1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
25 #include <lemon/config.h>
26 #include <lemon/bits/enable_if.h>
27 #include <lemon/bits/traits.h>
28 #include <lemon/assert.h>
30 // Disable the following warnings when compiling with MSVC:
31 // C4250: 'class1' : inherits 'class2::member' via dominance
32 // C4355: 'this' : used in base member initializer list
33 // C4503: 'function' : decorated name length exceeded, name was truncated
34 // C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
35 // C4996: 'function': was declared deprecated
37 #pragma warning( disable : 4250 4355 4503 4800 4996 )
41 ///\brief LEMON core utilities.
43 ///This header file contains core utilities for LEMON.
44 ///It is automatically included by all graph types, therefore it usually
45 ///do not have to be included directly.
49 /// \brief Dummy type to make it easier to create invalid iterators.
51 /// Dummy type to make it easier to create invalid iterators.
52 /// See \ref INVALID for the usage.
55 bool operator==(Invalid) { return true; }
56 bool operator!=(Invalid) { return false; }
57 bool operator< (Invalid) { return false; }
60 /// \brief Invalid iterators.
62 /// \ref Invalid is a global type that converts to each iterator
63 /// in such a way that the value of the target iterator will be invalid.
64 #ifdef LEMON_ONLY_TEMPLATES
65 const Invalid INVALID = Invalid();
67 extern const Invalid INVALID;
70 /// \addtogroup gutils
73 ///Create convenience typedefs for the digraph types and iterators
75 ///This \c \#define creates convenient type definitions for the following
76 ///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
77 ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
78 ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
80 ///\note If the graph type is a dependent type, ie. the graph type depend
81 ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
83 #define DIGRAPH_TYPEDEFS(Digraph) \
84 typedef Digraph::Node Node; \
85 typedef Digraph::NodeIt NodeIt; \
86 typedef Digraph::Arc Arc; \
87 typedef Digraph::ArcIt ArcIt; \
88 typedef Digraph::InArcIt InArcIt; \
89 typedef Digraph::OutArcIt OutArcIt; \
90 typedef Digraph::NodeMap<bool> BoolNodeMap; \
91 typedef Digraph::NodeMap<int> IntNodeMap; \
92 typedef Digraph::NodeMap<double> DoubleNodeMap; \
93 typedef Digraph::ArcMap<bool> BoolArcMap; \
94 typedef Digraph::ArcMap<int> IntArcMap; \
95 typedef Digraph::ArcMap<double> DoubleArcMap
97 ///Create convenience typedefs for the digraph types and iterators
99 ///\see DIGRAPH_TYPEDEFS
101 ///\note Use this macro, if the graph type is a dependent type,
102 ///ie. the graph type depend on a template parameter.
103 #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \
104 typedef typename Digraph::Node Node; \
105 typedef typename Digraph::NodeIt NodeIt; \
106 typedef typename Digraph::Arc Arc; \
107 typedef typename Digraph::ArcIt ArcIt; \
108 typedef typename Digraph::InArcIt InArcIt; \
109 typedef typename Digraph::OutArcIt OutArcIt; \
110 typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \
111 typedef typename Digraph::template NodeMap<int> IntNodeMap; \
112 typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \
113 typedef typename Digraph::template ArcMap<bool> BoolArcMap; \
114 typedef typename Digraph::template ArcMap<int> IntArcMap; \
115 typedef typename Digraph::template ArcMap<double> DoubleArcMap
117 ///Create convenience typedefs for the graph types and iterators
119 ///This \c \#define creates the same convenient type definitions as defined
120 ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
121 ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
124 ///\note If the graph type is a dependent type, ie. the graph type depend
125 ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
127 #define GRAPH_TYPEDEFS(Graph) \
128 DIGRAPH_TYPEDEFS(Graph); \
129 typedef Graph::Edge Edge; \
130 typedef Graph::EdgeIt EdgeIt; \
131 typedef Graph::IncEdgeIt IncEdgeIt; \
132 typedef Graph::EdgeMap<bool> BoolEdgeMap; \
133 typedef Graph::EdgeMap<int> IntEdgeMap; \
134 typedef Graph::EdgeMap<double> DoubleEdgeMap
136 ///Create convenience typedefs for the graph types and iterators
138 ///\see GRAPH_TYPEDEFS
140 ///\note Use this macro, if the graph type is a dependent type,
141 ///ie. the graph type depend on a template parameter.
142 #define TEMPLATE_GRAPH_TYPEDEFS(Graph) \
143 TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \
144 typedef typename Graph::Edge Edge; \
145 typedef typename Graph::EdgeIt EdgeIt; \
146 typedef typename Graph::IncEdgeIt IncEdgeIt; \
147 typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \
148 typedef typename Graph::template EdgeMap<int> IntEdgeMap; \
149 typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
151 ///Create convenience typedefs for the bipartite graph types and iterators
153 ///This \c \#define creates the same convenient type definitions as
154 ///defined by \ref GRAPH_TYPEDEFS(BpGraph) and ten more, namely it
155 ///creates \c RedNode, \c RedNodeIt, \c BoolRedNodeMap,
156 ///\c IntRedNodeMap, \c DoubleRedNodeMap, \c BlueNode, \c BlueNodeIt,
157 ///\c BoolBlueNodeMap, \c IntBlueNodeMap, \c DoubleBlueNodeMap.
159 ///\note If the graph type is a dependent type, ie. the graph type depend
160 ///on a template parameter, then use \c TEMPLATE_BPGRAPH_TYPEDEFS()
162 #define BPGRAPH_TYPEDEFS(BpGraph) \
163 GRAPH_TYPEDEFS(BpGraph); \
164 typedef BpGraph::RedNode RedNode; \
165 typedef BpGraph::RedNodeIt RedNodeIt; \
166 typedef BpGraph::RedNodeMap<bool> BoolRedNodeMap; \
167 typedef BpGraph::RedNodeMap<int> IntRedNodeMap; \
168 typedef BpGraph::RedNodeMap<double> DoubleRedNodeMap; \
169 typedef BpGraph::BlueNode BlueNode; \
170 typedef BpGraph::BlueNodeIt BlueNodeIt; \
171 typedef BpGraph::BlueNodeMap<bool> BoolBlueNodeMap; \
172 typedef BpGraph::BlueNodeMap<int> IntBlueNodeMap; \
173 typedef BpGraph::BlueNodeMap<double> DoubleBlueNodeMap
175 ///Create convenience typedefs for the bipartite graph types and iterators
177 ///\see BPGRAPH_TYPEDEFS
179 ///\note Use this macro, if the graph type is a dependent type,
180 ///ie. the graph type depend on a template parameter.
181 #define TEMPLATE_BPGRAPH_TYPEDEFS(BpGraph) \
182 TEMPLATE_GRAPH_TYPEDEFS(BpGraph); \
183 typedef typename BpGraph::RedNode RedNode; \
184 typedef typename BpGraph::RedNodeIt RedNodeIt; \
185 typedef typename BpGraph::template RedNodeMap<bool> BoolRedNodeMap; \
186 typedef typename BpGraph::template RedNodeMap<int> IntRedNodeMap; \
187 typedef typename BpGraph::template RedNodeMap<double> DoubleRedNodeMap; \
188 typedef typename BpGraph::BlueNode BlueNode; \
189 typedef typename BpGraph::BlueNodeIt BlueNodeIt; \
190 typedef typename BpGraph::template BlueNodeMap<bool> BoolBlueNodeMap; \
191 typedef typename BpGraph::template BlueNodeMap<int> IntBlueNodeMap; \
192 typedef typename BpGraph::template BlueNodeMap<double> DoubleBlueNodeMap
194 /// \brief Function to count the items in a graph.
196 /// This function counts the items (nodes, arcs etc.) in a graph.
197 /// The complexity of the function is linear because
198 /// it iterates on all of the items.
199 template <typename Graph, typename Item>
200 inline int countItems(const Graph& g) {
201 typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
203 for (ItemIt it(g); it != INVALID; ++it) {
211 namespace _core_bits {
213 template <typename Graph, typename Enable = void>
214 struct CountNodesSelector {
215 static int count(const Graph &g) {
216 return countItems<Graph, typename Graph::Node>(g);
220 template <typename Graph>
221 struct CountNodesSelector<
223 enable_if<typename Graph::NodeNumTag, void>::type>
225 static int count(const Graph &g) {
231 /// \brief Function to count the nodes in the graph.
