lemon/preflow.h
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 24 Jul 2009 11:07:52 +0200
changeset 714 98a30824fe36
parent 641 756a5ec551c8
child 715 ece80147fb08
permissions -rw-r--r--
Rearrange modules (#303)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_PREFLOW_H
    20 #define LEMON_PREFLOW_H
    21 
    22 #include <lemon/tolerance.h>
    23 #include <lemon/elevator.h>
    24 
    25 /// \file
    26 /// \ingroup max_flow
    27 /// \brief Implementation of the preflow algorithm.
    28 
    29 namespace lemon {
    30 
    31   /// \brief Default traits class of Preflow class.
    32   ///
    33   /// Default traits class of Preflow class.
    34   /// \tparam GR Digraph type.
    35   /// \tparam CAP Capacity map type.
    36   template <typename GR, typename CAP>
    37   struct PreflowDefaultTraits {
    38 
    39     /// \brief The type of the digraph the algorithm runs on.
    40     typedef GR Digraph;
    41 
    42     /// \brief The type of the map that stores the arc capacities.
    43     ///
    44     /// The type of the map that stores the arc capacities.
    45     /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
    46     typedef CAP CapacityMap;
    47 
    48     /// \brief The type of the flow values.
    49     typedef typename CapacityMap::Value Value;
    50 
    51     /// \brief The type of the map that stores the flow values.
    52     ///
    53     /// The type of the map that stores the flow values.
    54     /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    55 #ifdef DOXYGEN
    56     typedef GR::ArcMap<Value> FlowMap;
    57 #else
    58     typedef typename Digraph::template ArcMap<Value> FlowMap;
    59 #endif
    60 
    61     /// \brief Instantiates a FlowMap.
    62     ///
    63     /// This function instantiates a \ref FlowMap.
    64     /// \param digraph The digraph for which we would like to define
    65     /// the flow map.
    66     static FlowMap* createFlowMap(const Digraph& digraph) {
    67       return new FlowMap(digraph);
    68     }
    69 
    70     /// \brief The elevator type used by Preflow algorithm.
    71     ///
    72     /// The elevator type used by Preflow algorithm.
    73     ///
    74     /// \sa Elevator, LinkedElevator
    75 #ifdef DOXYGEN
    76     typedef lemon::Elevator<GR, GR::Node> Elevator;
    77 #else
    78     typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
    79 #endif
    80 
    81     /// \brief Instantiates an Elevator.
    82     ///
    83     /// This function instantiates an \ref Elevator.
    84     /// \param digraph The digraph for which we would like to define
    85     /// the elevator.
    86     /// \param max_level The maximum level of the elevator.
    87     static Elevator* createElevator(const Digraph& digraph, int max_level) {
    88       return new Elevator(digraph, max_level);
    89     }
    90 
    91     /// \brief The tolerance used by the algorithm
    92     ///
    93     /// The tolerance used by the algorithm to handle inexact computation.
    94     typedef lemon::Tolerance<Value> Tolerance;
    95 
    96   };
    97 
    98 
    99   /// \ingroup max_flow
   100   ///
   101   /// \brief %Preflow algorithm class.
   102   ///
   103   /// This class provides an implementation of Goldberg-Tarjan's \e preflow
   104   /// \e push-relabel algorithm producing a \ref max_flow
   105   /// "flow of maximum value" in a digraph.
   106   /// The preflow algorithms are the fastest known maximum
   107   /// flow algorithms. The current implementation use a mixture of the
   108   /// \e "highest label" and the \e "bound decrease" heuristics.
   109   /// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
   110   ///
   111   /// The algorithm consists of two phases. After the first phase
   112   /// the maximum flow value and the minimum cut is obtained. The
   113   /// second phase constructs a feasible maximum flow on each arc.
   114   ///
   115   /// \tparam GR The type of the digraph the algorithm runs on.
