lemon/cost_scaling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Sun, 09 Jan 2011 23:20:56 +0100
changeset 920 745312f9b441
parent 877 141f9c0db4a3
child 922 9312d6c89d02
permissions -rw-r--r--
Improve the doc of path structures (#406)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_COST_SCALING_H
    20 #define LEMON_COST_SCALING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 /// \file
    24 /// \brief Cost scaling algorithm for finding a minimum cost flow.
    25 
    26 #include <vector>
    27 #include <deque>
    28 #include <limits>
    29 
    30 #include <lemon/core.h>
    31 #include <lemon/maps.h>
    32 #include <lemon/math.h>
    33 #include <lemon/static_graph.h>
    34 #include <lemon/circulation.h>
    35 #include <lemon/bellman_ford.h>
    36 
    37 namespace lemon {
    38 
    39   /// \brief Default traits class of CostScaling algorithm.
    40   ///
    41   /// Default traits class of CostScaling algorithm.
    42   /// \tparam GR Digraph type.
    43   /// \tparam V The number type used for flow amounts, capacity bounds
    44   /// and supply values. By default it is \c int.
    45   /// \tparam C The number type used for costs and potentials.
    46   /// By default it is the same as \c V.
    47 #ifdef DOXYGEN
    48   template <typename GR, typename V = int, typename C = V>
    49 #else
    50   template < typename GR, typename V = int, typename C = V,
    51              bool integer = std::numeric_limits<C>::is_integer >
    52 #endif
    53   struct CostScalingDefaultTraits
    54   {
    55     /// The type of the digraph
    56     typedef GR Digraph;
    57     /// The type of the flow amounts, capacity bounds and supply values
    58     typedef V Value;
    59     /// The type of the arc costs
    60     typedef C Cost;
    61 
    62     /// \brief The large cost type used for internal computations
    63     ///
    64     /// The large cost type used for internal computations.
    65     /// It is \c long \c long if the \c Cost type is integer,
    66     /// otherwise it is \c double.
    67     /// \c Cost must be convertible to \c LargeCost.
    68     typedef double LargeCost;
    69   };
    70 
    71   // Default traits class for integer cost types
    72   template <typename GR, typename V, typename C>
    73   struct CostScalingDefaultTraits<GR, V, C, true>
    74   {
    75     typedef GR Digraph;
    76     typedef V Value;
    77     typedef C Cost;
    78 #ifdef LEMON_HAVE_LONG_LONG
    79     typedef long long LargeCost;
    80 #else
    81     typedef long LargeCost;
    82 #endif
    83   };
    84 
    85 
    86   /// \addtogroup min_cost_flow_algs
    87   /// @{
    88 
    89   /// \brief Implementation of the Cost Scaling algorithm for
    90   /// finding a \ref min_cost_flow "minimum cost flow".
    91   ///
    92   /// \ref CostScaling implements a cost scaling algorithm that performs
    93   /// push/augment and relabel operations for finding a \ref min_cost_flow
    94   /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
    95   /// \ref goldberg97efficient, \ref bunnagel98efficient.
    96   /// It is a highly efficient primal-dual solution method, which
    97   /// can be viewed as the generalization of the \ref Preflow
    98   /// "preflow push-relabel" algorithm for the maximum flow problem.
    99   ///
   100   /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
   101   /// implementations available in LEMON for this problem.
   102   ///
   103   /// Most of the parameters of the problem (except for the digraph)
   104   /// can be given using separate functions, and the algorithm can be
   105   /// executed using the \ref run() function. If some parameters are not
   106   /// specified, then default values will be used.
   107   ///
   108   /// \tparam GR The digraph type the algorithm runs on.
   109   /// \tparam V The number type used for flow amounts, capacity bounds
   110   /// and supply values in the algorithm. By default, it is \c int.
   111   /// \tparam C The number type used for costs and potentials in the
   112   /// algorithm. By default, it is the same as \c V.
   113   /// \tparam TR The traits class that defines various types used by the
   114   /// algorithm. By default, it is \ref CostScalingDefaultTraits
   115   /// "CostScalingDefaultTraits<GR, V, C>".
   116   /// In most cases, this parameter should not be set directly,
   117   /// consider to use the named template parameters instead.
   118   ///
   119   /// \warning Both number types must be signed and all input data must
   120   /// be integer.
   121   /// \warning This algorithm does not support negative costs for
   122   /// arcs having infinite upper bound.
   123   ///
   124   /// \note %CostScaling provides three different internal methods,
   125   /// from which the most efficient one is used by default.
   126   /// For more information, see \ref Method.
   127 #ifdef DOXYGEN
   128   template <typename GR, typename V, typename C, typename TR>
   129 #else
   130   template < typename GR, typename V = int, typename C = V,
   131              typename TR = CostScalingDefaultTraits<GR, V, C> >
   132 #endif
   133   class CostScaling
   134   {
   135   public:
   136 
   137     /// The type of the digraph
   138     typedef typename TR::Digraph Digraph;
   139     /// The type of the flow amounts, capacity bounds and supply values
   140     typedef typename TR::Value Value;
   141     /// The type of the arc costs
   142     typedef typename TR::Cost Cost;
   143 
   144     /// \brief The large cost type
   145     ///
   146     /// The large cost type used for internal computations.
   147     /// By default, it is \c long \c long if the \c Cost type is integer,
   148     /// otherwise it is \c double.
   149     typedef typename TR::LargeCost LargeCost;
   150 
   151     /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
   152     typedef TR Traits;
   153 
   154   public:
   155 
   156     /// \brief Problem type constants for the \c run() function.
   157     ///
   158     /// Enum type containing the problem type constants that can be
   159     /// returned by the \ref run() function of the algorithm.
   160     enum ProblemType {
   161       /// The problem has no feasible solution (flow).
   162       INFEASIBLE,
   163       /// The problem has optimal solution (i.e. it is feasible and
   164       /// bounded), and the algorithm has found optimal flow and node
   165       /// potentials (primal and dual solutions).