233 /// This function counts the nodes in the graph.
234 /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
235 /// graph structures it is specialized to run in <em>O</em>(1).
237 /// \note If the graph contains a \c nodeNum() member function and a
238 /// \c NodeNumTag tag then this function calls directly the member
239 /// function to query the cardinality of the node set.
240 template <typename Graph>
241 inline int countNodes(const Graph& g) {
242 return _core_bits::CountNodesSelector<Graph>::count(g);
245 namespace _graph_utils_bits {
247 template <typename Graph, typename Enable = void>
248 struct CountRedNodesSelector {
249 static int count(const Graph &g) {
250 return countItems<Graph, typename Graph::RedNode>(g);
254 template <typename Graph>
255 struct CountRedNodesSelector<
257 enable_if<typename Graph::NodeNumTag, void>::type>
259 static int count(const Graph &g) {
265 /// \brief Function to count the red nodes in the graph.
267 /// This function counts the red nodes in the graph.
268 /// The complexity of the function is O(n) but for some
269 /// graph structures it is specialized to run in O(1).
271 /// If the graph contains a \e redNum() member function and a
272 /// \e NodeNumTag tag then this function calls directly the member
273 /// function to query the cardinality of the node set.
274 template <typename Graph>
275 inline int countRedNodes(const Graph& g) {
276 return _graph_utils_bits::CountRedNodesSelector<Graph>::count(g);
279 namespace _graph_utils_bits {
281 template <typename Graph, typename Enable = void>
282 struct CountBlueNodesSelector {
283 static int count(const Graph &g) {
284 return countItems<Graph, typename Graph::BlueNode>(g);
288 template <typename Graph>
289 struct CountBlueNodesSelector<
291 enable_if<typename Graph::NodeNumTag, void>::type>
293 static int count(const Graph &g) {
299 /// \brief Function to count the blue nodes in the graph.
301 /// This function counts the blue nodes in the graph.
302 /// The complexity of the function is O(n) but for some
303 /// graph structures it is specialized to run in O(1).
305 /// If the graph contains a \e blueNum() member function and a
306 /// \e NodeNumTag tag then this function calls directly the member
307 /// function to query the cardinality of the node set.
308 template <typename Graph>
309 inline int countBlueNodes(const Graph& g) {
310 return _graph_utils_bits::CountBlueNodesSelector<Graph>::count(g);
315 namespace _core_bits {
317 template <typename Graph, typename Enable = void>
318 struct CountArcsSelector {
319 static int count(const Graph &g) {
320 return countItems<Graph, typename Graph::Arc>(g);
324 template <typename Graph>
325 struct CountArcsSelector<
327 typename enable_if<typename Graph::ArcNumTag, void>::type>
329 static int count(const Graph &g) {
335 /// \brief Function to count the arcs in the graph.
337 /// This function counts the arcs in the graph.
338 /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
339 /// graph structures it is specialized to run in <em>O</em>(1).
341 /// \note If the graph contains a \c arcNum() member function and a
342 /// \c ArcNumTag tag then this function calls directly the member
343 /// function to query the cardinality of the arc set.
344 template <typename Graph>
345 inline int countArcs(const Graph& g) {
346 return _core_bits::CountArcsSelector<Graph>::count(g);
351 namespace _core_bits {
353 template <typename Graph, typename Enable = void>
354 struct CountEdgesSelector {
355 static int count(const Graph &g) {
356 return countItems<Graph, typename Graph::Edge>(g);
360 template <typename Graph>
361 struct CountEdgesSelector<
363 typename enable_if<typename Graph::EdgeNumTag, void>::type>
365 static int count(const Graph &g) {
371 /// \brief Function to count the edges in the graph.
373 /// This function counts the edges in the graph.
374 /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
375 /// graph structures it is specialized to run in <em>O</em>(1).
377 /// \note If the graph contains a \c edgeNum() member function and a
378 /// \c EdgeNumTag tag then this function calls directly the member
379 /// function to query the cardinality of the edge set.
380 template <typename Graph>
381 inline int countEdges(const Graph& g) {
382 return _core_bits::CountEdgesSelector<Graph>::count(g);
387 template <typename Graph, typename DegIt>
388 inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
390 for (DegIt it(_g, _n); it != INVALID; ++it) {
396 /// \brief Function to count the number of the out-arcs from node \c n.
398 /// This function counts the number of the out-arcs from node \c n
399 /// in the graph \c g.
400 template <typename Graph>
401 inline int countOutArcs(const Graph& g, const typename Graph::Node& n) {
402 return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
405 /// \brief Function to count the number of the in-arcs to node \c n.
407 /// This function counts the number of the in-arcs to node \c n
408 /// in the graph \c g.
409 template <typename Graph>
410 inline int countInArcs(const Graph& g, const typename Graph::Node& n) {
411 return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
414 /// \brief Function to count the number of the inc-edges to node \c n.
416 /// This function counts the number of the inc-edges to node \c n
417 /// in the undirected graph \c g.
418 template <typename Graph>
419 inline int countIncEdges(const Graph& g, const typename Graph::Node& n) {
420 return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
423 namespace _core_bits {
425 template <typename Digraph, typename Item, typename RefMap>
428 virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
430 virtual ~MapCopyBase() {}
433 template <typename Digraph, typename Item, typename RefMap,
434 typename FromMap, typename ToMap>
435 class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
438 MapCopy(const FromMap& map, ToMap& tmap)
439 : _map(map), _tmap(tmap) {}
441 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
442 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
443 for (ItemIt it(digraph); it != INVALID; ++it) {
444 _tmap.set(refMap[it], _map[it]);
453 template <typename Digraph, typename Item, typename RefMap, typename It>
454 class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
457 ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
459 virtual void copy(const Digraph&, const RefMap& refMap) {
468 template <typename Digraph, typename Item, typename RefMap, typename Ref>
469 class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
472 RefCopy(Ref& map) : _map(map) {}
474 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
475 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
476 for (ItemIt it(digraph); it != INVALID; ++it) {
477 _map.set(it, refMap[it]);
485 template <typename Digraph, typename Item, typename RefMap,
487 class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
490 CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
492 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
493 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
494 for (ItemIt it(digraph); it != INVALID; ++it) {
495 _cmap.set(refMap[it], it);
503 template <typename Digraph, typename Enable = void>
504 struct DigraphCopySelector {
505 template <typename From, typename NodeRefMap, typename ArcRefMap>
506 static void copy(const From& from, Digraph &to,
507 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
509 for (typename From::NodeIt it(from); it != INVALID; ++it) {
510 nodeRefMap[it] = to.addNode();
512 for (typename From::ArcIt it(from); it != INVALID; ++it) {
513 arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
514 nodeRefMap[from.target(it)]);
519 template <typename Digraph>
520 struct DigraphCopySelector<
522 typename enable_if<typename Digraph::BuildTag, void>::type>
524 template <typename From, typename NodeRefMap, typename ArcRefMap>
525 static void copy(const From& from, Digraph &to,
526 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
527 to.build(from, nodeRefMap, arcRefMap);
531 template <typename Graph, typename Enable = void>
532 struct GraphCopySelector {
533 template <typename From, typename NodeRefMap, typename EdgeRefMap>
534 static void copy(const From& from, Graph &to,
535 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
537 for (typename From::NodeIt it(from); it != INVALID; ++it) {
538 nodeRefMap[it] = to.addNode();
540 for (typename From::EdgeIt it(from); it != INVALID; ++it) {
541 edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
542 nodeRefMap[from.v(it)]);
547 template <typename Graph>
548 struct GraphCopySelector<
550 typename enable_if<typename Graph::BuildTag, void>::type>
552 template <typename From, typename NodeRefMap, typename EdgeRefMap>
553 static void copy(const From& from, Graph &to,
554 NodeRefMap& nodeRefMap,
555 EdgeRefMap& edgeRefMap) {
556 to.build(from, nodeRefMap, edgeRefMap);
560 template <typename BpGraph, typename Enable = void>
561 struct BpGraphCopySelector {
562 template <typename From, typename RedNodeRefMap,
563 typename BlueNodeRefMap, typename EdgeRefMap>
564 static void copy(const From& from, BpGraph &to,
565 RedNodeRefMap& redNodeRefMap,
566 BlueNodeRefMap& blueNodeRefMap,
567 EdgeRefMap& edgeRefMap) {
569 for (typename From::RedNodeIt it(from); it != INVALID; ++it) {
570 redNodeRefMap[it] = to.addRedNode();
572 for (typename From::BlueNodeIt it(from); it != INVALID; ++it) {
573 blueNodeRefMap[it] = to.addBlueNode();
575 for (typename From::EdgeIt it(from); it != INVALID; ++it) {
576 edgeRefMap[it] = to.addEdge(redNodeRefMap[from.redNode(it)],
577 blueNodeRefMap[from.blueNode(it)]);
582 template <typename BpGraph>
583 struct BpGraphCopySelector<
585 typename enable_if<typename BpGraph::BuildTag, void>::type>
587 template <typename From, typename RedNodeRefMap,
588 typename BlueNodeRefMap, typename EdgeRefMap>
589 static void copy(const From& from, BpGraph &to,
590 RedNodeRefMap& redNodeRefMap,
591 BlueNodeRefMap& blueNodeRefMap,
592 EdgeRefMap& edgeRefMap) {
593 to.build(from, redNodeRefMap, blueNodeRefMap, edgeRefMap);
599 /// \brief Check whether a graph is undirected.
