     typedef typename WeightMap::Value Value;
  2133 
  2134     /// \brief Scaling factor for dual solution
  2135     ///
  2136     /// Scaling factor for dual solution, it is equal to 4 or 1
  2137     /// according to the value type.
  2138     static const int dualScale =
  2139       std::numeric_limits<Value>::is_integer ? 4 : 1;
  2140 
  2141     /// The type of the matching map
  2142     typedef typename Graph::template NodeMap<typename Graph::Arc>
  2143     MatchingMap;
  2144 
  2145   private:
  2146 
  2147     TEMPLATE_GRAPH_TYPEDEFS(Graph);
  2148 
  2149     typedef typename Graph::template NodeMap<Value> NodePotential;
  2150     typedef std::vector<Node> BlossomNodeList;
  2151 
  2152     struct BlossomVariable {
  2153       int begin, end;
  2154       Value value;
  2155 
  2156       BlossomVariable(int _begin, int _end, Value _value)
  2157         : begin(_begin), end(_end), value(_value) {}
  2158 
  2159     };
  2160 
  2161     typedef std::vector<BlossomVariable> BlossomPotential;
  2162 
  2163     const Graph& _graph;
  2164     const WeightMap& _weight;
  2165 
  2166     MatchingMap* _matching;
  2167 
  2168     NodePotential* _node_potential;
  2169 
  2170     BlossomPotential _blossom_potential;
  2171     BlossomNodeList _blossom_node_list;
  2172 
  2173     int _node_num;
  2174     int _blossom_num;
  2175 
  2176     typedef RangeMap<int> IntIntMap;
  2177 
  2178     enum Status {
  2179       EVEN = -1, MATCHED = 0, ODD = 1
  2180     };
  2181 
  2182     typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
  2183     struct BlossomData {
  2184       int tree;
  2185       Status status;
  2186       Arc pred, next;
  2187       Value pot, offset;
  2188     };
  2189 
  2190     IntNodeMap *_blossom_index;
  2191     BlossomSet *_blossom_set;
  2192     RangeMap<BlossomData>* _blossom_data;
  2193 
  2194     IntNodeMap *_node_index;
  2195     IntArcMap *_node_heap_index;
  2196 
  2197     struct NodeData {
  2198 
  2199       NodeData(IntArcMap& node_heap_index)
  2200         : heap(node_heap_index) {}
  2201 
  2202       int blossom;
  2203       Value pot;
  2204       BinHeap<Value, IntArcMap> heap;
  2205       std::map<int, Arc> heap_index;
  2206 
  2207       int tree;
  2208     };
  2209 
  2210     RangeMap<NodeData>* _node_data;
  2211 
  2212     typedef ExtendFindEnum<IntIntMap> TreeSet;
  2213 
  2214     IntIntMap *_tree_set_index;
  2215     TreeSet *_tree_set;
  2216 
  2217     IntIntMap *_delta2_index;
  2218     BinHeap<Value, IntIntMap> *_delta2;
  2219 
  2220     IntEdgeMap *_delta3_index;
  2221     BinHeap<Value, IntEdgeMap> *_delta3;
  2222 
  2223     IntIntMap *_delta4_index;
  2224     BinHeap<Value, IntIntMap> *_delta4;
  2225 
  2226     Value _delta_sum;
  2227     int _unmatched;
  2228 
  2229     typedef MaxWeightedPerfectFractionalMatching<Graph, WeightMap> 
  2230     FractionalMatching;
  2231     FractionalMatching *_fractional;
  2232 
  2233     void createStructures() {
  2234       _node_num = countNodes(_graph);
  2235       _blossom_num = _node_num * 3 / 2;
  2236 
  2237       if (!_matching) {
  2238         _matching = new MatchingMap(_graph);
  2239       }
  2240       if (!_node_potential) {
  2241         _node_potential = new NodePotential(_graph);
  2242       }
  2243       if (!_blossom_set) {
  2244         _blossom_index = new IntNodeMap(_graph);
  2245         _blossom_set = new BlossomSet(*_blossom_index);
  2246         _blossom_data = new RangeMap<BlossomData>(_blossom_num);
  2247       }
  2248 
  2249       if (!_node_index) {
  2250         _node_index = new IntNodeMap(_graph);
  2251         _node_heap_index = new IntArcMap(_graph);
  2252         _node_data = new RangeMap<NodeData>(_node_num,
  2253                                             NodeData(*_node_heap_index));
  2254       }
  2255 
  2256       if (!_tree_set) {
  2257         _tree_set_index = new IntIntMap(_blossom_num);
  2258         _tree_set = new TreeSet(*_tree_set_index);
  2259       }
  2260       if (!_delta2) {
  2261         _delta2_index = new IntIntMap(_blossom_num);
  2262         _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
  2263       }
  2264       if (!_delta3) {
  2265         _delta3_index = new IntEdgeMap(_graph);
  2266         _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
  2267       }
  2268       if (!_delta4) {
  2269         _delta4_index = new IntIntMap(_blossom_num);
  2270         _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
  2271       }
  2272     }
  2273 
  2274     void destroyStructures() {
  2275       if (_matching) {
  2276         delete _matching;
  2277       }
  2278       if (_node_potential) {
  2279         delete _node_potential;
  2280       }
  2281       if (_blossom_set) {
  2282         delete _blossom_index;
  2283         delete _blossom_set;
  2284         delete _blossom_data;
  2285       }
  2286 
  2287       if (_node_index) {
  2288         delete _node_index;
  2289         delete _node_heap_index;
  2290         delete _node_data;
  2291       }
  2292 
  2293       if (_tree_set) {
  2294         delete _tree_set_index;
  2295         delete _tree_set;
  2296       }
  2297       if (_delta2) {
  2298         delete _delta2_index;
  2299         delete _delta2;
  2300       }
  2301       if (_delta3) {
  2302         delete _delta3_index;
  2303         delete _delta3;
  2304       }
  2305       if (_delta4) {
  2306         delete _delta4_index;
  2307         delete _delta4;
  2308       }
  2309     }
  2310 
  2311     void matchedToEven(int blossom, int tree) {
  2312       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  2313         _delta2->erase(blossom);
  2314       }
  2315 
  2316       if (!_blossom_set->trivial(blossom)) {
  2317         (*_blossom_data)[blossom].pot -=
  2318           2 * (_delta_sum - (*_blossom_data)[blossom].offset);
  2319       }
  2320 
  2321       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  2322            n != INVALID; ++n) {
  2323 
  2324         _blossom_set->increase(n, std::numeric_limits<Value>::max());
  2325         int ni = (*_node_index)[n];
  2326 
  2327         (*_node_data)[ni].heap.clear();