   116   /// \tparam CAP The type of the capacity map. The default map
   117   /// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   118 #ifdef DOXYGEN
   119   template <typename GR, typename CAP, typename TR>
   120 #else
   121   template <typename GR,
   122             typename CAP = typename GR::template ArcMap<int>,
   123             typename TR = PreflowDefaultTraits<GR, CAP> >
   124 #endif
   125   class Preflow {
   126   public:
   127 
   128     ///The \ref PreflowDefaultTraits "traits class" of the algorithm.
   129     typedef TR Traits;
   130     ///The type of the digraph the algorithm runs on.
   131     typedef typename Traits::Digraph Digraph;
   132     ///The type of the capacity map.
   133     typedef typename Traits::CapacityMap CapacityMap;
   134     ///The type of the flow values.
   135     typedef typename Traits::Value Value;
   136 
   137     ///The type of the flow map.
   138     typedef typename Traits::FlowMap FlowMap;
   139     ///The type of the elevator.
   140     typedef typename Traits::Elevator Elevator;
   141     ///The type of the tolerance.
   142     typedef typename Traits::Tolerance Tolerance;
   143 
   144   private:
   145 
   146     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   147 
   148     const Digraph& _graph;
   149     const CapacityMap* _capacity;
   150 
   151     int _node_num;
   152 
   153     Node _source, _target;
   154 
   155     FlowMap* _flow;
   156     bool _local_flow;
   157 
   158     Elevator* _level;
   159     bool _local_level;
   160 
   161     typedef typename Digraph::template NodeMap<Value> ExcessMap;
   162     ExcessMap* _excess;
   163 
   164     Tolerance _tolerance;
   165 
   166     bool _phase;
   167 
   168 
   169     void createStructures() {
   170       _node_num = countNodes(_graph);
   171 
   172       if (!_flow) {
   173         _flow = Traits::createFlowMap(_graph);
   174         _local_flow = true;
   175       }
   176       if (!_level) {
   177         _level = Traits::createElevator(_graph, _node_num);
   178         _local_level = true;
   179       }
   180       if (!_excess) {
   181         _excess = new ExcessMap(_graph);
   182       }
   183     }
   184 
   185     void destroyStructures() {
   186       if (_local_flow) {
   187         delete _flow;
   188       }
   189       if (_local_level) {
   190         delete _level;
   191       }
   192       if (_excess) {
   193         delete _excess;
   194       }
   195     }
   196 
   197   public:
   198 
   199     typedef Preflow Create;
   200 
   201     ///\name Named Template Parameters
   202 
   203     ///@{
   204 
   205     template <typename T>
   206     struct SetFlowMapTraits : public Traits {
   207       typedef T FlowMap;
   208       static FlowMap *createFlowMap(const Digraph&) {
   209         LEMON_ASSERT(false, "FlowMap is not initialized");
   210         return 0; // ignore warnings
   211       }
   212     };
   213 
   214     /// \brief \ref named-templ-param "Named parameter" for setting
   215     /// FlowMap type
   216     ///
   217     /// \ref named-templ-param "Named parameter" for setting FlowMap
   218     /// type.
   219     template <typename T>
   220     struct SetFlowMap
   221       : public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > {
   222       typedef Preflow<Digraph, CapacityMap,
   223                       SetFlowMapTraits<T> > Create;
   224     };
   225 
   226     template <typename T>
   227     struct SetElevatorTraits : public Traits {
   228       typedef T Elevator;
   229       static Elevator *createElevator(const Digraph&, int) {
   230         LEMON_ASSERT(false, "Elevator is not initialized");
   231         return 0; // ignore warnings
   232       }
   233     };
   234 
   235     /// \brief \ref named-templ-param "Named parameter" for setting
   236     /// Elevator type
   237     ///
   238     /// \ref named-templ-param "Named parameter" for setting Elevator
   239     /// type. If this named parameter is used, then an external
   240     /// elevator object must be passed to the algorithm using the
   241     /// \ref elevator(Elevator&) "elevator()" function before calling
   242     /// \ref run() or \ref init().