601 /// This function returns \c true if the given graph is undirected.
603 template <typename GR>
604 bool undirected(const GR& g) { return false; }
606 template <typename GR>
607 typename enable_if<UndirectedTagIndicator<GR>, bool>::type
608 undirected(const GR&) {
611 template <typename GR>
612 typename disable_if<UndirectedTagIndicator<GR>, bool>::type
613 undirected(const GR&) {
618 /// \brief Class to copy a digraph.
620 /// Class to copy a digraph to another digraph (duplicate a digraph). The
621 /// simplest way of using it is through the \c digraphCopy() function.
623 /// This class not only make a copy of a digraph, but it can create
624 /// references and cross references between the nodes and arcs of
625 /// the two digraphs, and it can copy maps to use with the newly created
628 /// To make a copy from a digraph, first an instance of DigraphCopy
629 /// should be created, then the data belongs to the digraph should
630 /// assigned to copy. In the end, the \c run() member should be
633 /// The next code copies a digraph with several data:
635 /// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
636 /// // Create references for the nodes
637 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
639 /// // Create cross references (inverse) for the arcs
640 /// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
641 /// cg.arcCrossRef(acr);
642 /// // Copy an arc map
643 /// OrigGraph::ArcMap<double> oamap(orig_graph);
644 /// NewGraph::ArcMap<double> namap(new_graph);
645 /// cg.arcMap(oamap, namap);
647 /// OrigGraph::Node on;
648 /// NewGraph::Node nn;
650 /// // Execute copying
653 template <typename From, typename To>
657 typedef typename From::Node Node;
658 typedef typename From::NodeIt NodeIt;
659 typedef typename From::Arc Arc;
660 typedef typename From::ArcIt ArcIt;
662 typedef typename To::Node TNode;
663 typedef typename To::Arc TArc;
665 typedef typename From::template NodeMap<TNode> NodeRefMap;
666 typedef typename From::template ArcMap<TArc> ArcRefMap;
670 /// \brief Constructor of DigraphCopy.
672 /// Constructor of DigraphCopy for copying the content of the
673 /// \c from digraph into the \c to digraph.
674 DigraphCopy(const From& from, To& to)
675 : _from(from), _to(to) {}
677 /// \brief Destructor of DigraphCopy
679 /// Destructor of DigraphCopy.
681 for (int i = 0; i < int(_node_maps.size()); ++i) {
682 delete _node_maps[i];
684 for (int i = 0; i < int(_arc_maps.size()); ++i) {
690 /// \brief Copy the node references into the given map.
692 /// This function copies the node references into the given map.
693 /// The parameter should be a map, whose key type is the Node type of
694 /// the source digraph, while the value type is the Node type of the
695 /// destination digraph.
696 template <typename NodeRef>
697 DigraphCopy& nodeRef(NodeRef& map) {
698 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
699 NodeRefMap, NodeRef>(map));
703 /// \brief Copy the node cross references into the given map.
705 /// This function copies the node cross references (reverse references)
706 /// into the given map. The parameter should be a map, whose key type
707 /// is the Node type of the destination digraph, while the value type is
708 /// the Node type of the source digraph.
709 template <typename NodeCrossRef>
710 DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
711 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
712 NodeRefMap, NodeCrossRef>(map));
716 /// \brief Make a copy of the given node map.
718 /// This function makes a copy of the given node map for the newly
720 /// The key type of the new map \c tmap should be the Node type of the
721 /// destination digraph, and the key type of the original map \c map
722 /// should be the Node type of the source digraph.
723 template <typename FromMap, typename ToMap>
724 DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
725 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
726 NodeRefMap, FromMap, ToMap>(map, tmap));
730 /// \brief Make a copy of the given node.
732 /// This function makes a copy of the given node.
733 DigraphCopy& node(const Node& node, TNode& tnode) {
734 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
735 NodeRefMap, TNode>(node, tnode));
739 /// \brief Copy the arc references into the given map.
741 /// This function copies the arc references into the given map.
742 /// The parameter should be a map, whose key type is the Arc type of
743 /// the source digraph, while the value type is the Arc type of the
744 /// destination digraph.
745 template <typename ArcRef>
746 DigraphCopy& arcRef(ArcRef& map) {
747 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
748 ArcRefMap, ArcRef>(map));
752 /// \brief Copy the arc cross references into the given map.
754 /// This function copies the arc cross references (reverse references)
755 /// into the given map. The parameter should be a map, whose key type
756 /// is the Arc type of the destination digraph, while the value type is
757 /// the Arc type of the source digraph.
758 template <typename ArcCrossRef>
759 DigraphCopy& arcCrossRef(ArcCrossRef& map) {
760 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
761 ArcRefMap, ArcCrossRef>(map));
765 /// \brief Make a copy of the given arc map.
767 /// This function makes a copy of the given arc map for the newly
769 /// The key type of the new map \c tmap should be the Arc type of the
770 /// destination digraph, and the key type of the original map \c map
771 /// should be the Arc type of the source digraph.
772 template <typename FromMap, typename ToMap>
773 DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
774 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
775 ArcRefMap, FromMap, ToMap>(map, tmap));
779 /// \brief Make a copy of the given arc.
781 /// This function makes a copy of the given arc.
782 DigraphCopy& arc(const Arc& arc, TArc& tarc) {
783 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
784 ArcRefMap, TArc>(arc, tarc));
788 /// \brief Execute copying.
790 /// This function executes the copying of the digraph along with the
791 /// copying of the assigned data.
793 NodeRefMap nodeRefMap(_from);
794 ArcRefMap arcRefMap(_from);
795 _core_bits::DigraphCopySelector<To>::
796 copy(_from, _to, nodeRefMap, arcRefMap);
797 for (int i = 0; i < int(_node_maps.size()); ++i) {
798 _node_maps[i]->copy(_from, nodeRefMap);
800 for (int i = 0; i < int(_arc_maps.size()); ++i) {
801 _arc_maps[i]->copy(_from, arcRefMap);
810 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
813 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
818 /// \brief Copy a digraph to another digraph.
820 /// This function copies a digraph to another digraph.
821 /// The complete usage of it is detailed in the DigraphCopy class, but
822 /// a short example shows a basic work:
824 /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
827 /// After the copy the \c nr map will contain the mapping from the
828 /// nodes of the \c from digraph to the nodes of the \c to digraph and
829 /// \c acr will contain the mapping from the arcs of the \c to digraph
830 /// to the arcs of the \c from digraph.
833 template <typename From, typename To>
834 DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
835 return DigraphCopy<From, To>(from, to);
838 /// \brief Class to copy a graph.
840 /// Class to copy a graph to another graph (duplicate a graph). The
841 /// simplest way of using it is through the \c graphCopy() function.