  2328         (*_node_data)[ni].heap_index.clear();
  2329 
  2330         (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
  2331 
  2332         for (InArcIt e(_graph, n); e != INVALID; ++e) {
  2333           Node v = _graph.source(e);
  2334           int vb = _blossom_set->find(v);
  2335           int vi = (*_node_index)[v];
  2336 
  2337           Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  2338             dualScale * _weight[e];
  2339 
  2340           if ((*_blossom_data)[vb].status == EVEN) {
  2341             if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  2342               _delta3->push(e, rw / 2);
  2343             }
  2344           } else {
  2345             typename std::map<int, Arc>::iterator it =
  2346               (*_node_data)[vi].heap_index.find(tree);
  2347 
  2348             if (it != (*_node_data)[vi].heap_index.end()) {
  2349               if ((*_node_data)[vi].heap[it->second] > rw) {
  2350                 (*_node_data)[vi].heap.replace(it->second, e);
  2351                 (*_node_data)[vi].heap.decrease(e, rw);
  2352                 it->second = e;
  2353               }
  2354             } else {
  2355               (*_node_data)[vi].heap.push(e, rw);
  2356               (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  2357             }
  2358 
  2359             if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  2360               _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  2361 
  2362               if ((*_blossom_data)[vb].status == MATCHED) {
  2363                 if (_delta2->state(vb) != _delta2->IN_HEAP) {
  2364                   _delta2->push(vb, _blossom_set->classPrio(vb) -
  2365                                (*_blossom_data)[vb].offset);
  2366                 } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  2367                            (*_blossom_data)[vb].offset){
  2368                   _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  2369                                    (*_blossom_data)[vb].offset);
  2370                 }
  2371               }
  2372             }
  2373           }
  2374         }
  2375       }
  2376       (*_blossom_data)[blossom].offset = 0;
  2377     }
  2378 
  2379     void matchedToOdd(int blossom) {
  2380       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  2381         _delta2->erase(blossom);
  2382       }
  2383       (*_blossom_data)[blossom].offset += _delta_sum;
  2384       if (!_blossom_set->trivial(blossom)) {
  2385         _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
  2386                      (*_blossom_data)[blossom].offset);
  2387       }
  2388     }
  2389 
  2390     void evenToMatched(int blossom, int tree) {
  2391       if (!_blossom_set->trivial(blossom)) {
  2392         (*_blossom_data)[blossom].pot += 2 * _delta_sum;
  2393       }
  2394 
  2395       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  2396            n != INVALID; ++n) {
  2397         int ni = (*_node_index)[n];
  2398         (*_node_data)[ni].pot -= _delta_sum;
  2399 
  2400         for (InArcIt e(_graph, n); e != INVALID; ++e) {
  2401           Node v = _graph.source(e);
  2402           int vb = _blossom_set->find(v);
  2403           int vi = (*_node_index)[v];
  2404 
  2405           Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  2406             dualScale * _weight[e];
  2407 
  2408           if (vb == blossom) {
  2409             if (_delta3->state(e) == _delta3->IN_HEAP) {
  2410               _delta3->erase(e);
  2411             }
  2412           } else if ((*_blossom_data)[vb].status == EVEN) {
  2413 
  2414             if (_delta3->state(e) == _delta3->IN_HEAP) {
  2415               _delta3->erase(e);
  2416             }
  2417 
  2418             int vt = _tree_set->find(vb);
  2419 
  2420             if (vt != tree) {
  2421 
  2422               Arc r = _graph.oppositeArc(e);
  2423 
  2424               typename std::map<int, Arc>::iterator it =
  2425                 (*_node_data)[ni].heap_index.find(vt);
  2426 
  2427               if (it != (*_node_data)[ni].heap_index.end()) {
  2428                 if ((*_node_data)[ni].heap[it->second] > rw) {
  2429                   (*_node_data)[ni].heap.replace(it->second, r);
  2430                   (*_node_data)[ni].heap.decrease(r, rw);
  2431                   it->second = r;
  2432                 }
  2433               } else {
  2434                 (*_node_data)[ni].heap.push(r, rw);
  2435                 (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  2436               }
  2437 
  2438               if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  2439                 _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  2440 
  2441                 if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  2442                   _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  2443                                (*_blossom_data)[blossom].offset);
  2444                 } else if ((*_delta2)[blossom] >
  2445                            _blossom_set->classPrio(blossom) -
  2446                            (*_blossom_data)[blossom].offset){
  2447                   _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  2448                                    (*_blossom_data)[blossom].offset);
  2449                 }
  2450               }
  2451             }
  2452           } else {
  2453 
  2454             typename std::map<int, Arc>::iterator it =
  2455               (*_node_data)[vi].heap_index.find(tree);
  2456 
  2457             if (it != (*_node_data)[vi].heap_index.end()) {
  2458               (*_node_data)[vi].heap.erase(it->second);
  2459               (*_node_data)[vi].heap_index.erase(it);
  2460               if ((*_node_data)[vi].heap.empty()) {
  2461                 _blossom_set->increase(v, std::numeric_limits<Value>::max());
  2462               } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
  2463                 _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
  2464               }
  2465 
  2466               if ((*_blossom_data)[vb].status == MATCHED) {
  2467                 if (_blossom_set->classPrio(vb) ==
