1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_CIRCULATION_H
20 #define LEMON_CIRCULATION_H
22 #include <lemon/tolerance.h>
23 #include <lemon/elevator.h>
28 ///\brief Push-relabel algorithm for finding a feasible circulation.
32 /// \brief Default traits class of Circulation class.
34 /// Default traits class of Circulation class.
36 /// \tparam GR Type of the digraph the algorithm runs on.
37 /// \tparam LM The type of the lower bound map.
38 /// \tparam UM The type of the upper bound (capacity) map.
39 /// \tparam SM The type of the supply map.
40 template <typename GR, typename LM,
41 typename UM, typename SM>
42 struct CirculationDefaultTraits {
44 /// \brief The type of the digraph the algorithm runs on.
47 /// \brief The type of the lower bound map.
49 /// The type of the map that stores the lower bounds on the arcs.
50 /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
53 /// \brief The type of the upper bound (capacity) map.
55 /// The type of the map that stores the upper bounds (capacities)
57 /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
60 /// \brief The type of supply map.
62 /// The type of the map that stores the signed supply values of the
64 /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
67 /// \brief The type of the flow and supply values.
68 typedef typename SupplyMap::Value Value;
70 /// \brief The type of the map that stores the flow values.
72 /// The type of the map that stores the flow values.
73 /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap"
76 typedef GR::ArcMap<Value> FlowMap;
78 typedef typename Digraph::template ArcMap<Value> FlowMap;
81 /// \brief Instantiates a FlowMap.
83 /// This function instantiates a \ref FlowMap.
84 /// \param digraph The digraph for which we would like to define
86 static FlowMap* createFlowMap(const Digraph& digraph) {
87 return new FlowMap(digraph);
90 /// \brief The elevator type used by the algorithm.
92 /// The elevator type used by the algorithm.
94 /// \sa Elevator, LinkedElevator
96 typedef lemon::Elevator<GR, GR::Node> Elevator;
98 typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
101 /// \brief Instantiates an Elevator.
103 /// This function instantiates an \ref Elevator.
104 /// \param digraph The digraph for which we would like to define
106 /// \param max_level The maximum level of the elevator.
107 static Elevator* createElevator(const Digraph& digraph, int max_level) {
108 return new Elevator(digraph, max_level);
111 /// \brief The tolerance used by the algorithm
113 /// The tolerance used by the algorithm to handle inexact computation.
114 typedef lemon::Tolerance<Value> Tolerance;
119 \brief Push-relabel algorithm for the network circulation problem.
122 This class implements a push-relabel algorithm for the \e network
123 \e circulation problem.
124 It is to find a feasible circulation when lower and upper bounds
125 are given for the flow values on the arcs and lower bounds are
126 given for the difference between the outgoing and incoming flow
129 The exact formulation of this problem is the following.
130 Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
131 \f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
132 upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$
133 holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
134 denotes the signed supply values of the nodes.
135 If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
136 supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
137 \f$-sup(u)\f$ demand.
138 A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
139 solution of the following problem.
141 \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
142 \geq sup(u) \quad \forall u\in V, \f]
143 \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f]
145 The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
146 zero or negative in order to have a feasible solution (since the sum
147 of the expressions on the left-hand side of the inequalities is zero).
148 It means that the total demand must be greater or equal to the total
149 supply and all the supplies have to be carried out from the supply nodes,
150 but there could be demands that are not satisfied.
151 If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
152 constraints have to be satisfied with equality, i.e. all demands
153 have to be satisfied and all supplies have to be used.
155 If you need the opposite inequalities in the supply/demand constraints
156 (i.e. the total demand is less than the total supply and all the demands
157 have to be satisfied while there could be supplies that are not used),
158 then you could easily transform the problem to the above form by reversing
159 the direction of the arcs and taking the negative of the supply values
160 (e.g. using \ref ReverseDigraph and \ref NegMap adaptors).
162 This algorithm either calculates a feasible circulation, or provides
163 a \ref barrier() "barrier", which prooves that a feasible soultion
166 Note that this algorithm also provides a feasible solution for the
167 \ref min_cost_flow "minimum cost flow problem".
169 \tparam GR The type of the digraph the algorithm runs on.
170 \tparam LM The type of the lower bound map. The default
171 map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
172 \tparam UM The type of the upper bound (capacity) map.
173 The default map type is \c LM.
174 \tparam SM The type of the supply map. The default map type is
175 \ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>".
178 template< typename GR,
184 template< typename GR,
185 typename LM = typename GR::template ArcMap<int>,
187 typename SM = typename GR::template NodeMap<typename UM::Value>,
188 typename TR = CirculationDefaultTraits<GR, LM, UM, SM> >
193 ///The \ref CirculationDefaultTraits "traits class" of the algorithm.
