3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_HOWARD_H
20 #define LEMON_HOWARD_H
22 /// \ingroup shortest_path
25 /// \brief Howard's algorithm for finding a minimum mean cycle.
29 #include <lemon/core.h>
30 #include <lemon/path.h>
31 #include <lemon/tolerance.h>
32 #include <lemon/connectivity.h>
36 /// \brief Default traits class of Howard class.
38 /// Default traits class of Howard class.
39 /// \tparam GR The type of the digraph.
40 /// \tparam LEN The type of the length map.
41 /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
43 template <typename GR, typename LEN>
45 template <typename GR, typename LEN,
46 bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
48 struct HowardDefaultTraits
50 /// The type of the digraph
52 /// The type of the length map
53 typedef LEN LengthMap;
54 /// The type of the arc lengths
55 typedef typename LengthMap::Value Value;
57 /// \brief The large value type used for internal computations
59 /// The large value type used for internal computations.
60 /// It is \c long \c long if the \c Value type is integer,
61 /// otherwise it is \c double.
62 /// \c Value must be convertible to \c LargeValue.
63 typedef double LargeValue;
65 /// The tolerance type used for internal computations
66 typedef lemon::Tolerance<LargeValue> Tolerance;
68 /// \brief The path type of the found cycles
70 /// The path type of the found cycles.
71 /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 /// and it must have an \c addBack() function.
73 typedef lemon::Path<Digraph> Path;
76 // Default traits class for integer value types
77 template <typename GR, typename LEN>
78 struct HowardDefaultTraits<GR, LEN, true>
81 typedef LEN LengthMap;
82 typedef typename LengthMap::Value Value;
83 #ifdef LEMON_HAVE_LONG_LONG
84 typedef long long LargeValue;
86 typedef long LargeValue;
88 typedef lemon::Tolerance<LargeValue> Tolerance;
89 typedef lemon::Path<Digraph> Path;
93 /// \addtogroup shortest_path
96 /// \brief Implementation of Howard's algorithm for finding a minimum
99 /// This class implements Howard's policy iteration algorithm for finding
100 /// a directed cycle of minimum mean length (cost) in a digraph.
102 /// \tparam GR The type of the digraph the algorithm runs on.
103 /// \tparam LEN The type of the length map. The default
104 /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
106 template <typename GR, typename LEN, typename TR>
108 template < typename GR,
109 typename LEN = typename GR::template ArcMap<int>,
110 typename TR = HowardDefaultTraits<GR, LEN> >
116 /// The type of the digraph
117 typedef typename TR::Digraph Digraph;
118 /// The type of the length map
119 typedef typename TR::LengthMap LengthMap;
120 /// The type of the arc lengths
121 typedef typename TR::Value Value;
123 /// \brief The large value type
125 /// The large value type used for internal computations.
126 /// Using the \ref HowardDefaultTraits "default traits class",
127 /// it is \c long \c long if the \c Value type is integer,
128 /// otherwise it is \c double.
129 typedef typename TR::LargeValue LargeValue;
131 /// The tolerance type
132 typedef typename TR::Tolerance Tolerance;
134 /// \brief The path type of the found cycles
136 /// The path type of the found cycles.
137 /// Using the \ref HowardDefaultTraits "default traits class",
138 /// it is \ref lemon::Path "Path<Digraph>".
139 typedef typename TR::Path Path;
141 /// The \ref HowardDefaultTraits "traits class" of the algorithm
146 TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
148 // The digraph the algorithm runs on
150 // The length of the arcs
151 const LengthMap &_length;
153 // Data for the found cycles
154 bool _curr_found, _best_found;
155 LargeValue _curr_length, _best_length;
156 int _curr_size, _best_size;
157 Node _curr_node, _best_node;
162 // Internal data used by the algorithm
163 typename Digraph::template NodeMap<Arc> _policy;
164 typename Digraph::template NodeMap<bool> _reached;
165 typename Digraph::template NodeMap<int> _level;
166 typename Digraph::template NodeMap<LargeValue> _dist;
168 // Data for storing the strongly connected components
170 typename Digraph::template NodeMap<int> _comp;
171 std::vector<std::vector<Node> > _comp_nodes;
172 std::vector<Node>* _nodes;
173 typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
175 // Queue used for BFS search
176 std::vector<Node> _queue;
179 Tolerance _tolerance;
183 /// \name Named Template Parameters
186 template <typename T>
187 struct SetLargeValueTraits : public Traits {
188 typedef T LargeValue;
189 typedef lemon::Tolerance<T> Tolerance;
192 /// \brief \ref named-templ-param "Named parameter" for setting
193 /// \c LargeValue type.