  2468                     std::numeric_limits<Value>::max()) {
  2469                   _delta2->erase(vb);
  2470                 } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
  2471                            (*_blossom_data)[vb].offset) {
  2472                   _delta2->increase(vb, _blossom_set->classPrio(vb) -
  2473                                    (*_blossom_data)[vb].offset);
  2474                 }
  2475               }
  2476             }
  2477           }
  2478         }
  2479       }
  2480     }
  2481 
  2482     void oddToMatched(int blossom) {
  2483       (*_blossom_data)[blossom].offset -= _delta_sum;
  2484 
  2485       if (_blossom_set->classPrio(blossom) !=
  2486           std::numeric_limits<Value>::max()) {
  2487         _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  2488                        (*_blossom_data)[blossom].offset);
  2489       }
  2490 
  2491       if (!_blossom_set->trivial(blossom)) {
  2492         _delta4->erase(blossom);
  2493       }
  2494     }
  2495 
  2496     void oddToEven(int blossom, int tree) {
  2497       if (!_blossom_set->trivial(blossom)) {
  2498         _delta4->erase(blossom);
  2499         (*_blossom_data)[blossom].pot -=
  2500           2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
  2501       }
  2502 
  2503       for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  2504            n != INVALID; ++n) {
  2505         int ni = (*_node_index)[n];
  2506 
  2507         _blossom_set->increase(n, std::numeric_limits<Value>::max());
  2508 
  2509         (*_node_data)[ni].heap.clear();
  2510         (*_node_data)[ni].heap_index.clear();
  2511         (*_node_data)[ni].pot +=
  2512           2 * _delta_sum - (*_blossom_data)[blossom].offset;
  2513 
  2514         for (InArcIt e(_graph, n); e != INVALID; ++e) {
  2515           Node v = _graph.source(e);
  2516           int vb = _blossom_set->find(v);
  2517           int vi = (*_node_index)[v];
  2518 
  2519           Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  2520             dualScale * _weight[e];
  2521 
  2522           if ((*_blossom_data)[vb].status == EVEN) {
  2523             if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  2524               _delta3->push(e, rw / 2);
  2525             }
  2526           } else {
  2527 
  2528             typename std::map<int, Arc>::iterator it =
  2529               (*_node_data)[vi].heap_index.find(tree);
  2530 
  2531             if (it != (*_node_data)[vi].heap_index.end()) {
  2532               if ((*_node_data)[vi].heap[it->second] > rw) {
  2533                 (*_node_data)[vi].heap.replace(it->second, e);
  2534                 (*_node_data)[vi].heap.decrease(e, rw);
  2535                 it->second = e;
  2536               }
  2537             } else {
  2538               (*_node_data)[vi].heap.push(e, rw);
  2539               (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  2540             }
  2541 
  2542             if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  2543               _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  2544 
  2545               if ((*_blossom_data)[vb].status == MATCHED) {
  2546                 if (_delta2->state(vb) != _delta2->IN_HEAP) {
  2547                   _delta2->push(vb, _blossom_set->classPrio(vb) -
  2548                                (*_blossom_data)[vb].offset);
  2549                 } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  2550                            (*_blossom_data)[vb].offset) {
  2551                   _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  2552                                    (*_blossom_data)[vb].offset);
  2553                 }
  2554               }
  2555             }
  2556           }
  2557         }
  2558       }
  2559       (*_blossom_data)[blossom].offset = 0;
  2560     }
  2561 
  2562     void alternatePath(int even, int tree) {
  2563       int odd;
  2564 
  2565       evenToMatched(even, tree);
  2566       (*_blossom_data)[even].status = MATCHED;
  2567 
  2568       while ((*_blossom_data)[even].pred != INVALID) {
  2569         odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
  2570         (*_blossom_data)[odd].status = MATCHED;
  2571         oddToMatched(odd);
  2572         (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
  2573 
  2574         even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
  2575         (*_blossom_data)[even].status = MATCHED;
  2576         evenToMatched(even, tree);
  2577         (*_blossom_data)[even].next =
  2578           _graph.oppositeArc((*_blossom_data)[odd].pred);
  2579       }
  2580 
  2581     }
  2582 
  2583     void destroyTree(int tree) {
  2584       for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
  2585         if ((*_blossom_data)[b].status == EVEN) {
  2586           (*_blossom_data)[b].status = MATCHED;
  2587           evenToMatched(b, tree);
  2588         } else if ((*_blossom_data)[b].status == ODD) {
  2589           (*_blossom_data)[b].status = MATCHED;
  2590           oddToMatched(b);
  2591         }
  2592       }
  2593       _tree_set->eraseClass(tree);
  2594     }
  2595 
  2596     void augmentOnEdge(const Edge& edge) {
  2597 
  2598       int left = _blossom_set->find(_graph.u(edge));
  2599       int right = _blossom_set->find(_graph.v(edge));
  2600 
  2601       int left_tree = _tree_set->find(left);
  2602       alternatePath(left, left_tree);
  2603       destroyTree(left_tree);
  2604 
  2605       int right_tree = _tree_set->find(right);
  2606       alternatePath(right, right_tree);
  2607       destroyTree(right_tree);
  2608 
  2609       (*_blossom_data)[left].next = _graph.direct(edge, true);
  2610       (*_blossom_data)[right].next = _graph.direct(edge, false);
  2611     }
  2612 
  2613     void extendOnArc(const Arc& arc) {
  2614       int base = _blossom_set->find(_graph.target(arc));
  2615       int tree = _tree_set->find(base);
  2616 
  2617       int odd = _blossom_set->find(_graph.source(arc));
  2618       _tree_set->insert(odd, tree);
  2619       (*_blossom_data)[odd].status = ODD;
  2620       matchedToOdd(odd);
  2621       (*_blossom_data)[odd].pred = arc;
  2622 