   166       OPTIMAL,
   167       /// The digraph contains an arc of negative cost and infinite
   168       /// upper bound. It means that the objective function is unbounded
   169       /// on that arc, however, note that it could actually be bounded
   170       /// over the feasible flows, but this algroithm cannot handle
   171       /// these cases.
   172       UNBOUNDED
   173     };
   174 
   175     /// \brief Constants for selecting the internal method.
   176     ///
   177     /// Enum type containing constants for selecting the internal method
   178     /// for the \ref run() function.
   179     ///
   180     /// \ref CostScaling provides three internal methods that differ mainly
   181     /// in their base operations, which are used in conjunction with the
   182     /// relabel operation.
   183     /// By default, the so called \ref PARTIAL_AUGMENT
   184     /// "Partial Augment-Relabel" method is used, which turned out to be
   185     /// the most efficient and the most robust on various test inputs.
   186     /// However, the other methods can be selected using the \ref run()
   187     /// function with the proper parameter.
   188     enum Method {
   189       /// Local push operations are used, i.e. flow is moved only on one
   190       /// admissible arc at once.
   191       PUSH,
   192       /// Augment operations are used, i.e. flow is moved on admissible
   193       /// paths from a node with excess to a node with deficit.
   194       AUGMENT,
   195       /// Partial augment operations are used, i.e. flow is moved on
   196       /// admissible paths started from a node with excess, but the
   197       /// lengths of these paths are limited. This method can be viewed
   198       /// as a combined version of the previous two operations.
   199       PARTIAL_AUGMENT
   200     };
   201 
   202   private:
   203 
   204     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   205 
   206     typedef std::vector<int> IntVector;
   207     typedef std::vector<Value> ValueVector;
   208     typedef std::vector<Cost> CostVector;
   209     typedef std::vector<LargeCost> LargeCostVector;
   210     typedef std::vector<char> BoolVector;
   211     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   212 
   213   private:
   214 
   215     template <typename KT, typename VT>
   216     class StaticVectorMap {
   217     public:
   218       typedef KT Key;
   219       typedef VT Value;
   220 
   221       StaticVectorMap(std::vector<Value>& v) : _v(v) {}
   222 
   223       const Value& operator[](const Key& key) const {
   224         return _v[StaticDigraph::id(key)];
   225       }
   226 
   227       Value& operator[](const Key& key) {
   228         return _v[StaticDigraph::id(key)];
   229       }
   230 
   231       void set(const Key& key, const Value& val) {
   232         _v[StaticDigraph::id(key)] = val;
   233       }
   234 
   235     private:
   236       std::vector<Value>& _v;
   237     };
   238 
   239     typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
   240     typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
   241 
   242   private:
   243 
   244     // Data related to the underlying digraph
   245     const GR &_graph;
   246     int _node_num;
   247     int _arc_num;
   248     int _res_node_num;
   249     int _res_arc_num;
   250     int _root;
   251 
   252     // Parameters of the problem
   253     bool _have_lower;
   254     Value _sum_supply;
   255     int _sup_node_num;
   256 
   257     // Data structures for storing the digraph
   258     IntNodeMap _node_id;
   259     IntArcMap _arc_idf;
   260     IntArcMap _arc_idb;
   261     IntVector _first_out;
   262     BoolVector _forward;
   263     IntVector _source;
   264     IntVector _target;
   265     IntVector _reverse;
   266 
   267     // Node and arc data
   268     ValueVector _lower;
   269     ValueVector _upper;
   270     CostVector _scost;
   271     ValueVector _supply;
   272 
   273     ValueVector _res_cap;
   274     LargeCostVector _cost;
   275     LargeCostVector _pi;
   276     ValueVector _excess;
   277     IntVector _next_out;
   278     std::deque<int> _active_nodes;
   279 
   280     // Data for scaling
   281     LargeCost _epsilon;
   282     int _alpha;
   283 
   284     IntVector _buckets;
   285     IntVector _bucket_next;
   286     IntVector _bucket_prev;
   287     IntVector _rank;
   288     int _max_rank;
   289 
   290     // Data for a StaticDigraph structure
   291     typedef std::pair<int, int> IntPair;
   292     StaticDigraph _sgr;
   293     std::vector<IntPair> _arc_vec;
   294     std::vector<LargeCost> _cost_vec;
   295     LargeCostArcMap _cost_map;
   296     LargeCostNodeMap _pi_map;
   297 
   298   public:
   299 
   300     /// \brief Constant for infinite upper bounds (capacities).
   301     ///
   302     /// Constant for infinite upper bounds (capacities).
   303     /// It is \c std::numeric_limits<Value>::infinity() if available,
   304     /// \c std::numeric_limits<Value>::max() otherwise.
   305     const Value INF;
   306 
   307   public:
   308 
   309     /// \name Named Template Parameters
   310     /// @{
   311 
   312     template <typename T>
   313     struct SetLargeCostTraits : public Traits {
   314       typedef T LargeCost;
   315     };
   316 
   317     /// \brief \ref named-templ-param "Named parameter" for setting
   318     /// \c LargeCost type.
   319     ///
   320     /// \ref named-templ-param "Named parameter" for setting \c LargeCost
   321     /// type, which is used for internal computations in the algorithm.
   322     /// \c Cost must be convertible to \c LargeCost.
   323     template <typename T>
   324     struct SetLargeCost
   325       : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
   326       typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
   327     };
   328 
   329     /// @}
   330 
   331   protected:
   332 
   333     CostScaling() {}
   334 
   335   public:
   336 
   337     /// \brief Constructor.
   338     ///
   339     /// The constructor of the class.
   340     ///
   341     /// \param graph The digraph the algorithm runs on.
   342     CostScaling(const GR& graph) :
   343       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   344       _cost_map(_cost_vec), _pi_map(_pi),
   345       INF(std::numeric_limits<Value>::has_infinity ?
   346           std::numeric_limits<Value>::infinity() :
   347           std::numeric_limits<Value>::max())
   348     {
   349       // Check the number types
   350       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   351         "The flow type of CostScaling must be signed");
   352       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   353         "The cost type of CostScaling must be signed");
   354 
   355       // Reset data structures
   356       reset();
   357     }
   358 
   359     /// \name Parameters
   360     /// The parameters of the algorithm can be specified using these
   361     /// functions.