195 ///The type of the digraph the algorithm runs on.
196 typedef typename Traits::Digraph Digraph;
197 ///The type of the flow and supply values.
198 typedef typename Traits::Value Value;
200 ///The type of the lower bound map.
201 typedef typename Traits::LowerMap LowerMap;
202 ///The type of the upper bound (capacity) map.
203 typedef typename Traits::UpperMap UpperMap;
204 ///The type of the supply map.
205 typedef typename Traits::SupplyMap SupplyMap;
206 ///The type of the flow map.
207 typedef typename Traits::FlowMap FlowMap;
209 ///The type of the elevator.
210 typedef typename Traits::Elevator Elevator;
211 ///The type of the tolerance.
212 typedef typename Traits::Tolerance Tolerance;
216 TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
223 const SupplyMap *_supply;
231 typedef typename Digraph::template NodeMap<Value> ExcessMap;
239 typedef Circulation Create;
241 ///\name Named Template Parameters
245 template <typename T>
246 struct SetFlowMapTraits : public Traits {
248 static FlowMap *createFlowMap(const Digraph&) {
249 LEMON_ASSERT(false, "FlowMap is not initialized");
250 return 0; // ignore warnings
254 /// \brief \ref named-templ-param "Named parameter" for setting
257 /// \ref named-templ-param "Named parameter" for setting FlowMap
259 template <typename T>
261 : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
262 SetFlowMapTraits<T> > {
263 typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
264 SetFlowMapTraits<T> > Create;
267 template <typename T>
268 struct SetElevatorTraits : public Traits {
270 static Elevator *createElevator(const Digraph&, int) {
271 LEMON_ASSERT(false, "Elevator is not initialized");
272 return 0; // ignore warnings
276 /// \brief \ref named-templ-param "Named parameter" for setting
279 /// \ref named-templ-param "Named parameter" for setting Elevator
280 /// type. If this named parameter is used, then an external
281 /// elevator object must be passed to the algorithm using the
282 /// \ref elevator(Elevator&) "elevator()" function before calling
283 /// \ref run() or \ref init().
284 /// \sa SetStandardElevator
285 template <typename T>
287 : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
288 SetElevatorTraits<T> > {
289 typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
290 SetElevatorTraits<T> > Create;
293 template <typename T>
294 struct SetStandardElevatorTraits : public Traits {
296 static Elevator *createElevator(const Digraph& digraph, int max_level) {
297 return new Elevator(digraph, max_level);
301 /// \brief \ref named-templ-param "Named parameter" for setting
302 /// Elevator type with automatic allocation
304 /// \ref named-templ-param "Named parameter" for setting Elevator
305 /// type with automatic allocation.
306 /// The Elevator should have standard constructor interface to be
307 /// able to automatically created by the algorithm (i.e. the
308 /// digraph and the maximum level should be passed to it).
309 /// However an external elevator object could also be passed to the
310 /// algorithm with the \ref elevator(Elevator&) "elevator()" function
311 /// before calling \ref run() or \ref init().
313 template <typename T>
314 struct SetStandardElevator
315 : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
316 SetStandardElevatorTraits<T> > {
317 typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
318 SetStandardElevatorTraits<T> > Create;
331 /// The constructor of the class.
333 /// \param graph The digraph the algorithm runs on.
334 /// \param lower The lower bounds for the flow values on the arcs.
335 /// \param upper The upper bounds (capacities) for the flow values
337 /// \param supply The signed supply values of the nodes.
338 Circulation(const Digraph &graph, const LowerMap &lower,
339 const UpperMap &upper, const SupplyMap &supply)
340 : _g(graph), _lo(&lower), _up(&upper), _supply(&supply),
341 _flow(NULL), _local_flow(false), _level(NULL), _local_level(false),
352 bool checkBoundMaps() {
353 for (ArcIt e(_g);e!=INVALID;++e) {
354 if (_tol.less((*_up)[e], (*_lo)[e])) return false;
359 void createStructures() {
360 _node_num = _el = countNodes(_g);
363 _flow = Traits::createFlowMap(_g);
367 _level = Traits::createElevator(_g, _node_num);
371 _excess = new ExcessMap(_g);
375 void destroyStructures() {
389 /// Sets the lower bound map.
391 /// Sets the lower bound map.
392 /// \return <tt>(*this)</tt>
393 Circulation& lowerMap(const LowerMap& map) {
398 /// Sets the upper bound (capacity) map.
400 /// Sets the upper bound (capacity) map.
401 /// \return <tt>(*this)</tt>
402 Circulation& upperMap(const UpperMap& map) {
407 /// Sets the supply map.
409 /// Sets the supply map.