  2623       int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
  2624       (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
  2625       _tree_set->insert(even, tree);
  2626       (*_blossom_data)[even].status = EVEN;
  2627       matchedToEven(even, tree);
  2628     }
  2629 
  2630     void shrinkOnEdge(const Edge& edge, int tree) {
  2631       int nca = -1;
  2632       std::vector<int> left_path, right_path;
  2633 
  2634       {
  2635         std::set<int> left_set, right_set;
  2636         int left = _blossom_set->find(_graph.u(edge));
  2637         left_path.push_back(left);
  2638         left_set.insert(left);
  2639 
  2640         int right = _blossom_set->find(_graph.v(edge));
  2641         right_path.push_back(right);
  2642         right_set.insert(right);
  2643 
  2644         while (true) {
  2645 
  2646           if ((*_blossom_data)[left].pred == INVALID) break;
  2647 
  2648           left =
  2649             _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  2650           left_path.push_back(left);
  2651           left =
  2652             _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  2653           left_path.push_back(left);
  2654 
  2655           left_set.insert(left);
  2656 
  2657           if (right_set.find(left) != right_set.end()) {
  2658             nca = left;
  2659             break;
  2660           }
  2661 
  2662           if ((*_blossom_data)[right].pred == INVALID) break;
  2663 
  2664           right =
  2665             _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  2666           right_path.push_back(right);
  2667           right =
  2668             _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  2669           right_path.push_back(right);
  2670 
  2671           right_set.insert(right);
  2672 
  2673           if (left_set.find(right) != left_set.end()) {
  2674             nca = right;
  2675             break;
  2676           }
  2677 
  2678         }
  2679 
  2680         if (nca == -1) {
  2681           if ((*_blossom_data)[left].pred == INVALID) {
  2682             nca = right;
  2683             while (left_set.find(nca) == left_set.end()) {
  2684               nca =
  2685                 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2686               right_path.push_back(nca);
  2687               nca =
  2688                 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2689               right_path.push_back(nca);
  2690             }
  2691           } else {
  2692             nca = left;
  2693             while (right_set.find(nca) == right_set.end()) {
  2694               nca =
  2695                 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2696               left_path.push_back(nca);
  2697               nca =
  2698                 _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2699               left_path.push_back(nca);
  2700             }
  2701           }
  2702         }
  2703       }
  2704 
  2705       std::vector<int> subblossoms;
  2706       Arc prev;
  2707 
  2708       prev = _graph.direct(edge, true);
  2709       for (int i = 0; left_path[i] != nca; i += 2) {
  2710         subblossoms.push_back(left_path[i]);
  2711         (*_blossom_data)[left_path[i]].next = prev;
  2712         _tree_set->erase(left_path[i]);
  2713 
  2714         subblossoms.push_back(left_path[i + 1]);
  2715         (*_blossom_data)[left_path[i + 1]].status = EVEN;
  2716         oddToEven(left_path[i + 1], tree);
  2717         _tree_set->erase(left_path[i + 1]);
  2718         prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
  2719       }
  2720 
  2721       int k = 0;
  2722       while (right_path[k] != nca) ++k;
  2723 
  2724       subblossoms.push_back(nca);
  2725       (*_blossom_data)[nca].next = prev;
  2726 
  2727       for (int i = k - 2; i >= 0; i -= 2) {
  2728         subblossoms.push_back(right_path[i + 1]);
  2729         (*_blossom_data)[right_path[i + 1]].status = EVEN;
  2730         oddToEven(right_path[i + 1], tree);
  2731         _tree_set->erase(right_path[i + 1]);
  2732 
  2733         (*_blossom_data)[right_path[i + 1]].next =
  2734           (*_blossom_data)[right_path[i + 1]].pred;
  2735 
  2736         subblossoms.push_back(right_path[i]);
  2737         _tree_set->erase(right_path[i]);
  2738       }
  2739 
  2740       int surface =
  2741         _blossom_set->join(subblossoms.begin(), subblossoms.end());
  2742 
  2743       for (int i = 0; i < int(subblossoms.size()); ++i) {
  2744         if (!_blossom_set->trivial(subblossoms[i])) {
  2745           (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
  2746         }
  2747         (*_blossom_data)[subblossoms[i]].status = MATCHED;
  2748       }
  2749 
  2750       (*_blossom_data)[surface].pot = -2 * _delta_sum;
  2751       (*_blossom_data)[surface].offset = 0;
  2752       (*_blossom_data)[surface].status = EVEN;
  2753       (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
  2754       (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
  2755 
  2756       _tree_set->insert(surface, tree);
  2757       _tree_set->erase(nca);
  2758     }
  2759 
  2760     void splitBlossom(int blossom) {
  2761       Arc next = (*_blossom_data)[blossom].next;
  2762       Arc pred = (*_blossom_data)[blossom].pred;
  2763 
  2764       int tree = _tree_set->find(blossom);
  2765 
  2766       (*_blossom_data)[blossom].status = MATCHED;
  2767       oddToMatched(blossom);
  2768       if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  2769         _delta2->erase(blossom);
  2770       }
  2771 
  2772       std::vector<int> subblossoms;
  2773       _blossom_set->split(blossom, std::back_inserter(subblossoms));
  2774 
  2775       Value offset = (*_blossom_data)[blossom].offset;
  2776       int b = _blossom_set->find(_graph.source(pred));
  2777       int d = _blossom_set->find(_graph.source(next));
  2778 
  2779       int ib = -1, id = -1;
  2780       for (int i = 0; i < int(subblossoms.size()); ++i) {
  2781         if (subblossoms[i] == b) ib = i;
  2782         if (subblossoms[i] == d) id = i;
  2783 
  2784         (*_blossom_data)[subblossoms[i]].offset = offset;