   362 
   363     /// @{
   364 
   365     /// \brief Set the lower bounds on the arcs.
   366     ///
   367     /// This function sets the lower bounds on the arcs.
   368     /// If it is not used before calling \ref run(), the lower bounds
   369     /// will be set to zero on all arcs.
   370     ///
   371     /// \param map An arc map storing the lower bounds.
   372     /// Its \c Value type must be convertible to the \c Value type
   373     /// of the algorithm.
   374     ///
   375     /// \return <tt>(*this)</tt>
   376     template <typename LowerMap>
   377     CostScaling& lowerMap(const LowerMap& map) {
   378       _have_lower = true;
   379       for (ArcIt a(_graph); a != INVALID; ++a) {
   380         _lower[_arc_idf[a]] = map[a];
   381         _lower[_arc_idb[a]] = map[a];
   382       }
   383       return *this;
   384     }
   385 
   386     /// \brief Set the upper bounds (capacities) on the arcs.
   387     ///
   388     /// This function sets the upper bounds (capacities) on the arcs.
   389     /// If it is not used before calling \ref run(), the upper bounds
   390     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   391     /// unbounded from above).
   392     ///
   393     /// \param map An arc map storing the upper bounds.
   394     /// Its \c Value type must be convertible to the \c Value type
   395     /// of the algorithm.
   396     ///
   397     /// \return <tt>(*this)</tt>
   398     template<typename UpperMap>
   399     CostScaling& upperMap(const UpperMap& map) {
   400       for (ArcIt a(_graph); a != INVALID; ++a) {
   401         _upper[_arc_idf[a]] = map[a];
   402       }
   403       return *this;
   404     }
   405 
   406     /// \brief Set the costs of the arcs.
   407     ///
   408     /// This function sets the costs of the arcs.
   409     /// If it is not used before calling \ref run(), the costs
   410     /// will be set to \c 1 on all arcs.
   411     ///
   412     /// \param map An arc map storing the costs.
   413     /// Its \c Value type must be convertible to the \c Cost type
   414     /// of the algorithm.
   415     ///
   416     /// \return <tt>(*this)</tt>
   417     template<typename CostMap>
   418     CostScaling& costMap(const CostMap& map) {
   419       for (ArcIt a(_graph); a != INVALID; ++a) {
   420         _scost[_arc_idf[a]] =  map[a];
   421         _scost[_arc_idb[a]] = -map[a];
   422       }
   423       return *this;
   424     }
   425 
   426     /// \brief Set the supply values of the nodes.
   427     ///
   428     /// This function sets the supply values of the nodes.
   429     /// If neither this function nor \ref stSupply() is used before
   430     /// calling \ref run(), the supply of each node will be set to zero.
   431     ///
   432     /// \param map A node map storing the supply values.
   433     /// Its \c Value type must be convertible to the \c Value type
   434     /// of the algorithm.
   435     ///
   436     /// \return <tt>(*this)</tt>
   437     template<typename SupplyMap>
   438     CostScaling& supplyMap(const SupplyMap& map) {
   439       for (NodeIt n(_graph); n != INVALID; ++n) {
   440         _supply[_node_id[n]] = map[n];
   441       }
   442       return *this;
   443     }
   444 
   445     /// \brief Set single source and target nodes and a supply value.
   446     ///
   447     /// This function sets a single source node and a single target node
   448     /// and the required flow value.
   449     /// If neither this function nor \ref supplyMap() is used before
   450     /// calling \ref run(), the supply of each node will be set to zero.
   451     ///
   452     /// Using this function has the same effect as using \ref supplyMap()
   453     /// with a map in which \c k is assigned to \c s, \c -k is
   454     /// assigned to \c t and all other nodes have zero supply value.
   455     ///
   456     /// \param s The source node.
   457     /// \param t The target node.
   458     /// \param k The required amount of flow from node \c s to node \c t
   459     /// (i.e. the supply of \c s and the demand of \c t).
   460     ///
   461     /// \return <tt>(*this)</tt>
   462     CostScaling& stSupply(const Node& s, const Node& t, Value k) {
   463       for (int i = 0; i != _res_node_num; ++i) {
   464         _supply[i] = 0;
   465       }
   466       _supply[_node_id[s]] =  k;
   467       _supply[_node_id[t]] = -k;
   468       return *this;
   469     }
   470 
   471     /// @}
   472 
   473     /// \name Execution control
   474     /// The algorithm can be executed using \ref run().
   475 
   476     /// @{
   477 
   478     /// \brief Run the algorithm.
   479     ///
   480     /// This function runs the algorithm.
   481     /// The paramters can be specified using functions \ref lowerMap(),
   482     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   483     /// For example,
   484     /// \code
   485     ///   CostScaling<ListDigraph> cs(graph);
   486     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   487     ///     .supplyMap(sup).run();
   488     /// \endcode
   489     ///
   490     /// This function can be called more than once. All the given parameters
   491     /// are kept for the next call, unless \ref resetParams() or \ref reset()
   492     /// is used, thus only the modified parameters have to be set again.
   493     /// If the underlying digraph was also modified after the construction
   494     /// of the class (or the last \ref reset() call), then the \ref reset()
   495     /// function must be called.
   496     ///
   497     /// \param method The internal method that will be used in the
   498     /// algorithm. For more information, see \ref Method.
   499     /// \param factor The cost scaling factor. It must be larger than one.
   500     ///
   501     /// \return \c INFEASIBLE if no feasible flow exists,
   502     /// \n \c OPTIMAL if the problem has optimal solution
   503     /// (i.e. it is feasible and bounded), and the algorithm has found
   504     /// optimal flow and node potentials (primal and dual solutions),
   505     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   506     /// and infinite upper bound. It means that the objective function
   507     /// is unbounded on that arc, however, note that it could actually be
   508     /// bounded over the feasible flows, but this algroithm cannot handle
   509     /// these cases.