195 /// \ref named-templ-param "Named parameter" for setting \c LargeValue
196 /// type. It is used for internal computations in the algorithm.
197 template <typename T>
199 : public Howard<GR, LEN, SetLargeValueTraits<T> > {
200 typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create;
203 template <typename T>
204 struct SetPathTraits : public Traits {
208 /// \brief \ref named-templ-param "Named parameter" for setting
211 /// \ref named-templ-param "Named parameter" for setting the \c %Path
212 /// type of the found cycles.
213 /// It must conform to the \ref lemon::concepts::Path "Path" concept
214 /// and it must have an \c addBack() function.
215 template <typename T>
217 : public Howard<GR, LEN, SetPathTraits<T> > {
218 typedef Howard<GR, LEN, SetPathTraits<T> > Create;
225 /// \brief Constructor.
227 /// The constructor of the class.
229 /// \param digraph The digraph the algorithm runs on.
230 /// \param length The lengths (costs) of the arcs.
231 Howard( const Digraph &digraph,
232 const LengthMap &length ) :
233 _gr(digraph), _length(length), _cycle_path(NULL), _local_path(false),
234 _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
235 _comp(digraph), _in_arcs(digraph)
240 if (_local_path) delete _cycle_path;
243 /// \brief Set the path structure for storing the found cycle.
245 /// This function sets an external path structure for storing the
248 /// If you don't call this function before calling \ref run() or
249 /// \ref findMinMean(), it will allocate a local \ref Path "path"
250 /// structure. The destuctor deallocates this automatically
251 /// allocated object, of course.
253 /// \note The algorithm calls only the \ref lemon::Path::addBack()
254 /// "addBack()" function of the given path structure.
256 /// \return <tt>(*this)</tt>
257 Howard& cycle(Path &path) {
266 /// \name Execution control
267 /// The simplest way to execute the algorithm is to call the \ref run()
269 /// If you only need the minimum mean length, you may call
270 /// \ref findMinMean().
274 /// \brief Run the algorithm.
276 /// This function runs the algorithm.
277 /// It can be called more than once (e.g. if the underlying digraph
278 /// and/or the arc lengths have been modified).
280 /// \return \c true if a directed cycle exists in the digraph.
282 /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
284 /// return mmc.findMinMean() && mmc.findCycle();
287 return findMinMean() && findCycle();
290 /// \brief Find the minimum cycle mean.
292 /// This function finds the minimum mean length of the directed
293 /// cycles in the digraph.
295 /// \return \c true if a directed cycle exists in the digraph.
297 // Initialize and find strongly connected components
301 // Find the minimum cycle mean in the components
302 for (int comp = 0; comp < _comp_num; ++comp) {
303 // Find the minimum mean cycle in the current component
304 if (!buildPolicyGraph(comp)) continue;
307 if (!computeNodeDistances()) break;
309 // Update the best cycle (global minimum mean cycle)
310 if ( !_best_found || (_curr_found &&
311 _curr_length * _best_size < _best_length * _curr_size) ) {
313 _best_length = _curr_length;
314 _best_size = _curr_size;
315 _best_node = _curr_node;
321 /// \brief Find a minimum mean directed cycle.
323 /// This function finds a directed cycle of minimum mean length
324 /// in the digraph using the data computed by findMinMean().
326 /// \return \c true if a directed cycle exists in the digraph.
328 /// \pre \ref findMinMean() must be called before using this function.
330 if (!_best_found) return false;
331 _cycle_path->addBack(_policy[_best_node]);
332 for ( Node v = _best_node;
333 (v = _gr.target(_policy[v])) != _best_node; ) {
334 _cycle_path->addBack(_policy[v]);
341 /// \name Query Functions
342 /// The results of the algorithm can be obtained using these
344 /// The algorithm should be executed before using them.
348 /// \brief Return the total length of the found cycle.