843 /// This class not only make a copy of a graph, but it can create
844 /// references and cross references between the nodes, edges and arcs of
845 /// the two graphs, and it can copy maps for using with the newly created
848 /// To make a copy from a graph, first an instance of GraphCopy
849 /// should be created, then the data belongs to the graph should
850 /// assigned to copy. In the end, the \c run() member should be
853 /// The next code copies a graph with several data:
855 /// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
856 /// // Create references for the nodes
857 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
859 /// // Create cross references (inverse) for the edges
860 /// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
861 /// cg.edgeCrossRef(ecr);
862 /// // Copy an edge map
863 /// OrigGraph::EdgeMap<double> oemap(orig_graph);
864 /// NewGraph::EdgeMap<double> nemap(new_graph);
865 /// cg.edgeMap(oemap, nemap);
867 /// OrigGraph::Node on;
868 /// NewGraph::Node nn;
870 /// // Execute copying
873 template <typename From, typename To>
877 typedef typename From::Node Node;
878 typedef typename From::NodeIt NodeIt;
879 typedef typename From::Arc Arc;
880 typedef typename From::ArcIt ArcIt;
881 typedef typename From::Edge Edge;
882 typedef typename From::EdgeIt EdgeIt;
884 typedef typename To::Node TNode;
885 typedef typename To::Arc TArc;
886 typedef typename To::Edge TEdge;
888 typedef typename From::template NodeMap<TNode> NodeRefMap;
889 typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
892 ArcRefMap(const From& from, const To& to,
893 const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
894 : _from(from), _to(to),
895 _edge_ref(edge_ref), _node_ref(node_ref) {}
897 typedef typename From::Arc Key;
898 typedef typename To::Arc Value;
900 Value operator[](const Key& key) const {
901 bool forward = _from.u(key) != _from.v(key) ?
902 _node_ref[_from.source(key)] ==
903 _to.source(_to.direct(_edge_ref[key], true)) :
904 _from.direction(key);
905 return _to.direct(_edge_ref[key], forward);
910 const EdgeRefMap& _edge_ref;
911 const NodeRefMap& _node_ref;
916 /// \brief Constructor of GraphCopy.
918 /// Constructor of GraphCopy for copying the content of the
919 /// \c from graph into the \c to graph.
920 GraphCopy(const From& from, To& to)
921 : _from(from), _to(to) {}
923 /// \brief Destructor of GraphCopy
925 /// Destructor of GraphCopy.
927 for (int i = 0; i < int(_node_maps.size()); ++i) {
928 delete _node_maps[i];
930 for (int i = 0; i < int(_arc_maps.size()); ++i) {
933 for (int i = 0; i < int(_edge_maps.size()); ++i) {
934 delete _edge_maps[i];
938 /// \brief Copy the node references into the given map.
940 /// This function copies the node references into the given map.
941 /// The parameter should be a map, whose key type is the Node type of
942 /// the source graph, while the value type is the Node type of the
943 /// destination graph.
944 template <typename NodeRef>
945 GraphCopy& nodeRef(NodeRef& map) {
946 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
947 NodeRefMap, NodeRef>(map));
951 /// \brief Copy the node cross references into the given map.
953 /// This function copies the node cross references (reverse references)
954 /// into the given map. The parameter should be a map, whose key type
955 /// is the Node type of the destination graph, while the value type is
956 /// the Node type of the source graph.
957 template <typename NodeCrossRef>
958 GraphCopy& nodeCrossRef(NodeCrossRef& map) {
959 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
960 NodeRefMap, NodeCrossRef>(map));
964 /// \brief Make a copy of the given node map.
966 /// This function makes a copy of the given node map for the newly
968 /// The key type of the new map \c tmap should be the Node type of the
969 /// destination graph, and the key type of the original map \c map
970 /// should be the Node type of the source graph.
971 template <typename FromMap, typename ToMap>
972 GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
973 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
974 NodeRefMap, FromMap, ToMap>(map, tmap));
978 /// \brief Make a copy of the given node.
980 /// This function makes a copy of the given node.
981 GraphCopy& node(const Node& node, TNode& tnode) {
982 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
983 NodeRefMap, TNode>(node, tnode));
987 /// \brief Copy the arc references into the given map.
989 /// This function copies the arc references into the given map.
990 /// The parameter should be a map, whose key type is the Arc type of
991 /// the source graph, while the value type is the Arc type of the
992 /// destination graph.
993 template <typename ArcRef>
994 GraphCopy& arcRef(ArcRef& map) {
995 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
996 ArcRefMap, ArcRef>(map));
1000 /// \brief Copy the arc cross references into the given map.
1002 /// This function copies the arc cross references (reverse references)
1003 /// into the given map. The parameter should be a map, whose key type
1004 /// is the Arc type of the destination graph, while the value type is
1005 /// the Arc type of the source graph.
1006 template <typename ArcCrossRef>
1007 GraphCopy& arcCrossRef(ArcCrossRef& map) {
1008 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
1009 ArcRefMap, ArcCrossRef>(map));
1013 /// \brief Make a copy of the given arc map.
1015 /// This function makes a copy of the given arc map for the newly
1017 /// The key type of the new map \c tmap should be the Arc type of the
1018 /// destination graph, and the key type of the original map \c map
1019 /// should be the Arc type of the source graph.
1020 template <typename FromMap, typename ToMap>
1021 GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
1022 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
1023 ArcRefMap, FromMap, ToMap>(map, tmap));
1027 /// \brief Make a copy of the given arc.
1029 /// This function makes a copy of the given arc.
1030 GraphCopy& arc(const Arc& arc, TArc& tarc) {
1031 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
1032 ArcRefMap, TArc>(arc, tarc));
1036 /// \brief Copy the edge references into the given map.
1038 /// This function copies the edge references into the given map.
1039 /// The parameter should be a map, whose key type is the Edge type of
1040 /// the source graph, while the value type is the Edge type of the
1041 /// destination graph.
1042 template <typename EdgeRef>
1043 GraphCopy& edgeRef(EdgeRef& map) {
1044 _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
1045 EdgeRefMap, EdgeRef>(map));
1049 /// \brief Copy the edge cross references into the given map.
1051 /// This function copies the edge cross references (reverse references)
1052 /// into the given map. The parameter should be a map, whose key type
1053 /// is the Edge type of the destination graph, while the value type is
1054 /// the Edge type of the source graph.
1055 template <typename EdgeCrossRef>
1056 GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
1057 _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
1058 Edge, EdgeRefMap, EdgeCrossRef>(map));
1062 /// \brief Make a copy of the given edge map.
1064 /// This function makes a copy of the given edge map for the newly
1066 /// The key type of the new map \c tmap should be the Edge type of the
1067 /// destination graph, and the key type of the original map \c map
1068 /// should be the Edge type of the source graph.
1069 template <typename FromMap, typename ToMap>
1070 GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
1071 _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
1072 EdgeRefMap, FromMap, ToMap>(map, tmap));
1076 /// \brief Make a copy of the given edge.
1078 /// This function makes a copy of the given edge.
1079 GraphCopy& edge(const Edge& edge, TEdge& tedge) {
1080 _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
1081 EdgeRefMap, TEdge>(edge, tedge));
1085 /// \brief Execute copying.
1087 /// This function executes the copying of the graph along with the
1088 /// copying of the assigned data.
1090 NodeRefMap nodeRefMap(_from);
1091 EdgeRefMap edgeRefMap(_from);
1092 ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
1093 _core_bits::GraphCopySelector<To>::
1094 copy(_from, _to, nodeRefMap, edgeRefMap);
1095 for (int i = 0; i < int(_node_maps.size()); ++i) {
1096 _node_maps[i]->copy(_from, nodeRefMap);
1098 for (int i = 0; i < int(_edge_maps.size()); ++i) {
1099 _edge_maps[i]->copy(_from, edgeRefMap);
1101 for (int i = 0; i < int(_arc_maps.size()); ++i) {
1102 _arc_maps[i]->copy(_from, arcRefMap);
1111 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
1114 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
1117 std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
1122 /// \brief Copy a graph to another graph.
1124 /// This function copies a graph to another graph.
1125 /// The complete usage of it is detailed in the GraphCopy class,
1126 /// but a short example shows a basic work:
1128 /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
1131 /// After the copy the \c nr map will contain the mapping from the
1132 /// nodes of the \c from graph to the nodes of the \c to graph and
1133 /// \c ecr will contain the mapping from the edges of the \c to graph
1134 /// to the edges of the \c from graph.
1137 template <typename From, typename To>
1139 graphCopy(const From& from, To& to) {
1140 return GraphCopy<From, To>(from, to);
1143 /// \brief Class to copy a bipartite graph.
1145 /// Class to copy a bipartite graph to another graph (duplicate a
1146 /// graph). The simplest way of using it is through the
1147 /// \c bpGraphCopy() function.
1149 /// This class not only make a copy of a bipartite graph, but it can
1150 /// create references and cross references between the nodes, edges
1151 /// and arcs of the two graphs, and it can copy maps for using with
1152 /// the newly created graph.