   510     ///
   511     /// \see ProblemType, Method
   512     /// \see resetParams(), reset()
   513     ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
   514       _alpha = factor;
   515       ProblemType pt = init();
   516       if (pt != OPTIMAL) return pt;
   517       start(method);
   518       return OPTIMAL;
   519     }
   520 
   521     /// \brief Reset all the parameters that have been given before.
   522     ///
   523     /// This function resets all the paramaters that have been given
   524     /// before using functions \ref lowerMap(), \ref upperMap(),
   525     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   526     ///
   527     /// It is useful for multiple \ref run() calls. Basically, all the given
   528     /// parameters are kept for the next \ref run() call, unless
   529     /// \ref resetParams() or \ref reset() is used.
   530     /// If the underlying digraph was also modified after the construction
   531     /// of the class or the last \ref reset() call, then the \ref reset()
   532     /// function must be used, otherwise \ref resetParams() is sufficient.
   533     ///
   534     /// For example,
   535     /// \code
   536     ///   CostScaling<ListDigraph> cs(graph);
   537     ///
   538     ///   // First run
   539     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   540     ///     .supplyMap(sup).run();
   541     ///
   542     ///   // Run again with modified cost map (resetParams() is not called,
   543     ///   // so only the cost map have to be set again)
   544     ///   cost[e] += 100;
   545     ///   cs.costMap(cost).run();
   546     ///
   547     ///   // Run again from scratch using resetParams()
   548     ///   // (the lower bounds will be set to zero on all arcs)
   549     ///   cs.resetParams();
   550     ///   cs.upperMap(capacity).costMap(cost)
   551     ///     .supplyMap(sup).run();
   552     /// \endcode
   553     ///
   554     /// \return <tt>(*this)</tt>
   555     ///
   556     /// \see reset(), run()
   557     CostScaling& resetParams() {
   558       for (int i = 0; i != _res_node_num; ++i) {
   559         _supply[i] = 0;
   560       }
   561       int limit = _first_out[_root];
   562       for (int j = 0; j != limit; ++j) {
   563         _lower[j] = 0;
   564         _upper[j] = INF;
   565         _scost[j] = _forward[j] ? 1 : -1;
   566       }
   567       for (int j = limit; j != _res_arc_num; ++j) {
   568         _lower[j] = 0;
   569         _upper[j] = INF;
   570         _scost[j] = 0;
   571         _scost[_reverse[j]] = 0;
   572       }
   573       _have_lower = false;
   574       return *this;
   575     }
   576 
   577     /// \brief Reset all the parameters that have been given before.
   578     ///
   579     /// This function resets all the paramaters that have been given
   580     /// before using functions \ref lowerMap(), \ref upperMap(),
   581     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   582     ///
   583     /// It is useful for multiple run() calls. If this function is not
   584     /// used, all the parameters given before are kept for the next
   585     /// \ref run() call.
   586     /// However, the underlying digraph must not be modified after this
   587     /// class have been constructed, since it copies and extends the graph.
   588     /// \return <tt>(*this)</tt>
   589     CostScaling& reset() {
   590       // Resize vectors
   591       _node_num = countNodes(_graph);
   592       _arc_num = countArcs(_graph);
   593       _res_node_num = _node_num + 1;
   594       _res_arc_num = 2 * (_arc_num + _node_num);
   595       _root = _node_num;
   596 
   597       _first_out.resize(_res_node_num + 1);
   598       _forward.resize(_res_arc_num);
   599       _source.resize(_res_arc_num);
   600       _target.resize(_res_arc_num);
   601       _reverse.resize(_res_arc_num);
   602 
   603       _lower.resize(_res_arc_num);
   604       _upper.resize(_res_arc_num);
   605       _scost.resize(_res_arc_num);
   606       _supply.resize(_res_node_num);
   607 
   608       _res_cap.resize(_res_arc_num);
   609       _cost.resize(_res_arc_num);
   610       _pi.resize(_res_node_num);
   611       _excess.resize(_res_node_num);
   612       _next_out.resize(_res_node_num);
   613 
   614       _arc_vec.reserve(_res_arc_num);
   615       _cost_vec.reserve(_res_arc_num);
   616 
   617       // Copy the graph
   618       int i = 0, j = 0, k = 2 * _arc_num + _node_num;
   619       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   620         _node_id[n] = i;
   621       }
   622       i = 0;
   623       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   624         _first_out[i] = j;
   625         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   626           _arc_idf[a] = j;
   627           _forward[j] = true;
   628           _source[j] = i;
   629           _target[j] = _node_id[_graph.runningNode(a)];
   630         }
   631         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   632           _arc_idb[a] = j;
   633           _forward[j] = false;
   634           _source[j] = i;
   635           _target[j] = _node_id[_graph.runningNode(a)];
   636         }
   637         _forward[j] = false;
   638         _source[j] = i;
   639         _target[j] = _root;
   640         _reverse[j] = k;
   641         _forward[k] = true;
   642         _source[k] = _root;
   643         _target[k] = i;
   644         _reverse[k] = j;
   645         ++j; ++k;
   646       }
   647       _first_out[i] = j;
   648       _first_out[_res_node_num] = k;
   649       for (ArcIt a(_graph); a != INVALID; ++a) {
   650         int fi = _arc_idf[a];
   651         int bi = _arc_idb[a];
   652         _reverse[fi] = bi;
   653         _reverse[bi] = fi;
   654       }
   655 
   656       // Reset parameters
   657       resetParams();
   658       return *this;
   659     }
   660 
   661     /// @}
   662 
   663     /// \name Query Functions
   664     /// The results of the algorithm can be obtained using these
   665     /// functions.\n
   666     /// The \ref run() function must be called before using them.
   667 
   668     /// @{
   669 
   670     /// \brief Return the total cost of the found flow.
   671     ///
   672     /// This function returns the total cost of the found flow.
   673     /// Its complexity is O(e).