  2785         if (!_blossom_set->trivial(subblossoms[i])) {
  2786           (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
  2787         }
  2788         if (_blossom_set->classPrio(subblossoms[i]) !=
  2789             std::numeric_limits<Value>::max()) {
  2790           _delta2->push(subblossoms[i],
  2791                         _blossom_set->classPrio(subblossoms[i]) -
  2792                         (*_blossom_data)[subblossoms[i]].offset);
  2793         }
  2794       }
  2795 
  2796       if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
  2797         for (int i = (id + 1) % subblossoms.size();
  2798              i != ib; i = (i + 2) % subblossoms.size()) {
  2799           int sb = subblossoms[i];
  2800           int tb = subblossoms[(i + 1) % subblossoms.size()];
  2801           (*_blossom_data)[sb].next =
  2802             _graph.oppositeArc((*_blossom_data)[tb].next);
  2803         }
  2804 
  2805         for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
  2806           int sb = subblossoms[i];
  2807           int tb = subblossoms[(i + 1) % subblossoms.size()];
  2808           int ub = subblossoms[(i + 2) % subblossoms.size()];
  2809 
  2810           (*_blossom_data)[sb].status = ODD;
  2811           matchedToOdd(sb);
  2812           _tree_set->insert(sb, tree);
  2813           (*_blossom_data)[sb].pred = pred;
  2814           (*_blossom_data)[sb].next =
  2815                            _graph.oppositeArc((*_blossom_data)[tb].next);
  2816 
  2817           pred = (*_blossom_data)[ub].next;
  2818 
  2819           (*_blossom_data)[tb].status = EVEN;
  2820           matchedToEven(tb, tree);
  2821           _tree_set->insert(tb, tree);
  2822           (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
  2823         }
  2824 
  2825         (*_blossom_data)[subblossoms[id]].status = ODD;
  2826         matchedToOdd(subblossoms[id]);
  2827         _tree_set->insert(subblossoms[id], tree);
  2828         (*_blossom_data)[subblossoms[id]].next = next;
  2829         (*_blossom_data)[subblossoms[id]].pred = pred;
  2830 
  2831       } else {
  2832 
  2833         for (int i = (ib + 1) % subblossoms.size();
  2834              i != id; i = (i + 2) % subblossoms.size()) {
  2835           int sb = subblossoms[i];
  2836           int tb = subblossoms[(i + 1) % subblossoms.size()];
  2837           (*_blossom_data)[sb].next =
  2838             _graph.oppositeArc((*_blossom_data)[tb].next);
  2839         }
  2840 
  2841         for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
  2842           int sb = subblossoms[i];
  2843           int tb = subblossoms[(i + 1) % subblossoms.size()];
  2844           int ub = subblossoms[(i + 2) % subblossoms.size()];
  2845 
  2846           (*_blossom_data)[sb].status = ODD;
  2847           matchedToOdd(sb);
  2848           _tree_set->insert(sb, tree);
  2849           (*_blossom_data)[sb].next = next;
  2850           (*_blossom_data)[sb].pred =
  2851             _graph.oppositeArc((*_blossom_data)[tb].next);
  2852 
  2853           (*_blossom_data)[tb].status = EVEN;
  2854           matchedToEven(tb, tree);
  2855           _tree_set->insert(tb, tree);
  2856           (*_blossom_data)[tb].pred =
  2857             (*_blossom_data)[tb].next =
  2858             _graph.oppositeArc((*_blossom_data)[ub].next);
  2859           next = (*_blossom_data)[ub].next;
  2860         }
  2861 
  2862         (*_blossom_data)[subblossoms[ib]].status = ODD;
  2863         matchedToOdd(subblossoms[ib]);
  2864         _tree_set->insert(subblossoms[ib], tree);
  2865         (*_blossom_data)[subblossoms[ib]].next = next;
  2866         (*_blossom_data)[subblossoms[ib]].pred = pred;
  2867       }
  2868       _tree_set->erase(blossom);
  2869     }
  2870 
  2871     void extractBlossom(int blossom, const Node& base, const Arc& matching) {
  2872       if (_blossom_set->trivial(blossom)) {
  2873         int bi = (*_node_index)[base];
  2874         Value pot = (*_node_data)[bi].pot;
  2875 
  2876         (*_matching)[base] = matching;
  2877         _blossom_node_list.push_back(base);
  2878         (*_node_potential)[base] = pot;
  2879       } else {
  2880 
  2881         Value pot = (*_blossom_data)[blossom].pot;
  2882         int bn = _blossom_node_list.size();
  2883 
  2884         std::vector<int> subblossoms;
  2885         _blossom_set->split(blossom, std::back_inserter(subblossoms));
  2886         int b = _blossom_set->find(base);
  2887         int ib = -1;
  2888         for (int i = 0; i < int(subblossoms.size()); ++i) {
  2889           if (subblossoms[i] == b) { ib = i; break; }
  2890         }
  2891 
  2892         for (int i = 1; i < int(subblossoms.size()); i += 2) {
  2893           int sb = subblossoms[(ib + i) % subblossoms.size()];
  2894           int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
  2895 
  2896           Arc m = (*_blossom_data)[tb].next;
  2897           extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
  2898           extractBlossom(tb, _graph.source(m), m);
  2899         }
  2900         extractBlossom(subblossoms[ib], base, matching);
  2901 
  2902         int en = _blossom_node_list.size();
  2903 
  2904         _blossom_potential.push_back(BlossomVariable(bn, en, pot));
  2905       }
  2906     }
  2907 
  2908     void extractMatching() {
  2909       std::vector<int> blossoms;
  2910       for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
  2911         blossoms.push_back(c);
  2912       }
  2913 
  2914       for (int i = 0; i < int(blossoms.size()); ++i) {
  2915 
  2916         Value offset = (*_blossom_data)[blossoms[i]].offset;
  2917         (*_blossom_data)[blossoms[i]].pot += 2 * offset;
  2918         for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
  2919              n != INVALID; ++n) {
  2920           (*_node_data)[(*_node_index)[n]].pot -= offset;
  2921         }
  2922 
  2923         Arc matching = (*_blossom_data)[blossoms[i]].next;
  2924         Node base = _graph.source(matching);
  2925         extractBlossom(blossoms[i], base, matching);
  2926       }
  2927     }
  2928 
  2929   public:
  2930 
  2931     /// \brief Constructor
  2932     ///
  2933     /// Constructor.