1154 /// To make a copy from a graph, first an instance of BpGraphCopy
1155 /// should be created, then the data belongs to the graph should
1156 /// assigned to copy. In the end, the \c run() member should be
1159 /// The next code copies a graph with several data:
1161 /// BpGraphCopy<OrigBpGraph, NewBpGraph> cg(orig_graph, new_graph);
1162 /// // Create references for the nodes
1163 /// OrigBpGraph::NodeMap<NewBpGraph::Node> nr(orig_graph);
1165 /// // Create cross references (inverse) for the edges
1166 /// NewBpGraph::EdgeMap<OrigBpGraph::Edge> ecr(new_graph);
1167 /// cg.edgeCrossRef(ecr);
1168 /// // Copy a red node map
1169 /// OrigBpGraph::RedNodeMap<double> ormap(orig_graph);
1170 /// NewBpGraph::RedNodeMap<double> nrmap(new_graph);
1171 /// cg.redNodeMap(ormap, nrmap);
1173 /// OrigBpGraph::Node on;
1174 /// NewBpGraph::Node nn;
1175 /// cg.node(on, nn);
1176 /// // Execute copying
1179 template <typename From, typename To>
1183 typedef typename From::Node Node;
1184 typedef typename From::RedNode RedNode;
1185 typedef typename From::BlueNode BlueNode;
1186 typedef typename From::NodeIt NodeIt;
1187 typedef typename From::Arc Arc;
1188 typedef typename From::ArcIt ArcIt;
1189 typedef typename From::Edge Edge;
1190 typedef typename From::EdgeIt EdgeIt;
1192 typedef typename To::Node TNode;
1193 typedef typename To::RedNode TRedNode;
1194 typedef typename To::BlueNode TBlueNode;
1195 typedef typename To::Arc TArc;
1196 typedef typename To::Edge TEdge;
1198 typedef typename From::template RedNodeMap<TRedNode> RedNodeRefMap;
1199 typedef typename From::template BlueNodeMap<TBlueNode> BlueNodeRefMap;
1200 typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
1203 NodeRefMap(const From& from, const RedNodeRefMap& red_node_ref,
1204 const BlueNodeRefMap& blue_node_ref)
1205 : _from(from), _red_node_ref(red_node_ref),
1206 _blue_node_ref(blue_node_ref) {}
1208 typedef typename From::Node Key;
1209 typedef typename To::Node Value;
1211 Value operator[](const Key& key) const {
1212 if (_from.red(key)) {
1213 return _red_node_ref[_from.asRedNodeUnsafe(key)];
1215 return _blue_node_ref[_from.asBlueNodeUnsafe(key)];
1220 const RedNodeRefMap& _red_node_ref;
1221 const BlueNodeRefMap& _blue_node_ref;
1225 ArcRefMap(const From& from, const To& to, const EdgeRefMap& edge_ref)
1226 : _from(from), _to(to), _edge_ref(edge_ref) {}
1228 typedef typename From::Arc Key;
1229 typedef typename To::Arc Value;
1231 Value operator[](const Key& key) const {
1232 return _to.direct(_edge_ref[key], _from.direction(key));
1237 const EdgeRefMap& _edge_ref;
1242 /// \brief Constructor of BpGraphCopy.
1244 /// Constructor of BpGraphCopy for copying the content of the
1245 /// \c from graph into the \c to graph.
1246 BpGraphCopy(const From& from, To& to)
1247 : _from(from), _to(to) {}
1249 /// \brief Destructor of BpGraphCopy
1251 /// Destructor of BpGraphCopy.
1253 for (int i = 0; i < int(_node_maps.size()); ++i) {
1254 delete _node_maps[i];
1256 for (int i = 0; i < int(_red_maps.size()); ++i) {
1257 delete _red_maps[i];
1259 for (int i = 0; i < int(_blue_maps.size()); ++i) {
1260 delete _blue_maps[i];
1262 for (int i = 0; i < int(_arc_maps.size()); ++i) {
1263 delete _arc_maps[i];
1265 for (int i = 0; i < int(_edge_maps.size()); ++i) {
1266 delete _edge_maps[i];
1270 /// \brief Copy the node references into the given map.
1272 /// This function copies the node references into the given map.
1273 /// The parameter should be a map, whose key type is the Node type of
1274 /// the source graph, while the value type is the Node type of the
1275 /// destination graph.
1276 template <typename NodeRef>
1277 BpGraphCopy& nodeRef(NodeRef& map) {
1278 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
1279 NodeRefMap, NodeRef>(map));
1283 /// \brief Copy the node cross references into the given map.
1285 /// This function copies the node cross references (reverse references)
1286 /// into the given map. The parameter should be a map, whose key type
1287 /// is the Node type of the destination graph, while the value type is
1288 /// the Node type of the source graph.
1289 template <typename NodeCrossRef>
1290 BpGraphCopy& nodeCrossRef(NodeCrossRef& map) {
1291 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
1292 NodeRefMap, NodeCrossRef>(map));
1296 /// \brief Make a copy of the given node map.
1298 /// This function makes a copy of the given node map for the newly
1300 /// The key type of the new map \c tmap should be the Node type of the
1301 /// destination graph, and the key type of the original map \c map
1302 /// should be the Node type of the source graph.
1303 template <typename FromMap, typename ToMap>
1304 BpGraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
1305 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
1306 NodeRefMap, FromMap, ToMap>(map, tmap));
1310 /// \brief Make a copy of the given node.
1312 /// This function makes a copy of the given node.
1313 BpGraphCopy& node(const Node& node, TNode& tnode) {
1314 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
1315 NodeRefMap, TNode>(node, tnode));
1319 /// \brief Copy the red node references into the given map.
1321 /// This function copies the red node references into the given
1322 /// map. The parameter should be a map, whose key type is the
1323 /// Node type of the source graph with the red item set, while the
1324 /// value type is the Node type of the destination graph.
1325 template <typename RedRef>
1326 BpGraphCopy& redRef(RedRef& map) {
1327 _red_maps.push_back(new _core_bits::RefCopy<From, RedNode,
1328 RedNodeRefMap, RedRef>(map));
1332 /// \brief Copy the red node cross references into the given map.
1334 /// This function copies the red node cross references (reverse
1335 /// references) into the given map. The parameter should be a map,
1336 /// whose key type is the Node type of the destination graph with
1337 /// the red item set, while the value type is the Node type of the
1339 template <typename RedCrossRef>
1340 BpGraphCopy& redCrossRef(RedCrossRef& map) {
1341 _red_maps.push_back(new _core_bits::CrossRefCopy<From, RedNode,
1342 RedNodeRefMap, RedCrossRef>(map));
1346 /// \brief Make a copy of the given red node map.
1348 /// This function makes a copy of the given red node map for the newly
1350 /// The key type of the new map \c tmap should be the Node type of
1351 /// the destination graph with the red items, and the key type of
1352 /// the original map \c map should be the Node type of the source
1354 template <typename FromMap, typename ToMap>
1355 BpGraphCopy& redNodeMap(const FromMap& map, ToMap& tmap) {
1356 _red_maps.push_back(new _core_bits::MapCopy<From, RedNode,
1357 RedNodeRefMap, FromMap, ToMap>(map, tmap));
1361 /// \brief Make a copy of the given red node.
1363 /// This function makes a copy of the given red node.
1364 BpGraphCopy& redNode(const RedNode& node, TRedNode& tnode) {
1365 _red_maps.push_back(new _core_bits::ItemCopy<From, RedNode,
1366 RedNodeRefMap, TRedNode>(node, tnode));
1370 /// \brief Copy the blue node references into the given map.
1372 /// This function copies the blue node references into the given
1373 /// map. The parameter should be a map, whose key type is the
1374 /// Node type of the source graph with the blue item set, while the
1375 /// value type is the Node type of the destination graph.
1376 template <typename BlueRef>
1377 BpGraphCopy& blueRef(BlueRef& map) {
1378 _blue_maps.push_back(new _core_bits::RefCopy<From, BlueNode,
1379 BlueNodeRefMap, BlueRef>(map));
1383 /// \brief Copy the blue node cross references into the given map.
1385 /// This function copies the blue node cross references (reverse
1386 /// references) into the given map. The parameter should be a map,
1387 /// whose key type is the Node type of the destination graph with
1388 /// the blue item set, while the value type is the Node type of the
1390 template <typename BlueCrossRef>
1391 BpGraphCopy& blueCrossRef(BlueCrossRef& map) {
1392 _blue_maps.push_back(new _core_bits::CrossRefCopy<From, BlueNode,
1393 BlueNodeRefMap, BlueCrossRef>(map));
1397 /// \brief Make a copy of the given blue node map.