   243     /// \sa SetStandardElevator
   244     template <typename T>
   245     struct SetElevator
   246       : public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > {
   247       typedef Preflow<Digraph, CapacityMap,
   248                       SetElevatorTraits<T> > Create;
   249     };
   250 
   251     template <typename T>
   252     struct SetStandardElevatorTraits : public Traits {
   253       typedef T Elevator;
   254       static Elevator *createElevator(const Digraph& digraph, int max_level) {
   255         return new Elevator(digraph, max_level);
   256       }
   257     };
   258 
   259     /// \brief \ref named-templ-param "Named parameter" for setting
   260     /// Elevator type with automatic allocation
   261     ///
   262     /// \ref named-templ-param "Named parameter" for setting Elevator
   263     /// type with automatic allocation.
   264     /// The Elevator should have standard constructor interface to be
   265     /// able to automatically created by the algorithm (i.e. the
   266     /// digraph and the maximum level should be passed to it).
   267     /// However an external elevator object could also be passed to the
   268     /// algorithm with the \ref elevator(Elevator&) "elevator()" function
   269     /// before calling \ref run() or \ref init().
   270     /// \sa SetElevator
   271     template <typename T>
   272     struct SetStandardElevator
   273       : public Preflow<Digraph, CapacityMap,
   274                        SetStandardElevatorTraits<T> > {
   275       typedef Preflow<Digraph, CapacityMap,
   276                       SetStandardElevatorTraits<T> > Create;
   277     };
   278 
   279     /// @}
   280 
   281   protected:
   282 
   283     Preflow() {}
   284 
   285   public:
   286 
   287 
   288     /// \brief The constructor of the class.
   289     ///
   290     /// The constructor of the class.
   291     /// \param digraph The digraph the algorithm runs on.
   292     /// \param capacity The capacity of the arcs.
   293     /// \param source The source node.
   294     /// \param target The target node.
   295     Preflow(const Digraph& digraph, const CapacityMap& capacity,
   296             Node source, Node target)
   297       : _graph(digraph), _capacity(&capacity),
   298         _node_num(0), _source(source), _target(target),
   299         _flow(0), _local_flow(false),
   300         _level(0), _local_level(false),
   301         _excess(0), _tolerance(), _phase() {}
   302 
   303     /// \brief Destructor.
   304     ///
   305     /// Destructor.
   306     ~Preflow() {
   307       destroyStructures();
   308     }
   309 
   310     /// \brief Sets the capacity map.
   311     ///
   312     /// Sets the capacity map.
   313     /// \return <tt>(*this)</tt>
   314     Preflow& capacityMap(const CapacityMap& map) {
   315       _capacity = &map;
   316       return *this;
   317     }
   318 
   319     /// \brief Sets the flow map.
   320     ///
   321     /// Sets the flow map.
   322     /// If you don't use this function before calling \ref run() or
   323     /// \ref init(), an instance will be allocated automatically.
   324     /// The destructor deallocates this automatically allocated map,
   325     /// of course.
   326     /// \return <tt>(*this)</tt>
   327     Preflow& flowMap(FlowMap& map) {
   328       if (_local_flow) {
   329         delete _flow;
   330         _local_flow = false;
   331       }
   332       _flow = &map;
   333       return *this;
   334     }
   335 
   336     /// \brief Sets the source node.
   337     ///
   338     /// Sets the source node.
   339     /// \return <tt>(*this)</tt>
   340     Preflow& source(const Node& node) {
   341       _source = node;
   342       return *this;
   343     }
   344 
   345     /// \brief Sets the target node.
   346     ///
   347     /// Sets the target node.
   348     /// \return <tt>(*this)</tt>
   349     Preflow& target(const Node& node) {
   350       _target = node;
   351       return *this;
   352     }
   353 
   354     /// \brief Sets the elevator used by algorithm.