  2934     MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight)
  2935       : _graph(graph), _weight(weight), _matching(0),
  2936         _node_potential(0), _blossom_potential(), _blossom_node_list(),
  2937         _node_num(0), _blossom_num(0),
  2938 
  2939         _blossom_index(0), _blossom_set(0), _blossom_data(0),
  2940         _node_index(0), _node_heap_index(0), _node_data(0),
  2941         _tree_set_index(0), _tree_set(0),
  2942 
  2943         _delta2_index(0), _delta2(0),
  2944         _delta3_index(0), _delta3(0),
  2945         _delta4_index(0), _delta4(0),
  2946 
  2947         _delta_sum(), _unmatched(0),
  2948 
  2949         _fractional(0)
  2950     {}
  2951 
  2952     ~MaxWeightedPerfectMatching() {
  2953       destroyStructures();
  2954       if (_fractional) {
  2955         delete _fractional;
  2956       }
  2957     }
  2958 
  2959     /// \name Execution Control
  2960     /// The simplest way to execute the algorithm is to use the
  2961     /// \ref run() member function.
  2962 
  2963     ///@{
  2964 
  2965     /// \brief Initialize the algorithm
  2966     ///
  2967     /// This function initializes the algorithm.
  2968     void init() {
  2969       createStructures();
  2970 
  2971       for (ArcIt e(_graph); e != INVALID; ++e) {
  2972         (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
  2973       }
  2974       for (EdgeIt e(_graph); e != INVALID; ++e) {
  2975         (*_delta3_index)[e] = _delta3->PRE_HEAP;
  2976       }
  2977       for (int i = 0; i < _blossom_num; ++i) {
  2978         (*_delta2_index)[i] = _delta2->PRE_HEAP;
  2979         (*_delta4_index)[i] = _delta4->PRE_HEAP;
  2980       }
  2981 
  2982       _unmatched = _node_num;
  2983 
  2984       int index = 0;
  2985       for (NodeIt n(_graph); n != INVALID; ++n) {
  2986         Value max = - std::numeric_limits<Value>::max();
  2987         for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  2988           if (_graph.target(e) == n) continue;
  2989           if ((dualScale * _weight[e]) / 2 > max) {
  2990             max = (dualScale * _weight[e]) / 2;
  2991           }
  2992         }
  2993         (*_node_index)[n] = index;
  2994         (*_node_data)[index].pot = max;
  2995         int blossom =
  2996           _blossom_set->insert(n, std::numeric_limits<Value>::max());
  2997 
  2998         _tree_set->insert(blossom);
  2999 
  3000         (*_blossom_data)[blossom].status = EVEN;
  3001         (*_blossom_data)[blossom].pred = INVALID;
  3002         (*_blossom_data)[blossom].next = INVALID;
  3003         (*_blossom_data)[blossom].pot = 0;
  3004         (*_blossom_data)[blossom].offset = 0;
  3005         ++index;
  3006       }
  3007       for (EdgeIt e(_graph); e != INVALID; ++e) {
  3008         int si = (*_node_index)[_graph.u(e)];
  3009         int ti = (*_node_index)[_graph.v(e)];
  3010         if (_graph.u(e) != _graph.v(e)) {
  3011           _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
  3012                             dualScale * _weight[e]) / 2);
  3013         }
  3014       }
  3015     }
  3016 
  3017     /// \brief Initialize the algorithm with fractional matching
  3018     ///
  3019     /// This function initializes the algorithm with a fractional
  3020     /// matching. This initialization is also called jumpstart heuristic.
  3021     void fractionalInit() {
  3022       createStructures();
  3023       
  3024       if (_fractional == 0) {
  3025         _fractional = new FractionalMatching(_graph, _weight, false);
  3026       }
  3027       if (!_fractional->run()) {
  3028         _unmatched = -1;
  3029         return;
  3030       }
  3031 
  3032       for (ArcIt e(_graph); e != INVALID; ++e) {
  3033         (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
  3034       }
  3035       for (EdgeIt e(_graph); e != INVALID; ++e) {
  3036         (*_delta3_index)[e] = _delta3->PRE_HEAP;
  3037       }
  3038       for (int i = 0; i < _blossom_num; ++i) {
  3039         (*_delta2_index)[i] = _delta2->PRE_HEAP;
  3040         (*_delta4_index)[i] = _delta4->PRE_HEAP;
  3041       }
  3042 
  3043       _unmatched = 0;
  3044 
  3045       int index = 0;
  3046       for (NodeIt n(_graph); n != INVALID; ++n) {
  3047         Value pot = _fractional->nodeValue(n);
  3048         (*_node_index)[n] = index;
  3049         (*_node_data)[index].pot = pot;
  3050         int blossom =
  3051           _blossom_set->insert(n, std::numeric_limits<Value>::max());
  3052 
  3053         (*_blossom_data)[blossom].status = MATCHED;
  3054         (*_blossom_data)[blossom].pred = INVALID;
  3055         (*_blossom_data)[blossom].next = _fractional->matching(n);
  3056         (*_blossom_data)[blossom].pot = 0;
  3057         (*_blossom_data)[blossom].offset = 0;
  3058         ++index;
  3059       }
  3060 
  3061       typename Graph::template NodeMap<bool> processed(_graph, false);
  3062       for (NodeIt n(_graph); n != INVALID; ++n) {
  3063         if (processed[n]) continue;
  3064         processed[n] = true;
  3065         if (_fractional->matching(n) == INVALID) continue;
  3066         int num = 1;
  3067         Node v = _graph.target(_fractional->matching(n));
  3068         while (n != v) {
  3069           processed[v] = true;
  3070           v = _graph.target(_fractional->matching(v));
  3071           ++num;
  3072         }
  3073 
  3074         if (num % 2 == 1) {
  3075           std::vector<int> subblossoms(num);
  3076 
  3077           subblossoms[--num] = _blossom_set->find(n);
  3078           v = _graph.target(_fractional->matching(n));
  3079           while (n != v) {
  3080             subblossoms[--num] = _blossom_set->find(v);
  3081             v = _graph.target(_fractional->matching(v));            
  3082           }
  3083           
  3084           int surface = 
  3085             _blossom_set->join(subblossoms.begin(), subblossoms.end());
  3086           (*_blossom_data)[surface].status = EVEN;
  3087           (*_blossom_data)[surface].pred = INVALID;
  3088           (*_blossom_data)[surface].next = INVALID;
  3089           (*_blossom_data)[surface].pot = 0;