1399 /// This function makes a copy of the given blue node map for the newly
1401 /// The key type of the new map \c tmap should be the Node type of
1402 /// the destination graph with the blue items, and the key type of
1403 /// the original map \c map should be the Node type of the source
1405 template <typename FromMap, typename ToMap>
1406 BpGraphCopy& blueNodeMap(const FromMap& map, ToMap& tmap) {
1407 _blue_maps.push_back(new _core_bits::MapCopy<From, BlueNode,
1408 BlueNodeRefMap, FromMap, ToMap>(map, tmap));
1412 /// \brief Make a copy of the given blue node.
1414 /// This function makes a copy of the given blue node.
1415 BpGraphCopy& blueNode(const BlueNode& node, TBlueNode& tnode) {
1416 _blue_maps.push_back(new _core_bits::ItemCopy<From, BlueNode,
1417 BlueNodeRefMap, TBlueNode>(node, tnode));
1421 /// \brief Copy the arc references into the given map.
1423 /// This function copies the arc references into the given map.
1424 /// The parameter should be a map, whose key type is the Arc type of
1425 /// the source graph, while the value type is the Arc type of the
1426 /// destination graph.
1427 template <typename ArcRef>
1428 BpGraphCopy& arcRef(ArcRef& map) {
1429 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
1430 ArcRefMap, ArcRef>(map));
1434 /// \brief Copy the arc cross references into the given map.
1436 /// This function copies the arc cross references (reverse references)
1437 /// into the given map. The parameter should be a map, whose key type
1438 /// is the Arc type of the destination graph, while the value type is
1439 /// the Arc type of the source graph.
1440 template <typename ArcCrossRef>
1441 BpGraphCopy& arcCrossRef(ArcCrossRef& map) {
1442 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
1443 ArcRefMap, ArcCrossRef>(map));
1447 /// \brief Make a copy of the given arc map.
1449 /// This function makes a copy of the given arc map for the newly
1451 /// The key type of the new map \c tmap should be the Arc type of the
1452 /// destination graph, and the key type of the original map \c map
1453 /// should be the Arc type of the source graph.
1454 template <typename FromMap, typename ToMap>
1455 BpGraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
1456 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
1457 ArcRefMap, FromMap, ToMap>(map, tmap));
1461 /// \brief Make a copy of the given arc.
1463 /// This function makes a copy of the given arc.
1464 BpGraphCopy& arc(const Arc& arc, TArc& tarc) {
1465 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
1466 ArcRefMap, TArc>(arc, tarc));
1470 /// \brief Copy the edge references into the given map.
1472 /// This function copies the edge references into the given map.
1473 /// The parameter should be a map, whose key type is the Edge type of
1474 /// the source graph, while the value type is the Edge type of the
1475 /// destination graph.
1476 template <typename EdgeRef>
1477 BpGraphCopy& edgeRef(EdgeRef& map) {
1478 _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
1479 EdgeRefMap, EdgeRef>(map));
1483 /// \brief Copy the edge cross references into the given map.
1485 /// This function copies the edge cross references (reverse references)
1486 /// into the given map. The parameter should be a map, whose key type
1487 /// is the Edge type of the destination graph, while the value type is
1488 /// the Edge type of the source graph.
1489 template <typename EdgeCrossRef>
1490 BpGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
1491 _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
1492 Edge, EdgeRefMap, EdgeCrossRef>(map));
1496 /// \brief Make a copy of the given edge map.
1498 /// This function makes a copy of the given edge map for the newly
1500 /// The key type of the new map \c tmap should be the Edge type of the
1501 /// destination graph, and the key type of the original map \c map
1502 /// should be the Edge type of the source graph.
1503 template <typename FromMap, typename ToMap>
1504 BpGraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
1505 _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
1506 EdgeRefMap, FromMap, ToMap>(map, tmap));
1510 /// \brief Make a copy of the given edge.
1512 /// This function makes a copy of the given edge.
1513 BpGraphCopy& edge(const Edge& edge, TEdge& tedge) {
1514 _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
1515 EdgeRefMap, TEdge>(edge, tedge));
1519 /// \brief Execute copying.
1521 /// This function executes the copying of the graph along with the
1522 /// copying of the assigned data.
1524 RedNodeRefMap redNodeRefMap(_from);
1525 BlueNodeRefMap blueNodeRefMap(_from);
1526 NodeRefMap nodeRefMap(_from, redNodeRefMap, blueNodeRefMap);
1527 EdgeRefMap edgeRefMap(_from);
1528 ArcRefMap arcRefMap(_from, _to, edgeRefMap);
1529 _core_bits::BpGraphCopySelector<To>::
1530 copy(_from, _to, redNodeRefMap, blueNodeRefMap, edgeRefMap);
1531 for (int i = 0; i < int(_node_maps.size()); ++i) {
1532 _node_maps[i]->copy(_from, nodeRefMap);
1534 for (int i = 0; i < int(_red_maps.size()); ++i) {
1535 _red_maps[i]->copy(_from, redNodeRefMap);
1537 for (int i = 0; i < int(_blue_maps.size()); ++i) {
1538 _blue_maps[i]->copy(_from, blueNodeRefMap);
1540 for (int i = 0; i < int(_edge_maps.size()); ++i) {
1541 _edge_maps[i]->copy(_from, edgeRefMap);
1543 for (int i = 0; i < int(_arc_maps.size()); ++i) {
1544 _arc_maps[i]->copy(_from, arcRefMap);
1553 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
1556 std::vector<_core_bits::MapCopyBase<From, RedNode, RedNodeRefMap>* >
1559 std::vector<_core_bits::MapCopyBase<From, BlueNode, BlueNodeRefMap>* >
1562 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
1565 std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
1570 /// \brief Copy a graph to another graph.
1572 /// This function copies a graph to another graph.
1573 /// The complete usage of it is detailed in the BpGraphCopy class,
1574 /// but a short example shows a basic work:
1576 /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
1579 /// After the copy the \c nr map will contain the mapping from the
1580 /// nodes of the \c from graph to the nodes of the \c to graph and
1581 /// \c ecr will contain the mapping from the edges of the \c to graph
1582 /// to the edges of the \c from graph.
1584 /// \see BpGraphCopy
1585 template <typename From, typename To>
1586 BpGraphCopy<From, To>
1587 bpGraphCopy(const From& from, To& to) {
1588 return BpGraphCopy<From, To>(from, to);
1591 namespace _core_bits {
1593 template <typename Graph, typename Enable = void>
1594 struct FindArcSelector {
1595 typedef typename Graph::Node Node;
1596 typedef typename Graph::Arc Arc;
1597 static Arc find(const Graph &g, Node u, Node v, Arc e) {
1603 while (e != INVALID && g.target(e) != v) {
1610 template <typename Graph>
1611 struct FindArcSelector<
1613 typename enable_if<typename Graph::FindArcTag, void>::type>
1615 typedef typename Graph::Node Node;
1616 typedef typename Graph::Arc Arc;
1617 static Arc find(const Graph &g, Node u, Node v, Arc prev) {
1618 return g.findArc(u, v, prev);
1623 /// \brief Find an arc between two nodes of a digraph.
1625 /// This function finds an arc from node \c u to node \c v in the
1628 /// If \c prev is \ref INVALID (this is the default value), then
1629 /// it finds the first arc from \c u to \c v. Otherwise it looks for
1630 /// the next arc from \c u to \c v after \c prev.
1631 /// \return The found arc or \ref INVALID if there is no such an arc.
1633 /// Thus you can iterate through each arc from \c u to \c v as it follows.
1635 /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
1640 /// \note \ref ConArcIt provides iterator interface for the same
1644 ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1645 template <typename Graph>
1646 inline typename Graph::Arc
1647 findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1648 typename Graph::Arc prev = INVALID) {
1649 return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
1652 /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
1654 /// Iterator for iterating on parallel arcs connecting the same nodes. It is
1655 /// a higher level interface for the \ref findArc() function. You can
1656 /// use it the following way:
1658 /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
1664 ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1665 template <typename GR>
1666 class ConArcIt : public GR::Arc {
1667 typedef typename GR::Arc Parent;
1671 typedef typename GR::Arc Arc;
1672 typedef typename GR::Node Node;
1674 /// \brief Constructor.