   355     ///
   356     /// Sets the elevator used by algorithm.
   357     /// If you don't use this function before calling \ref run() or
   358     /// \ref init(), an instance will be allocated automatically.
   359     /// The destructor deallocates this automatically allocated elevator,
   360     /// of course.
   361     /// \return <tt>(*this)</tt>
   362     Preflow& elevator(Elevator& elevator) {
   363       if (_local_level) {
   364         delete _level;
   365         _local_level = false;
   366       }
   367       _level = &elevator;
   368       return *this;
   369     }
   370 
   371     /// \brief Returns a const reference to the elevator.
   372     ///
   373     /// Returns a const reference to the elevator.
   374     ///
   375     /// \pre Either \ref run() or \ref init() must be called before
   376     /// using this function.
   377     const Elevator& elevator() const {
   378       return *_level;
   379     }
   380 
   381     /// \brief Sets the tolerance used by algorithm.
   382     ///
   383     /// Sets the tolerance used by algorithm.
   384     Preflow& tolerance(const Tolerance& tolerance) const {
   385       _tolerance = tolerance;
   386       return *this;
   387     }
   388 
   389     /// \brief Returns a const reference to the tolerance.
   390     ///
   391     /// Returns a const reference to the tolerance.
   392     const Tolerance& tolerance() const {
   393       return tolerance;
   394     }
   395 
   396     /// \name Execution Control
   397     /// The simplest way to execute the preflow algorithm is to use
   398     /// \ref run() or \ref runMinCut().\n
   399     /// If you need better control on the initial solution or the execution,
   400     /// you have to call one of the \ref init() functions first, then
   401     /// \ref startFirstPhase() and if you need it \ref startSecondPhase().
   402 
   403     ///@{
   404 
   405     /// \brief Initializes the internal data structures.
   406     ///
   407     /// Initializes the internal data structures and sets the initial
   408     /// flow to zero on each arc.
   409     void init() {
   410       createStructures();
   411 
   412       _phase = true;
   413       for (NodeIt n(_graph); n != INVALID; ++n) {
   414         (*_excess)[n] = 0;
   415       }
   416 
   417       for (ArcIt e(_graph); e != INVALID; ++e) {
   418         _flow->set(e, 0);
   419       }
   420 
   421       typename Digraph::template NodeMap<bool> reached(_graph, false);
   422 
   423       _level->initStart();
   424       _level->initAddItem(_target);
   425 
   426       std::vector<Node> queue;
   427       reached[_source] = true;
   428 
   429       queue.push_back(_target);
   430       reached[_target] = true;
   431       while (!queue.empty()) {
   432         _level->initNewLevel();
   433         std::vector<Node> nqueue;
   434         for (int i = 0; i < int(queue.size()); ++i) {
   435           Node n = queue[i];
   436           for (InArcIt e(_graph, n); e != INVALID; ++e) {
   437             Node u = _graph.source(e);
   438             if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
   439               reached[u] = true;
   440               _level->initAddItem(u);
   441               nqueue.push_back(u);
   442             }
   443           }
   444         }
   445         queue.swap(nqueue);
   446       }
   447       _level->initFinish();
   448 
   449       for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
   450         if (_tolerance.positive((*_capacity)[e])) {
   451           Node u = _graph.target(e);
   452           if ((*_level)[u] == _level->maxLevel()) continue;
   453           _flow->set(e, (*_capacity)[e]);
   454           (*_excess)[u] += (*_capacity)[e];
   455           if (u != _target && !_level->active(u)) {
   456             _level->activate(u);
   457           }
   458         }
   459       }
   460     }
   461 
   462     /// \brief Initializes the internal data structures using the
   463     /// given flow map.
   464     ///
   465     /// Initializes the internal data structures and sets the initial
   466     /// flow to the given \c flowMap. The \c flowMap should contain a
   467     /// flow or at least a preflow, i.e. at each node excluding the
   468     /// source node the incoming flow should greater or equal to the
   469     /// outgoing flow.