  3090           (*_blossom_data)[surface].offset = 0;
  3091           
  3092           _tree_set->insert(surface);
  3093           ++_unmatched;
  3094         }
  3095       }
  3096 
  3097       for (EdgeIt e(_graph); e != INVALID; ++e) {
  3098         int si = (*_node_index)[_graph.u(e)];
  3099         int sb = _blossom_set->find(_graph.u(e));
  3100         int ti = (*_node_index)[_graph.v(e)];
  3101         int tb = _blossom_set->find(_graph.v(e));
  3102         if ((*_blossom_data)[sb].status == EVEN &&
  3103             (*_blossom_data)[tb].status == EVEN && sb != tb) {
  3104           _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
  3105                             dualScale * _weight[e]) / 2);
  3106         }
  3107       }
  3108 
  3109       for (NodeIt n(_graph); n != INVALID; ++n) {
  3110         int nb = _blossom_set->find(n);
  3111         if ((*_blossom_data)[nb].status != MATCHED) continue;
  3112         int ni = (*_node_index)[n];
  3113 
  3114         for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  3115           Node v = _graph.target(e);
  3116           int vb = _blossom_set->find(v);
  3117           int vi = (*_node_index)[v];
  3118 
  3119           Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  3120             dualScale * _weight[e];
  3121 
  3122           if ((*_blossom_data)[vb].status == EVEN) {
  3123 
  3124             int vt = _tree_set->find(vb);
  3125 
  3126             typename std::map<int, Arc>::iterator it =
  3127               (*_node_data)[ni].heap_index.find(vt);
  3128 
  3129             if (it != (*_node_data)[ni].heap_index.end()) {
  3130               if ((*_node_data)[ni].heap[it->second] > rw) {
  3131                 (*_node_data)[ni].heap.replace(it->second, e);
  3132                 (*_node_data)[ni].heap.decrease(e, rw);
  3133                 it->second = e;
  3134               }
  3135             } else {
  3136               (*_node_data)[ni].heap.push(e, rw);
  3137               (*_node_data)[ni].heap_index.insert(std::make_pair(vt, e));
  3138             }
  3139           }
  3140         }
  3141             
  3142         if (!(*_node_data)[ni].heap.empty()) {
  3143           _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  3144           _delta2->push(nb, _blossom_set->classPrio(nb));
  3145         }
  3146       }
  3147     }
  3148 
  3149     /// \brief Start the algorithm
  3150     ///
  3151     /// This function starts the algorithm.
  3152     ///
  3153     /// \pre \ref init() or \ref fractionalInit() must be called before
  3154     /// using this function.
  3155     bool start() {
  3156       enum OpType {
  3157         D2, D3, D4
  3158       };
  3159 
  3160       if (_unmatched == -1) return false;
  3161 
  3162       while (_unmatched > 0) {
  3163         Value d2 = !_delta2->empty() ?
  3164           _delta2->prio() : std::numeric_limits<Value>::max();
  3165 
  3166         Value d3 = !_delta3->empty() ?
  3167           _delta3->prio() : std::numeric_limits<Value>::max();
  3168 
  3169         Value d4 = !_delta4->empty() ?
  3170           _delta4->prio() : std::numeric_limits<Value>::max();
  3171 
  3172         _delta_sum = d3; OpType ot = D3;
  3173         if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
  3174         if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  3175 
  3176         if (_delta_sum == std::numeric_limits<Value>::max()) {
  3177           return false;
  3178         }
  3179 
  3180         switch (ot) {
  3181         case D2:
  3182           {
  3183             int blossom = _delta2->top();
  3184             Node n = _blossom_set->classTop(blossom);
  3185             Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
  3186             extendOnArc(e);
  3187           }
  3188           break;
  3189         case D3:
  3190           {
  3191             Edge e = _delta3->top();
  3192 
  3193             int left_blossom = _blossom_set->find(_graph.u(e));
  3194             int right_blossom = _blossom_set->find(_graph.v(e));
  3195 
  3196             if (left_blossom == right_blossom) {
  3197               _delta3->pop();
  3198             } else {
  3199               int left_tree = _tree_set->find(left_blossom);
  3200               int right_tree = _tree_set->find(right_blossom);
  3201 
  3202               if (left_tree == right_tree) {
  3203                 shrinkOnEdge(e, left_tree);
  3204               } else {
  3205                 augmentOnEdge(e);
  3206                 _unmatched -= 2;
  3207               }
  3208             }
  3209           } break;
  3210         case D4:
  3211           splitBlossom(_delta4->top());
  3212           break;
  3213         }
  3214       }
  3215       extractMatching();
  3216       return true;
  3217     }
  3218 
  3219     /// \brief Run the algorithm.
  3220     ///
  3221     /// This method runs the \c %MaxWeightedPerfectMatching algorithm.
  3222     ///
  3223     /// \note mwpm.run() is just a shortcut of the following code.
  3224     /// \code
  3225     ///   mwpm.fractionalInit();
  3226     ///   mwpm.start();
  3227     /// \endcode
  3228     bool run() {
  3229       fractionalInit();
  3230       return start();
  3231     }
  3232 
  3233     /// @}
  3234 
  3235     /// \name Primal Solution
  3236     /// Functions to get the primal solution, i.e. the maximum weighted
  3237     /// perfect matching.\n
  3238     /// Either \ref run() or \ref start() function should be called before
  3239     /// using them.
  3240 
  3241     /// @{
  3242 
  3243     /// \brief Return the weight of the matching.
  3244     ///
  3245     /// This function returns the weight of the found matching.
  3246     ///
  3247     /// \pre Either run() or start() must be called before using this function.
  3248     Value matchingWeight() const {
  3249       Value sum = 0;
  3250       for (NodeIt n(_graph); n != INVALID; ++n) {
  3251         if ((*_matching)[n] != INVALID) {
  3252           sum += _weight[(*_matching)[n]];
  3253         }
  3254       }
  3255       return sum / 2;
  3256     }
  3257 
  3258     /// \brief Return \c true if the given edge is in the matching.