350 /// This function returns the total length of the found cycle.
352 /// \pre \ref run() or \ref findMinMean() must be called before
353 /// using this function.
354 LargeValue cycleLength() const {
358 /// \brief Return the number of arcs on the found cycle.
360 /// This function returns the number of arcs on the found cycle.
362 /// \pre \ref run() or \ref findMinMean() must be called before
363 /// using this function.
364 int cycleArcNum() const {
368 /// \brief Return the mean length of the found cycle.
370 /// This function returns the mean length of the found cycle.
372 /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
375 /// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
378 /// \pre \ref run() or \ref findMinMean() must be called before
379 /// using this function.
380 double cycleMean() const {
381 return static_cast<double>(_best_length) / _best_size;
384 /// \brief Return the found cycle.
386 /// This function returns a const reference to the path structure
387 /// storing the found cycle.
389 /// \pre \ref run() or \ref findCycle() must be called before using
391 const Path& cycle() const {
403 _cycle_path = new Path;
405 _queue.resize(countNodes(_gr));
409 _cycle_path->clear();
412 // Find strongly connected components and initialize _comp_nodes
414 void findComponents() {
415 _comp_num = stronglyConnectedComponents(_gr, _comp);
416 _comp_nodes.resize(_comp_num);
417 if (_comp_num == 1) {
418 _comp_nodes[0].clear();
419 for (NodeIt n(_gr); n != INVALID; ++n) {
420 _comp_nodes[0].push_back(n);
422 for (InArcIt a(_gr, n); a != INVALID; ++a) {
423 _in_arcs[n].push_back(a);
427 for (int i = 0; i < _comp_num; ++i)
428 _comp_nodes[i].clear();
429 for (NodeIt n(_gr); n != INVALID; ++n) {
431 _comp_nodes[k].push_back(n);
433 for (InArcIt a(_gr, n); a != INVALID; ++a) {
434 if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
440 // Build the policy graph in the given strongly connected component
441 // (the out-degree of every node is 1)
442 bool buildPolicyGraph(int comp) {
443 _nodes = &(_comp_nodes[comp]);
444 if (_nodes->size() < 1 ||
445 (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
448 for (int i = 0; i < int(_nodes->size()); ++i) {
449 _dist[(*_nodes)[i]] = std::numeric_limits<LargeValue>::max();
453 for (int i = 0; i < int(_nodes->size()); ++i) {
455 for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
458 if (_length[e] < _dist[u]) {
459 _dist[u] = _length[e];
467 // Find the minimum mean cycle in the policy graph
468 void findPolicyCycle() {
469 for (int i = 0; i < int(_nodes->size()); ++i) {
470 _level[(*_nodes)[i]] = -1;
476 for (int i = 0; i < int(_nodes->size()); ++i) {
478 if (_level[u] >= 0) continue;
479 for (; _level[u] < 0; u = _gr.target(_policy[u])) {
482 if (_level[u] == i) {
484 clength = _length[_policy[u]];
486 for (v = u; (v = _gr.target(_policy[v])) != u; ) {
487 clength += _length[_policy[v]];
491 (clength * _curr_size < _curr_length * csize) ) {
493 _curr_length = clength;
501 // Contract the policy graph and compute node distances
502 bool computeNodeDistances() {
503 // Find the component of the main cycle and compute node distances
505 for (int i = 0; i < int(_nodes->size()); ++i) {
506 _reached[(*_nodes)[i]] = false;
508 _qfront = _qback = 0;
509 _queue[0] = _curr_node;
510 _reached[_curr_node] = true;
511 _dist[_curr_node] = 0;
514 while (_qfront <= _qback) {
515 v = _queue[_qfront++];
516 for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
519 if (_policy[u] == e && !_reached[u]) {
521 _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
522 _queue[++_qback] = u;
527 // Connect all other nodes to this component and compute node
528 // distances using reverse BFS
530 while (_qback < int(_nodes->size())-1) {
531 v = _queue[_qfront++];
532 for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
538 _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
539 _queue[++_qback] = u;
544 // Improve node distances
545 bool improved = false;
546 for (int i = 0; i < int(_nodes->size()); ++i) {
548 for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
551 LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length;
552 if (_tolerance.less(delta, _dist[u])) {
568 #endif //LEMON_HOWARD_H