   674     ///
   675     /// \note The return type of the function can be specified as a
   676     /// template parameter. For example,
   677     /// \code
   678     ///   cs.totalCost<double>();
   679     /// \endcode
   680     /// It is useful if the total cost cannot be stored in the \c Cost
   681     /// type of the algorithm, which is the default return type of the
   682     /// function.
   683     ///
   684     /// \pre \ref run() must be called before using this function.
   685     template <typename Number>
   686     Number totalCost() const {
   687       Number c = 0;
   688       for (ArcIt a(_graph); a != INVALID; ++a) {
   689         int i = _arc_idb[a];
   690         c += static_cast<Number>(_res_cap[i]) *
   691              (-static_cast<Number>(_scost[i]));
   692       }
   693       return c;
   694     }
   695 
   696 #ifndef DOXYGEN
   697     Cost totalCost() const {
   698       return totalCost<Cost>();
   699     }
   700 #endif
   701 
   702     /// \brief Return the flow on the given arc.
   703     ///
   704     /// This function returns the flow on the given arc.
   705     ///
   706     /// \pre \ref run() must be called before using this function.
   707     Value flow(const Arc& a) const {
   708       return _res_cap[_arc_idb[a]];
   709     }
   710 
   711     /// \brief Return the flow map (the primal solution).
   712     ///
   713     /// This function copies the flow value on each arc into the given
   714     /// map. The \c Value type of the algorithm must be convertible to
   715     /// the \c Value type of the map.
   716     ///
   717     /// \pre \ref run() must be called before using this function.
   718     template <typename FlowMap>
   719     void flowMap(FlowMap &map) const {
   720       for (ArcIt a(_graph); a != INVALID; ++a) {
   721         map.set(a, _res_cap[_arc_idb[a]]);
   722       }
   723     }
   724 
   725     /// \brief Return the potential (dual value) of the given node.
   726     ///
   727     /// This function returns the potential (dual value) of the
   728     /// given node.
   729     ///
   730     /// \pre \ref run() must be called before using this function.
   731     Cost potential(const Node& n) const {
   732       return static_cast<Cost>(_pi[_node_id[n]]);
   733     }
   734 
   735     /// \brief Return the potential map (the dual solution).
   736     ///
   737     /// This function copies the potential (dual value) of each node
   738     /// into the given map.
   739     /// The \c Cost type of the algorithm must be convertible to the
   740     /// \c Value type of the map.
   741     ///
   742     /// \pre \ref run() must be called before using this function.
   743     template <typename PotentialMap>
   744     void potentialMap(PotentialMap &map) const {
   745       for (NodeIt n(_graph); n != INVALID; ++n) {
   746         map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
   747       }
   748     }
   749 
   750     /// @}
   751 
   752   private:
   753 
   754     // Initialize the algorithm
   755     ProblemType init() {
   756       if (_res_node_num <= 1) return INFEASIBLE;
   757 
   758       // Check the sum of supply values
   759       _sum_supply = 0;
   760       for (int i = 0; i != _root; ++i) {
   761         _sum_supply += _supply[i];
   762       }
   763       if (_sum_supply > 0) return INFEASIBLE;
   764 
   765 
   766       // Initialize vectors
   767       for (int i = 0; i != _res_node_num; ++i) {
   768         _pi[i] = 0;
   769         _excess[i] = _supply[i];
   770       }
   771 
   772       // Remove infinite upper bounds and check negative arcs
   773       const Value MAX = std::numeric_limits<Value>::max();
   774       int last_out;
   775       if (_have_lower) {
   776         for (int i = 0; i != _root; ++i) {
   777           last_out = _first_out[i+1];
   778           for (int j = _first_out[i]; j != last_out; ++j) {
   779             if (_forward[j]) {
   780               Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
   781               if (c >= MAX) return UNBOUNDED;
   782               _excess[i] -= c;
   783               _excess[_target[j]] += c;
   784             }
   785           }
   786         }
   787       } else {
   788         for (int i = 0; i != _root; ++i) {
   789           last_out = _first_out[i+1];
   790           for (int j = _first_out[i]; j != last_out; ++j) {
   791             if (_forward[j] && _scost[j] < 0) {
   792               Value c = _upper[j];
   793               if (c >= MAX) return UNBOUNDED;
   794               _excess[i] -= c;
   795               _excess[_target[j]] += c;
   796             }
   797           }
   798         }
   799       }
   800       Value ex, max_cap = 0;
   801       for (int i = 0; i != _res_node_num; ++i) {
   802         ex = _excess[i];
   803         _excess[i] = 0;
   804         if (ex < 0) max_cap -= ex;
   805       }
   806       for (int j = 0; j != _res_arc_num; ++j) {
   807         if (_upper[j] >= MAX) _upper[j] = max_cap;
   808       }
   809 
   810       // Initialize the large cost vector and the epsilon parameter
   811       _epsilon = 0;
   812       LargeCost lc;
   813       for (int i = 0; i != _root; ++i) {
   814         last_out = _first_out[i+1];
   815         for (int j = _first_out[i]; j != last_out; ++j) {
   816           lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
   817           _cost[j] = lc;
   818           if (lc > _epsilon) _epsilon = lc;
   819         }
   820       }
   821       _epsilon /= _alpha;
   822 
   823       // Initialize maps for Circulation and remove non-zero lower bounds
   824       ConstMap<Arc, Value> low(0);
   825       typedef typename Digraph::template ArcMap<Value> ValueArcMap;
   826       typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
   827       ValueArcMap cap(_graph), flow(_graph);
   828       ValueNodeMap sup(_graph);
   829       for (NodeIt n(_graph); n != INVALID; ++n) {
   830         sup[n] = _supply[_node_id[n]];
   831       }
   832       if (_have_lower) {
   833         for (ArcIt a(_graph); a != INVALID; ++a) {
   834           int j = _arc_idf[a];
   835           Value c = _lower[j];
   836           cap[a] = _upper[j] - c;
   837           sup[_graph.source(a)] -= c;