  3259     ///
  3260     /// This function returns \c true if the given edge is in the found
  3261     /// matching.
  3262     ///
  3263     /// \pre Either run() or start() must be called before using this function.
  3264     bool matching(const Edge& edge) const {
  3265       return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge;
  3266     }
  3267 
  3268     /// \brief Return the matching arc (or edge) incident to the given node.
  3269     ///
  3270     /// This function returns the matching arc (or edge) incident to the
  3271     /// given node in the found matching or \c INVALID if the node is
  3272     /// not covered by the matching.
  3273     ///
  3274     /// \pre Either run() or start() must be called before using this function.
  3275     Arc matching(const Node& node) const {
  3276       return (*_matching)[node];
  3277     }
  3278 
  3279     /// \brief Return a const reference to the matching map.
  3280     ///
  3281     /// This function returns a const reference to a node map that stores
  3282     /// the matching arc (or edge) incident to each node.
  3283     const MatchingMap& matchingMap() const {
  3284       return *_matching;
  3285     }
  3286 
  3287     /// \brief Return the mate of the given node.
  3288     ///
  3289     /// This function returns the mate of the given node in the found
  3290     /// matching or \c INVALID if the node is not covered by the matching.
  3291     ///
  3292     /// \pre Either run() or start() must be called before using this function.
  3293     Node mate(const Node& node) const {
  3294       return _graph.target((*_matching)[node]);
  3295     }
  3296 
  3297     /// @}
  3298 
  3299     /// \name Dual Solution
  3300     /// Functions to get the dual solution.\n
  3301     /// Either \ref run() or \ref start() function should be called before
  3302     /// using them.
  3303 
  3304     /// @{
  3305 
  3306     /// \brief Return the value of the dual solution.
  3307     ///
  3308     /// This function returns the value of the dual solution.
  3309     /// It should be equal to the primal value scaled by \ref dualScale
  3310     /// "dual scale".
  3311     ///
  3312     /// \pre Either run() or start() must be called before using this function.
  3313     Value dualValue() const {
  3314       Value sum = 0;
  3315       for (NodeIt n(_graph); n != INVALID; ++n) {
  3316         sum += nodeValue(n);
  3317       }
  3318       for (int i = 0; i < blossomNum(); ++i) {
  3319         sum += blossomValue(i) * (blossomSize(i) / 2);
  3320       }
  3321       return sum;
  3322     }
  3323 
  3324     /// \brief Return the dual value (potential) of the given node.
  3325     ///
  3326     /// This function returns the dual value (potential) of the given node.
  3327     ///
  3328     /// \pre Either run() or start() must be called before using this function.
  3329     Value nodeValue(const Node& n) const {
  3330       return (*_node_potential)[n];
  3331     }
  3332 
  3333     /// \brief Return the number of the blossoms in the basis.
  3334     ///
  3335     /// This function returns the number of the blossoms in the basis.
  3336     ///
  3337     /// \pre Either run() or start() must be called before using this function.
  3338     /// \see BlossomIt
  3339     int blossomNum() const {
  3340       return _blossom_potential.size();
  3341     }
  3342 
  3343     /// \brief Return the number of the nodes in the given blossom.
  3344     ///
  3345     /// This function returns the number of the nodes in the given blossom.
  3346     ///
  3347     /// \pre Either run() or start() must be called before using this function.
  3348     /// \see BlossomIt
  3349     int blossomSize(int k) const {
  3350       return _blossom_potential[k].end - _blossom_potential[k].begin;
  3351     }
  3352 
  3353     /// \brief Return the dual value (ptential) of the given blossom.
  3354     ///
  3355     /// This function returns the dual value (ptential) of the given blossom.
  3356     ///
  3357     /// \pre Either run() or start() must be called before using this function.
  3358     Value blossomValue(int k) const {
  3359       return _blossom_potential[k].value;
  3360     }
  3361 
  3362     /// \brief Iterator for obtaining the nodes of a blossom.
  3363     ///
  3364     /// This class provides an iterator for obtaining the nodes of the
  3365     /// given blossom. It lists a subset of the nodes.
  3366     /// Before using this iterator, you must allocate a
  3367     /// MaxWeightedPerfectMatching class and execute it.
  3368     class BlossomIt {
  3369     public:
  3370 
  3371       /// \brief Constructor.
  3372       ///
  3373       /// Constructor to get the nodes of the given variable.
  3374       ///
  3375       /// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()"
  3376       /// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()"
  3377       /// must be called before initializing this iterator.
  3378       BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
  3379         : _algorithm(&algorithm)
  3380       {
  3381         _index = _algorithm->_blossom_potential[variable].begin;
  3382         _last = _algorithm->_blossom_potential[variable].end;
  3383       }
  3384 
  3385       /// \brief Conversion to \c Node.
  3386       ///
  3387       /// Conversion to \c Node.
  3388       operator Node() const {
  3389         return _algorithm->_blossom_node_list[_index];
  3390       }
  3391 
  3392       /// \brief Increment operator.
  3393       ///
  3394       /// Increment operator.
  3395       BlossomIt& operator++() {
  3396         ++_index;
  3397         return *this;
  3398       }
  3399 
  3400       /// \brief Validity checking
  3401       ///
  3402       /// This function checks whether the iterator is invalid.
  3403       bool operator==(Invalid) const { return _index == _last; }
  3404 
  3405       /// \brief Validity checking
  3406       ///
  3407       /// This function checks whether the iterator is valid.
  3408       bool operator!=(Invalid) const { return _index != _last; }
  3409 
  3410     private:
  3411       const MaxWeightedPerfectMatching* _algorithm;
  3412       int _last;
  3413       int _index;
  3414     };
  3415 
  3416     /// @}
  3417 
  3418   };
  3419 
  3420 } //END OF NAMESPACE LEMON
  3421 
  3422 #endif //LEMON_MATCHING_H