1676 /// Construct a new ConArcIt iterating on the arcs that
1677 /// connects nodes \c u and \c v.
1678 ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
1679 Parent::operator=(findArc(_graph, u, v));
1682 /// \brief Constructor.
1684 /// Construct a new ConArcIt that continues the iterating from arc \c a.
1685 ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
1687 /// \brief Increment operator.
1689 /// It increments the iterator and gives back the next arc.
1690 ConArcIt& operator++() {
1691 Parent::operator=(findArc(_graph, _graph.source(*this),
1692 _graph.target(*this), *this));
1699 namespace _core_bits {
1701 template <typename Graph, typename Enable = void>
1702 struct FindEdgeSelector {
1703 typedef typename Graph::Node Node;
1704 typedef typename Graph::Edge Edge;
1705 static Edge find(const Graph &g, Node u, Node v, Edge e) {
1709 g.firstInc(e, b, u);
1714 while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
1719 g.firstInc(e, b, u);
1724 while (e != INVALID && (!b || g.v(e) != v)) {
1732 template <typename Graph>
1733 struct FindEdgeSelector<
1735 typename enable_if<typename Graph::FindEdgeTag, void>::type>
1737 typedef typename Graph::Node Node;
1738 typedef typename Graph::Edge Edge;
1739 static Edge find(const Graph &g, Node u, Node v, Edge prev) {
1740 return g.findEdge(u, v, prev);
1745 /// \brief Find an edge between two nodes of a graph.
1747 /// This function finds an edge from node \c u to node \c v in graph \c g.
1748 /// If node \c u and node \c v is equal then each loop edge
1749 /// will be enumerated once.
1751 /// If \c prev is \ref INVALID (this is the default value), then
1752 /// it finds the first edge from \c u to \c v. Otherwise it looks for
1753 /// the next edge from \c u to \c v after \c prev.
1754 /// \return The found edge or \ref INVALID if there is no such an edge.
1756 /// Thus you can iterate through each edge between \c u and \c v
1759 /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
1764 /// \note \ref ConEdgeIt provides iterator interface for the same
1768 template <typename Graph>
1769 inline typename Graph::Edge
1770 findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1771 typename Graph::Edge p = INVALID) {
1772 return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
1775 /// \brief Iterator for iterating on parallel edges connecting the same nodes.
1777 /// Iterator for iterating on parallel edges connecting the same nodes.
1778 /// It is a higher level interface for the findEdge() function. You can
1779 /// use it the following way:
1781 /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
1787 template <typename GR>
1788 class ConEdgeIt : public GR::Edge {
1789 typedef typename GR::Edge Parent;
1793 typedef typename GR::Edge Edge;
1794 typedef typename GR::Node Node;
1796 /// \brief Constructor.
1798 /// Construct a new ConEdgeIt iterating on the edges that
1799 /// connects nodes \c u and \c v.
1800 ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
1801 Parent::operator=(findEdge(_graph, _u, _v));
1804 /// \brief Constructor.
1806 /// Construct a new ConEdgeIt that continues iterating from edge \c e.
1807 ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
1809 /// \brief Increment operator.
1811 /// It increments the iterator and gives back the next edge.
1812 ConEdgeIt& operator++() {
1813 Parent::operator=(findEdge(_graph, _u, _v, *this));
1822 ///Dynamic arc look-up between given endpoints.
1824 ///Using this class, you can find an arc in a digraph from a given
1825 ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
1826 ///where <em>d</em> is the out-degree of the source node.
1828 ///It is possible to find \e all parallel arcs between two nodes with
1829 ///the \c operator() member.
1831 ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
1832 ///\ref AllArcLookUp if your digraph is not changed so frequently.
1834 ///This class uses a self-adjusting binary search tree, the Splay tree
1835 ///of Sleator and Tarjan to guarantee the logarithmic amortized
1836 ///time bound for arc look-ups. This class also guarantees the
1837 ///optimal time bound in a constant factor for any distribution of
1840 ///\tparam GR The type of the underlying digraph.
1844 template <typename GR>
1846 : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
1848 typedef typename ItemSetTraits<GR, typename GR::Arc>
1849 ::ItemNotifier::ObserverBase Parent;
1851 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1855 /// The Digraph type
1860 class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type
1862 typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
1866 AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
1868 virtual void add(const Node& node) {
1870 Parent::set(node, INVALID);
1873 virtual void add(const std::vector<Node>& nodes) {
1875 for (int i = 0; i < int(nodes.size()); ++i) {
1876 Parent::set(nodes[i], INVALID);
1880 virtual void build() {
1883 typename Parent::Notifier* nf = Parent::notifier();
1884 for (nf->first(it); it != INVALID; nf->next(it)) {
1885 Parent::set(it, INVALID);
1893 ArcLess(const Digraph &_g) : g(_g) {}
1894 bool operator()(Arc a,Arc b) const
1896 return g.target(a)<g.target(b);
1904 typename Digraph::template ArcMap<Arc> _parent;
1905 typename Digraph::template ArcMap<Arc> _left;
1906 typename Digraph::template ArcMap<Arc> _right;
1914 ///It builds up the search database.
1915 DynArcLookUp(const Digraph &g)
1916 : _g(g),_head(g),_parent(g),_left(g),_right(g)
1918 Parent::attach(_g.notifier(typename Digraph::Arc()));
1924 virtual void add(const Arc& arc) {
1928 virtual void add(const std::vector<Arc>& arcs) {
1929 for (int i = 0; i < int(arcs.size()); ++i) {
1934 virtual void erase(const Arc& arc) {
1938 virtual void erase(const std::vector<Arc>& arcs) {
1939 for (int i = 0; i < int(arcs.size()); ++i) {
1944 virtual void build() {
1948 virtual void clear() {
1949 for(NodeIt n(_g);n!=INVALID;++n) {
1954 void insert(Arc arc) {
1955 Node s = _g.source(arc);
1956 Node t = _g.target(arc);
1957 _left[arc] = INVALID;
1958 _right[arc] = INVALID;
1963 _parent[arc] = INVALID;
1967 if (t < _g.target(e)) {
1968 if (_left[e] == INVALID) {
1977 if (_right[e] == INVALID) {
1989 void remove(Arc arc) {
1990 if (_left[arc] == INVALID) {
1991 if (_right[arc] != INVALID) {
1992 _parent[_right[arc]] = _parent[arc];
1994 if (_parent[arc] != INVALID) {
1995 if (_left[_parent[arc]] == arc) {
1996 _left[_parent[arc]] = _right[arc];
1998 _right[_parent[arc]] = _right[arc];
2001 _head[_g.source(arc)] = _right[arc];
2003 } else if (_right[arc] == INVALID) {
2004 _parent[_left[arc]] = _parent[arc];
2005 if (_parent[arc] != INVALID) {
2006 if (_left[_parent[arc]] == arc) {
2007 _left[_parent[arc]] = _left[arc];
2009 _right[_parent[arc]] = _left[arc];
2012 _head[_g.source(arc)] = _left[arc];
2016 if (_right[e] != INVALID) {
2018 while (_right[e] != INVALID) {
2022 _right[_parent[e]] = _left[e];
2023 if (_left[e] != INVALID) {
2024 _parent[_left[e]] = _parent[e];
2027 _left[e] = _left[arc];
2028 _parent[_left[arc]] = e;
2029 _right[e] = _right[arc];
2030 _parent[_right[arc]] = e;
2032 _parent[e] = _parent[arc];
2033 if (_parent[arc] != INVALID) {
2034 if (_left[_parent[arc]] == arc) {
2035 _left[_parent[arc]] = e;
2037 _right[_parent[arc]] = e;
2042 _right[e] = _right[arc];
2043 _parent[_right[arc]] = e;
2044 _parent[e] = _parent[arc];
2046 if (_parent[arc] != INVALID) {
2047 if (_left[_parent[arc]] == arc) {
2048 _left[_parent[arc]] = e;
2050 _right[_parent[arc]] = e;
2053 _head[_g.source(arc)] = e;
2059 Arc refreshRec(std::vector<Arc> &v,int a,int b)
2064 Arc left = refreshRec(v,a,m-1);
2068 _left[me] = INVALID;
2071 Arc right = refreshRec(v,m+1,b);
2073 _parent[right] = me;
2075 _right[me] = INVALID;
2081 for(NodeIt n(_g);n!=INVALID;++n) {
2083 for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
2085 std::sort(v.begin(),v.end(),ArcLess(_g));
2086 Arc head = refreshRec(v,0,v.size()-1);
2088 _parent[head] = INVALID;
2090 else _head[n] = INVALID;
2096 _parent[v] = _parent[w];
2098 _left[w] = _right[v];
2100 if (_parent[v] != INVALID) {
2101 if (_right[_parent[v]] == w) {
2102 _right[_parent[v]] = v;
2104 _left[_parent[v]] = v;
2107 if (_left[w] != INVALID){
2108 _parent[_left[w]] = w;
2114 _parent[v] = _parent[w];
2116 _right[w] = _left[v];
2118 if (_parent[v] != INVALID){
2119 if (_left[_parent[v]] == w) {
2120 _left[_parent[v]] = v;
2122 _right[_parent[v]] = v;
2125 if (_right[w] != INVALID){
2126 _parent[_right[w]] = w;
2131 while (_parent[v] != INVALID) {
2132 if (v == _left[_parent[v]]) {
2133 if (_parent[_parent[v]] == INVALID) {
2136 if (_parent[v] == _left[_parent[_parent[v]]]) {
2145 if (_parent[_parent[v]] == INVALID) {
2148 if (_parent[v] == _left[_parent[_parent[v]]]) {
2158 _head[_g.source(v)] = v;
2164 ///Find an arc between two nodes.