   838           sup[_graph.target(a)] += c;
   839         }
   840       } else {
   841         for (ArcIt a(_graph); a != INVALID; ++a) {
   842           cap[a] = _upper[_arc_idf[a]];
   843         }
   844       }
   845 
   846       _sup_node_num = 0;
   847       for (NodeIt n(_graph); n != INVALID; ++n) {
   848         if (sup[n] > 0) ++_sup_node_num;
   849       }
   850 
   851       // Find a feasible flow using Circulation
   852       Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
   853         circ(_graph, low, cap, sup);
   854       if (!circ.flowMap(flow).run()) return INFEASIBLE;
   855 
   856       // Set residual capacities and handle GEQ supply type
   857       if (_sum_supply < 0) {
   858         for (ArcIt a(_graph); a != INVALID; ++a) {
   859           Value fa = flow[a];
   860           _res_cap[_arc_idf[a]] = cap[a] - fa;
   861           _res_cap[_arc_idb[a]] = fa;
   862           sup[_graph.source(a)] -= fa;
   863           sup[_graph.target(a)] += fa;
   864         }
   865         for (NodeIt n(_graph); n != INVALID; ++n) {
   866           _excess[_node_id[n]] = sup[n];
   867         }
   868         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   869           int u = _target[a];
   870           int ra = _reverse[a];
   871           _res_cap[a] = -_sum_supply + 1;
   872           _res_cap[ra] = -_excess[u];
   873           _cost[a] = 0;
   874           _cost[ra] = 0;
   875           _excess[u] = 0;
   876         }
   877       } else {
   878         for (ArcIt a(_graph); a != INVALID; ++a) {
   879           Value fa = flow[a];
   880           _res_cap[_arc_idf[a]] = cap[a] - fa;
   881           _res_cap[_arc_idb[a]] = fa;
   882         }
   883         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   884           int ra = _reverse[a];
   885           _res_cap[a] = 0;
   886           _res_cap[ra] = 0;
   887           _cost[a] = 0;
   888           _cost[ra] = 0;
   889         }
   890       }
   891 
   892       return OPTIMAL;
   893     }
   894 
   895     // Execute the algorithm and transform the results
   896     void start(Method method) {
   897       // Maximum path length for partial augment
   898       const int MAX_PATH_LENGTH = 4;
   899 
   900       // Initialize data structures for buckets
   901       _max_rank = _alpha * _res_node_num;
   902       _buckets.resize(_max_rank);
   903       _bucket_next.resize(_res_node_num + 1);
   904       _bucket_prev.resize(_res_node_num + 1);
   905       _rank.resize(_res_node_num + 1);
   906 
   907       // Execute the algorithm
   908       switch (method) {
   909         case PUSH:
   910           startPush();
   911           break;
   912         case AUGMENT:
   913           startAugment();
   914           break;
   915         case PARTIAL_AUGMENT:
   916           startAugment(MAX_PATH_LENGTH);
   917           break;
   918       }
   919 
   920       // Compute node potentials for the original costs
   921       _arc_vec.clear();
   922       _cost_vec.clear();
   923       for (int j = 0; j != _res_arc_num; ++j) {
   924         if (_res_cap[j] > 0) {
   925           _arc_vec.push_back(IntPair(_source[j], _target[j]));
   926           _cost_vec.push_back(_scost[j]);
   927         }
   928       }
   929       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   930 
   931       typename BellmanFord<StaticDigraph, LargeCostArcMap>
   932         ::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map);
   933       bf.distMap(_pi_map);
   934       bf.init(0);
   935       bf.start();
   936 
   937       // Handle non-zero lower bounds
   938       if (_have_lower) {
   939         int limit = _first_out[_root];
   940         for (int j = 0; j != limit; ++j) {
   941           if (!_forward[j]) _res_cap[j] += _lower[j];
   942         }
   943       }
   944     }
   945 
   946     // Initialize a cost scaling phase
   947     void initPhase() {
   948       // Saturate arcs not satisfying the optimality condition
   949       for (int u = 0; u != _res_node_num; ++u) {
   950         int last_out = _first_out[u+1];
   951         LargeCost pi_u = _pi[u];
   952         for (int a = _first_out[u]; a != last_out; ++a) {
   953           int v = _target[a];
   954           if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) {
   955             Value delta = _res_cap[a];
   956             _excess[u] -= delta;
   957             _excess[v] += delta;
   958             _res_cap[a] = 0;
   959             _res_cap[_reverse[a]] += delta;
   960           }
   961         }
   962       }
   963 
   964       // Find active nodes (i.e. nodes with positive excess)
   965       for (int u = 0; u != _res_node_num; ++u) {
   966         if (_excess[u] > 0) _active_nodes.push_back(u);
   967       }
   968 
   969       // Initialize the next arcs
   970       for (int u = 0; u != _res_node_num; ++u) {
   971         _next_out[u] = _first_out[u];
   972       }
   973     }
   974 
   975     // Early termination heuristic
   976     bool earlyTermination() {
   977       const double EARLY_TERM_FACTOR = 3.0;
   978 
   979       // Build a static residual graph
   980       _arc_vec.clear();
   981       _cost_vec.clear();
   982       for (int j = 0; j != _res_arc_num; ++j) {
   983         if (_res_cap[j] > 0) {
   984           _arc_vec.push_back(IntPair(_source[j], _target[j]));
   985           _cost_vec.push_back(_cost[j] + 1);
   986         }
   987       }
   988       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   989 
   990       // Run Bellman-Ford algorithm to check if the current flow is optimal
   991       BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
   992       bf.init(0);
   993       bool done = false;
   994       int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num)));
   995       for (int i = 0; i < K && !done; ++i) {
   996         done = bf.processNextWeakRound();
   997       }
   998       return done;
   999     }
  1000 
  1001     // Global potential update heuristic
  1002     void globalUpdate() {
  1003       int bucket_end = _root + 1;
  1004 
  1005       // Initialize buckets
  1006       for (int r = 0; r != _max_rank; ++r) {
  1007         _buckets[r] = bucket_end;