410 /// \return <tt>(*this)</tt>
411 Circulation& supplyMap(const SupplyMap& map) {
416 /// \brief Sets the flow map.
418 /// Sets the flow map.
419 /// If you don't use this function before calling \ref run() or
420 /// \ref init(), an instance will be allocated automatically.
421 /// The destructor deallocates this automatically allocated map,
423 /// \return <tt>(*this)</tt>
424 Circulation& flowMap(FlowMap& map) {
433 /// \brief Sets the elevator used by algorithm.
435 /// Sets the elevator used by algorithm.
436 /// If you don't use this function before calling \ref run() or
437 /// \ref init(), an instance will be allocated automatically.
438 /// The destructor deallocates this automatically allocated elevator,
440 /// \return <tt>(*this)</tt>
441 Circulation& elevator(Elevator& elevator) {
444 _local_level = false;
450 /// \brief Returns a const reference to the elevator.
452 /// Returns a const reference to the elevator.
454 /// \pre Either \ref run() or \ref init() must be called before
455 /// using this function.
456 const Elevator& elevator() const {
460 /// \brief Sets the tolerance used by algorithm.
462 /// Sets the tolerance used by algorithm.
463 Circulation& tolerance(const Tolerance& tolerance) const {
468 /// \brief Returns a const reference to the tolerance.
470 /// Returns a const reference to the tolerance.
471 const Tolerance& tolerance() const {
475 /// \name Execution Control
476 /// The simplest way to execute the algorithm is to call \ref run().\n
477 /// If you need better control on the initial solution or the execution,
478 /// you have to call one of the \ref init() functions first, then
479 /// the \ref start() function.
483 /// Initializes the internal data structures.
485 /// Initializes the internal data structures and sets all flow values
486 /// to the lower bound.
489 LEMON_DEBUG(checkBoundMaps(),
490 "Upper bounds must be greater or equal to the lower bounds");
494 for(NodeIt n(_g);n!=INVALID;++n) {
495 (*_excess)[n] = (*_supply)[n];
498 for (ArcIt e(_g);e!=INVALID;++e) {
499 _flow->set(e, (*_lo)[e]);
500 (*_excess)[_g.target(e)] += (*_flow)[e];
501 (*_excess)[_g.source(e)] -= (*_flow)[e];
504 // global relabeling tested, but in general case it provides
505 // worse performance for random digraphs
507 for(NodeIt n(_g);n!=INVALID;++n)
508 _level->initAddItem(n);
509 _level->initFinish();
510 for(NodeIt n(_g);n!=INVALID;++n)
511 if(_tol.positive((*_excess)[n]))
515 /// Initializes the internal data structures using a greedy approach.
517 /// Initializes the internal data structures using a greedy approach
518 /// to construct the initial solution.
521 LEMON_DEBUG(checkBoundMaps(),
522 "Upper bounds must be greater or equal to the lower bounds");
526 for(NodeIt n(_g);n!=INVALID;++n) {
527 (*_excess)[n] = (*_supply)[n];
530 for (ArcIt e(_g);e!=INVALID;++e) {
531 if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) {
532 _flow->set(e, (*_up)[e]);
533 (*_excess)[_g.target(e)] += (*_up)[e];
534 (*_excess)[_g.source(e)] -= (*_up)[e];
535 } else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) {
536 _flow->set(e, (*_lo)[e]);
537 (*_excess)[_g.target(e)] += (*_lo)[e];
538 (*_excess)[_g.source(e)] -= (*_lo)[e];
540 Value fc = -(*_excess)[_g.target(e)];
542 (*_excess)[_g.target(e)] = 0;
543 (*_excess)[_g.source(e)] -= fc;
548 for(NodeIt n(_g);n!=INVALID;++n)
549 _level->initAddItem(n);
550 _level->initFinish();
551 for(NodeIt n(_g);n!=INVALID;++n)
552 if(_tol.positive((*_excess)[n]))
556 ///Executes the algorithm
558 ///This function executes the algorithm.
560 ///\return \c true if a feasible circulation is found.