2166 ///Find an arc between two nodes.
2167 ///\param s The source node.
2168 ///\param t The target node.
2169 ///\param p The previous arc between \c s and \c t. It it is INVALID or
2170 ///not given, the operator finds the first appropriate arc.
2171 ///\return An arc from \c s to \c t after \c p or
2172 ///\ref INVALID if there is no more.
2174 ///For example, you can count the number of arcs from \c u to \c v in the
2177 ///DynArcLookUp<ListDigraph> ae(g);
2180 ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
2183 ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
2184 ///amortized time, specifically, the time complexity of the lookups
2185 ///is equal to the optimal search tree implementation for the
2186 ///current query distribution in a constant factor.
2188 ///\note This is a dynamic data structure, therefore the data
2189 ///structure is updated after each graph alteration. Thus although
2190 ///this data structure is theoretically faster than \ref ArcLookUp
2191 ///and \ref AllArcLookUp, it often provides worse performance than
2193 Arc operator()(Node s, Node t, Arc p = INVALID) const {
2196 if (a == INVALID) return INVALID;
2199 if (_g.target(a) < t) {
2200 if (_right[a] == INVALID) {
2201 const_cast<DynArcLookUp&>(*this).splay(a);
2207 if (_g.target(a) == t) {
2210 if (_left[a] == INVALID) {
2211 const_cast<DynArcLookUp&>(*this).splay(a);
2220 if (_right[a] != INVALID) {
2222 while (_left[a] != INVALID) {
2225 const_cast<DynArcLookUp&>(*this).splay(a);
2227 while (_parent[a] != INVALID && _right[_parent[a]] == a) {
2230 if (_parent[a] == INVALID) {
2234 const_cast<DynArcLookUp&>(*this).splay(a);
2237 if (_g.target(a) == t) return a;
2238 else return INVALID;
2244 ///Fast arc look-up between given endpoints.
2246 ///Using this class, you can find an arc in a digraph from a given
2247 ///source to a given target in time <em>O</em>(log<em>d</em>),
2248 ///where <em>d</em> is the out-degree of the source node.
2250 ///It is not possible to find \e all parallel arcs between two nodes.
2251 ///Use \ref AllArcLookUp for this purpose.
2253 ///\warning This class is static, so you should call refresh() (or at
2254 ///least refresh(Node)) to refresh this data structure whenever the
2255 ///digraph changes. This is a time consuming (superlinearly proportional
2256 ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
2258 ///\tparam GR The type of the underlying digraph.
2265 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
2269 /// The Digraph type
2274 typename Digraph::template NodeMap<Arc> _head;
2275 typename Digraph::template ArcMap<Arc> _left;
2276 typename Digraph::template ArcMap<Arc> _right;
2281 ArcLess(const Digraph &_g) : g(_g) {}
2282 bool operator()(Arc a,Arc b) const
2284 return g.target(a)<g.target(b);
2294 ///It builds up the search database, which remains valid until the digraph
2296 ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
2299 Arc refreshRec(std::vector<Arc> &v,int a,int b)
2303 _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
2304 _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
2308 ///Refresh the search data structure at a node.
2310 ///Build up the search database of node \c n.
2312 ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
2313 ///is the number of the outgoing arcs of \c n.
2314 void refresh(Node n)
2317 for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
2319 std::sort(v.begin(),v.end(),ArcLess(_g));
2320 _head[n]=refreshRec(v,0,v.size()-1);
2322 else _head[n]=INVALID;
2324 ///Refresh the full data structure.
2326 ///Build up the full search database. In fact, it simply calls
2327 ///\ref refresh(Node) "refresh(n)" for each node \c n.
2329 ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
2330 ///the number of the arcs in the digraph and <em>D</em> is the maximum
2331 ///out-degree of the digraph.
2334 for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
2337 ///Find an arc between two nodes.
2339 ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
2340 ///where <em>d</em> is the number of outgoing arcs of \c s.
2341 ///\param s The source node.
2342 ///\param t The target node.
2343 ///\return An arc from \c s to \c t if there exists,
2344 ///\ref INVALID otherwise.
2346 ///\warning If you change the digraph, refresh() must be called before using
2347 ///this operator. If you change the outgoing arcs of
2348 ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
2349 Arc operator()(Node s, Node t) const
2353 e!=INVALID&&_g.target(e)!=t;
2354 e = t < _g.target(e)?_left[e]:_right[e]) ;
2360 ///Fast look-up of all arcs between given endpoints.
2362 ///This class is the same as \ref ArcLookUp, with the addition
2363 ///that it makes it possible to find all parallel arcs between given
2366 ///\warning This class is static, so you should call refresh() (or at
2367 ///least refresh(Node)) to refresh this data structure whenever the
2368 ///digraph changes. This is a time consuming (superlinearly proportional
2369 ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
2371 ///\tparam GR The type of the underlying digraph.
2376 class AllArcLookUp : public ArcLookUp<GR>
2378 using ArcLookUp<GR>::_g;
2379 using ArcLookUp<GR>::_right;
2380 using ArcLookUp<GR>::_left;
2381 using ArcLookUp<GR>::_head;
2383 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
2385 typename GR::template ArcMap<Arc> _next;
2387 Arc refreshNext(Arc head,Arc next=INVALID)
2389 if(head==INVALID) return next;
2391 next=refreshNext(_right[head],next);
2392 _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
2394 return refreshNext(_left[head],head);
2400 for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
2405 /// The Digraph type
2412 ///It builds up the search database, which remains valid until the digraph
2414 AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
2416 ///Refresh the data structure at a node.
2418 ///Build up the search database of node \c n.
2420 ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
2421 ///the number of the outgoing arcs of \c n.
2422 void refresh(Node n)
2424 ArcLookUp<GR>::refresh(n);
2425 refreshNext(_head[n]);
2428 ///Refresh the full data structure.
2430 ///Build up the full search database. In fact, it simply calls
2431 ///\ref refresh(Node) "refresh(n)" for each node \c n.
2433 ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
2434 ///the number of the arcs in the digraph and <em>D</em> is the maximum
2435 ///out-degree of the digraph.
2438 for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
2441 ///Find an arc between two nodes.
2443 ///Find an arc between two nodes.
2444 ///\param s The source node.
2445 ///\param t The target node.
2446 ///\param prev The previous arc between \c s and \c t. It it is INVALID or
2447 ///not given, the operator finds the first appropriate arc.
2448 ///\return An arc from \c s to \c t after \c prev or
2449 ///\ref INVALID if there is no more.
2451 ///For example, you can count the number of arcs from \c u to \c v in the
2454 ///AllArcLookUp<ListDigraph> ae(g);
2457 ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
2460 ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
2461 ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
2462 ///consecutive arcs are found in constant time.
2464 ///\warning If you change the digraph, refresh() must be called before using
2465 ///this operator. If you change the outgoing arcs of
2466 ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
2468 Arc operator()(Node s, Node t, Arc prev=INVALID) const
2475 e!=INVALID&&_g.target(e)!=t;
2476 e = t < _g.target(e)?_left[e]:_right[e]) ;
2486 else return _next[prev];