  1008       }
  1009       Value total_excess = 0;
  1010       for (int i = 0; i != _res_node_num; ++i) {
  1011         if (_excess[i] < 0) {
  1012           _rank[i] = 0;
  1013           _bucket_next[i] = _buckets[0];
  1014           _bucket_prev[_buckets[0]] = i;
  1015           _buckets[0] = i;
  1016         } else {
  1017           total_excess += _excess[i];
  1018           _rank[i] = _max_rank;
  1019         }
  1020       }
  1021       if (total_excess == 0) return;
  1022 
  1023       // Search the buckets
  1024       int r = 0;
  1025       for ( ; r != _max_rank; ++r) {
  1026         while (_buckets[r] != bucket_end) {
  1027           // Remove the first node from the current bucket
  1028           int u = _buckets[r];
  1029           _buckets[r] = _bucket_next[u];
  1030 
  1031           // Search the incomming arcs of u
  1032           LargeCost pi_u = _pi[u];
  1033           int last_out = _first_out[u+1];
  1034           for (int a = _first_out[u]; a != last_out; ++a) {
  1035             int ra = _reverse[a];
  1036             if (_res_cap[ra] > 0) {
  1037               int v = _source[ra];
  1038               int old_rank_v = _rank[v];
  1039               if (r < old_rank_v) {
  1040                 // Compute the new rank of v
  1041                 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
  1042                 int new_rank_v = old_rank_v;
  1043                 if (nrc < LargeCost(_max_rank))
  1044                   new_rank_v = r + 1 + int(nrc);
  1045 
  1046                 // Change the rank of v
  1047                 if (new_rank_v < old_rank_v) {
  1048                   _rank[v] = new_rank_v;
  1049                   _next_out[v] = _first_out[v];
  1050 
  1051                   // Remove v from its old bucket
  1052                   if (old_rank_v < _max_rank) {
  1053                     if (_buckets[old_rank_v] == v) {
  1054                       _buckets[old_rank_v] = _bucket_next[v];
  1055                     } else {
  1056                       _bucket_next[_bucket_prev[v]] = _bucket_next[v];
  1057                       _bucket_prev[_bucket_next[v]] = _bucket_prev[v];
  1058                     }
  1059                   }
  1060 
  1061                   // Insert v to its new bucket
  1062                   _bucket_next[v] = _buckets[new_rank_v];
  1063                   _bucket_prev[_buckets[new_rank_v]] = v;
  1064                   _buckets[new_rank_v] = v;
  1065                 }
  1066               }
  1067             }
  1068           }
  1069 
  1070           // Finish search if there are no more active nodes
  1071           if (_excess[u] > 0) {
  1072             total_excess -= _excess[u];
  1073             if (total_excess <= 0) break;
  1074           }
  1075         }
  1076         if (total_excess <= 0) break;
  1077       }
  1078 
  1079       // Relabel nodes
  1080       for (int u = 0; u != _res_node_num; ++u) {
  1081         int k = std::min(_rank[u], r);
  1082         if (k > 0) {
  1083           _pi[u] -= _epsilon * k;
  1084           _next_out[u] = _first_out[u];
  1085         }
  1086       }
  1087     }
  1088 
  1089     /// Execute the algorithm performing augment and relabel operations
  1090     void startAugment(int max_length = std::numeric_limits<int>::max()) {
  1091       // Paramters for heuristics
  1092       const int EARLY_TERM_EPSILON_LIMIT = 1000;
  1093       const double GLOBAL_UPDATE_FACTOR = 3.0;
  1094 
  1095       const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
  1096         (_res_node_num + _sup_node_num * _sup_node_num));
  1097       int next_update_limit = global_update_freq;
  1098 
  1099       int relabel_cnt = 0;
  1100 
  1101       // Perform cost scaling phases
  1102       std::vector<int> path;
  1103       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1104                                         1 : _epsilon / _alpha )
  1105       {
  1106         // Early termination heuristic
  1107         if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
  1108           if (earlyTermination()) break;
  1109         }
  1110 
  1111         // Initialize current phase
  1112         initPhase();
  1113 
  1114         // Perform partial augment and relabel operations
  1115         while (true) {
  1116           // Select an active node (FIFO selection)
  1117           while (_active_nodes.size() > 0 &&
  1118                  _excess[_active_nodes.front()] <= 0) {
  1119             _active_nodes.pop_front();
  1120           }
  1121           if (_active_nodes.size() == 0) break;
  1122           int start = _active_nodes.front();
  1123 
  1124           // Find an augmenting path from the start node
  1125           path.clear();
  1126           int tip = start;
  1127           while (_excess[tip] >= 0 && int(path.size()) < max_length) {
  1128             int u;
  1129             LargeCost min_red_cost, rc, pi_tip = _pi[tip];
  1130             int last_out = _first_out[tip+1];
  1131             for (int a = _next_out[tip]; a != last_out; ++a) {
  1132               u = _target[a];
  1133               if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
  1134                 path.push_back(a);
  1135                 _next_out[tip] = a;
  1136                 tip = u;
  1137                 goto next_step;
  1138               }
  1139             }
  1140 
  1141             // Relabel tip node
  1142             min_red_cost = std::numeric_limits<LargeCost>::max();
  1143             if (tip != start) {
  1144               int ra = _reverse[path.back()];
  1145               min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]];
  1146             }
  1147             for (int a = _first_out[tip]; a != last_out; ++a) {
  1148               rc = _cost[a] + pi_tip - _pi[_target[a]];
  1149               if (_res_cap[a] > 0 && rc < min_red_cost) {
  1150                 min_red_cost = rc;
  1151               }
  1152             }
  1153             _pi[tip] -= min_red_cost + _epsilon;
  1154             _next_out[tip] = _first_out[tip];
  1155             ++relabel_cnt;
  1156 
  1157             // Step back
  1158             if (tip != start) {
  1159               tip = _source[path.back()];
  1160               path.pop_back();