569 Node last_activated=INVALID;
570 while((act=_level->highestActive())!=INVALID) {
571 int actlevel=(*_level)[act];
572 int mlevel=_node_num;
573 Value exc=(*_excess)[act];
575 for(OutArcIt e(_g,act);e!=INVALID; ++e) {
576 Node v = _g.target(e);
577 Value fc=(*_up)[e]-(*_flow)[e];
578 if(!_tol.positive(fc)) continue;
579 if((*_level)[v]<actlevel) {
580 if(!_tol.less(fc, exc)) {
581 _flow->set(e, (*_flow)[e] + exc);
582 (*_excess)[v] += exc;
583 if(!_level->active(v) && _tol.positive((*_excess)[v]))
586 _level->deactivate(act);
590 _flow->set(e, (*_up)[e]);
592 if(!_level->active(v) && _tol.positive((*_excess)[v]))
597 else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
599 for(InArcIt e(_g,act);e!=INVALID; ++e) {
600 Node v = _g.source(e);
601 Value fc=(*_flow)[e]-(*_lo)[e];
602 if(!_tol.positive(fc)) continue;
603 if((*_level)[v]<actlevel) {
604 if(!_tol.less(fc, exc)) {
605 _flow->set(e, (*_flow)[e] - exc);
606 (*_excess)[v] += exc;
607 if(!_level->active(v) && _tol.positive((*_excess)[v]))
610 _level->deactivate(act);
614 _flow->set(e, (*_lo)[e]);
616 if(!_level->active(v) && _tol.positive((*_excess)[v]))
621 else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
624 (*_excess)[act] = exc;
625 if(!_tol.positive(exc)) _level->deactivate(act);
626 else if(mlevel==_node_num) {
627 _level->liftHighestActiveToTop();
632 _level->liftHighestActive(mlevel+1);
633 if(_level->onLevel(actlevel)==0) {
644 /// Runs the algorithm.
646 /// This function runs the algorithm.
648 /// \return \c true if a feasible circulation is found.
650 /// \note Apart from the return value, c.run() is just a shortcut of
651 /// the following code.
663 /// \name Query Functions
664 /// The results of the circulation algorithm can be obtained using
665 /// these functions.\n
666 /// Either \ref run() or \ref start() should be called before
671 /// \brief Returns the flow value on the given arc.
673 /// Returns the flow value on the given arc.
675 /// \pre Either \ref run() or \ref init() must be called before
676 /// using this function.
677 Value flow(const Arc& arc) const {
678 return (*_flow)[arc];
681 /// \brief Returns a const reference to the flow map.
683 /// Returns a const reference to the arc map storing the found flow.
685 /// \pre Either \ref run() or \ref init() must be called before
686 /// using this function.
687 const FlowMap& flowMap() const {
692 \brief Returns \c true if the given node is in a barrier.
694 Barrier is a set \e B of nodes for which
696 \f[ \sum_{uv\in A: u\in B} upper(uv) -
697 \sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f]
699 holds. The existence of a set with this property prooves that a
700 feasible circualtion cannot exist.
702 This function returns \c true if the given node is in the found
703 barrier. If a feasible circulation is found, the function
704 gives back \c false for every node.
706 \pre Either \ref run() or \ref init() must be called before
712 bool barrier(const Node& node) const
714 return (*_level)[node] >= _el;
717 /// \brief Gives back a barrier.
719 /// This function sets \c bar to the characteristic vector of the
720 /// found barrier. \c bar should be a \ref concepts::WriteMap "writable"
721 /// node map with \c bool (or convertible) value type.
723 /// If a feasible circulation is found, the function gives back an
724 /// empty set, so \c bar[v] will be \c false for all nodes \c v.
726 /// \note This function calls \ref barrier() for each node,
727 /// so it runs in O(n) time.
729 /// \pre Either \ref run() or \ref init() must be called before
730 /// using this function.
733 /// \sa checkBarrier()
734 template<class BarrierMap>
735 void barrierMap(BarrierMap &bar) const
737 for(NodeIt n(_g);n!=INVALID;++n)
738 bar.set(n, (*_level)[n] >= _el);
743 /// \name Checker Functions
744 /// The feasibility of the results can be checked using
745 /// these functions.\n
746 /// Either \ref run() or \ref start() should be called before
751 ///Check if the found flow is a feasible circulation
753 ///Check if the found flow is a feasible circulation,
755 bool checkFlow() const {
756 for(ArcIt e(_g);e!=INVALID;++e)
757 if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false;
758 for(NodeIt n(_g);n!=INVALID;++n)
760 Value dif=-(*_supply)[n];
761 for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e];
762 for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e];
763 if(_tol.negative(dif)) return false;
768 ///Check whether or not the last execution provides a barrier
770 ///Check whether or not the last execution provides a barrier.
773 bool checkBarrier() const
776 Value inf_cap = std::numeric_limits<Value>::has_infinity ?
777 std::numeric_limits<Value>::infinity() :
778 std::numeric_limits<Value>::max();
779 for(NodeIt n(_g);n!=INVALID;++n)
781 delta-=(*_supply)[n];
782 for(ArcIt e(_g);e!=INVALID;++e)
786 if(barrier(s)&&!barrier(t)) {
787 if (_tol.less(inf_cap - (*_up)[e], delta)) return false;
790 else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e];
792 return _tol.negative(delta);