  1161             }
  1162 
  1163           next_step: ;
  1164           }
  1165 
  1166           // Augment along the found path (as much flow as possible)
  1167           Value delta;
  1168           int pa, u, v = start;
  1169           for (int i = 0; i != int(path.size()); ++i) {
  1170             pa = path[i];
  1171             u = v;
  1172             v = _target[pa];
  1173             delta = std::min(_res_cap[pa], _excess[u]);
  1174             _res_cap[pa] -= delta;
  1175             _res_cap[_reverse[pa]] += delta;
  1176             _excess[u] -= delta;
  1177             _excess[v] += delta;
  1178             if (_excess[v] > 0 && _excess[v] <= delta)
  1179               _active_nodes.push_back(v);
  1180           }
  1181 
  1182           // Global update heuristic
  1183           if (relabel_cnt >= next_update_limit) {
  1184             globalUpdate();
  1185             next_update_limit += global_update_freq;
  1186           }
  1187         }
  1188       }
  1189     }
  1190 
  1191     /// Execute the algorithm performing push and relabel operations
  1192     void startPush() {
  1193       // Paramters for heuristics
  1194       const int EARLY_TERM_EPSILON_LIMIT = 1000;
  1195       const double GLOBAL_UPDATE_FACTOR = 2.0;
  1196 
  1197       const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
  1198         (_res_node_num + _sup_node_num * _sup_node_num));
  1199       int next_update_limit = global_update_freq;
  1200 
  1201       int relabel_cnt = 0;
  1202 
  1203       // Perform cost scaling phases
  1204       BoolVector hyper(_res_node_num, false);
  1205       LargeCostVector hyper_cost(_res_node_num);
  1206       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1207                                         1 : _epsilon / _alpha )
  1208       {
  1209         // Early termination heuristic
  1210         if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
  1211           if (earlyTermination()) break;
  1212         }
  1213 
  1214         // Initialize current phase
  1215         initPhase();
  1216 
  1217         // Perform push and relabel operations
  1218         while (_active_nodes.size() > 0) {
  1219           LargeCost min_red_cost, rc, pi_n;
  1220           Value delta;
  1221           int n, t, a, last_out = _res_arc_num;
  1222 
  1223         next_node:
  1224           // Select an active node (FIFO selection)
  1225           n = _active_nodes.front();
  1226           last_out = _first_out[n+1];
  1227           pi_n = _pi[n];
  1228 
  1229           // Perform push operations if there are admissible arcs
  1230           if (_excess[n] > 0) {
  1231             for (a = _next_out[n]; a != last_out; ++a) {
  1232               if (_res_cap[a] > 0 &&
  1233                   _cost[a] + pi_n - _pi[_target[a]] < 0) {
  1234                 delta = std::min(_res_cap[a], _excess[n]);
  1235                 t = _target[a];
  1236 
  1237                 // Push-look-ahead heuristic
  1238                 Value ahead = -_excess[t];
  1239                 int last_out_t = _first_out[t+1];
  1240                 LargeCost pi_t = _pi[t];
  1241                 for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
  1242                   if (_res_cap[ta] > 0 &&
  1243                       _cost[ta] + pi_t - _pi[_target[ta]] < 0)
  1244                     ahead += _res_cap[ta];
  1245                   if (ahead >= delta) break;
  1246                 }
  1247                 if (ahead < 0) ahead = 0;
  1248 
  1249                 // Push flow along the arc
  1250                 if (ahead < delta && !hyper[t]) {
  1251                   _res_cap[a] -= ahead;
  1252                   _res_cap[_reverse[a]] += ahead;
  1253                   _excess[n] -= ahead;
  1254                   _excess[t] += ahead;
  1255                   _active_nodes.push_front(t);
  1256                   hyper[t] = true;
  1257                   hyper_cost[t] = _cost[a] + pi_n - pi_t;
  1258                   _next_out[n] = a;
  1259                   goto next_node;
  1260                 } else {
  1261                   _res_cap[a] -= delta;
  1262                   _res_cap[_reverse[a]] += delta;
  1263                   _excess[n] -= delta;
  1264                   _excess[t] += delta;
  1265                   if (_excess[t] > 0 && _excess[t] <= delta)
  1266                     _active_nodes.push_back(t);
  1267                 }
  1268 
  1269                 if (_excess[n] == 0) {
  1270                   _next_out[n] = a;
  1271                   goto remove_nodes;
  1272                 }
  1273               }
  1274             }
  1275             _next_out[n] = a;
  1276           }
  1277 
  1278           // Relabel the node if it is still active (or hyper)
  1279           if (_excess[n] > 0 || hyper[n]) {
  1280              min_red_cost = hyper[n] ? -hyper_cost[n] :
  1281                std::numeric_limits<LargeCost>::max();
  1282             for (int a = _first_out[n]; a != last_out; ++a) {
  1283               rc = _cost[a] + pi_n - _pi[_target[a]];
  1284               if (_res_cap[a] > 0 && rc < min_red_cost) {
  1285                 min_red_cost = rc;
  1286               }
  1287             }
  1288             _pi[n] -= min_red_cost + _epsilon;
  1289             _next_out[n] = _first_out[n];
  1290             hyper[n] = false;
  1291             ++relabel_cnt;
  1292           }
  1293 
  1294           // Remove nodes that are not active nor hyper
  1295         remove_nodes:
  1296           while ( _active_nodes.size() > 0 &&
  1297                   _excess[_active_nodes.front()] <= 0 &&
  1298                   !hyper[_active_nodes.front()] ) {
  1299             _active_nodes.pop_front();
  1300           }
  1301 
  1302           // Global update heuristic
  1303           if (relabel_cnt >= next_update_limit) {
  1304             globalUpdate();
  1305             for (int u = 0; u != _res_node_num; ++u)
  1306               hyper[u] = false;
  1307             next_update_limit += global_update_freq;
  1308           }
  1309         }
  1310       }
  1311     }
  1312 
  1313   }; //class CostScaling
  1314 
  1315   ///@}
  1316 
  1317 } //namespace lemon
  1318 
  1319 #endif //LEMON_COST_SCALING_H