   470     /// \return \c false if the given \c flowMap is not a preflow.
   471     template <typename FlowMap>
   472     bool init(const FlowMap& flowMap) {
   473       createStructures();
   474 
   475       for (ArcIt e(_graph); e != INVALID; ++e) {
   476         _flow->set(e, flowMap[e]);
   477       }
   478 
   479       for (NodeIt n(_graph); n != INVALID; ++n) {
   480         Value excess = 0;
   481         for (InArcIt e(_graph, n); e != INVALID; ++e) {
   482           excess += (*_flow)[e];
   483         }
   484         for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   485           excess -= (*_flow)[e];
   486         }
   487         if (excess < 0 && n != _source) return false;
   488         (*_excess)[n] = excess;
   489       }
   490 
   491       typename Digraph::template NodeMap<bool> reached(_graph, false);
   492 
   493       _level->initStart();
   494       _level->initAddItem(_target);
   495 
   496       std::vector<Node> queue;
   497       reached[_source] = true;
   498 
   499       queue.push_back(_target);
   500       reached[_target] = true;
   501       while (!queue.empty()) {
   502         _level->initNewLevel();
   503         std::vector<Node> nqueue;
   504         for (int i = 0; i < int(queue.size()); ++i) {
   505           Node n = queue[i];
   506           for (InArcIt e(_graph, n); e != INVALID; ++e) {
   507             Node u = _graph.source(e);
   508             if (!reached[u] &&
   509                 _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
   510               reached[u] = true;
   511               _level->initAddItem(u);
   512               nqueue.push_back(u);
   513             }
   514           }
   515           for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   516             Node v = _graph.target(e);
   517             if (!reached[v] && _tolerance.positive((*_flow)[e])) {
   518               reached[v] = true;
   519               _level->initAddItem(v);
   520               nqueue.push_back(v);
   521             }
   522           }
   523         }
   524         queue.swap(nqueue);
   525       }
   526       _level->initFinish();
   527 
   528       for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
   529         Value rem = (*_capacity)[e] - (*_flow)[e];
   530         if (_tolerance.positive(rem)) {
   531           Node u = _graph.target(e);
   532           if ((*_level)[u] == _level->maxLevel()) continue;
   533           _flow->set(e, (*_capacity)[e]);
   534           (*_excess)[u] += rem;
   535           if (u != _target && !_level->active(u)) {
   536             _level->activate(u);
   537           }
   538         }
   539       }
   540       for (InArcIt e(_graph, _source); e != INVALID; ++e) {
   541         Value rem = (*_flow)[e];
   542         if (_tolerance.positive(rem)) {
   543           Node v = _graph.source(e);
   544           if ((*_level)[v] == _level->maxLevel()) continue;
   545           _flow->set(e, 0);
   546           (*_excess)[v] += rem;
   547           if (v != _target && !_level->active(v)) {
   548             _level->activate(v);
   549           }
   550         }
   551       }
   552       return true;
   553     }
   554 
   555     /// \brief Starts the first phase of the preflow algorithm.
   556     ///
   557     /// The preflow algorithm consists of two phases, this method runs
   558     /// the first phase. After the first phase the maximum flow value
   559     /// and a minimum value cut can already be computed, although a
   560     /// maximum flow is not yet obtained. So after calling this method
   561     /// \ref flowValue() returns the value of a maximum flow and \ref
   562     /// minCut() returns a minimum cut.
   563     /// \pre One of the \ref init() functions must be called before
   564     /// using this function.
   565     void startFirstPhase() {
   566       _phase = true;
   567 
   568       Node n = _level->highestActive();
   569       int level = _level->highestActiveLevel();
   570       while (n != INVALID) {
   571         int num = _node_num;
   572 
   573         while (num > 0 && n != INVALID) {
   574           Value excess = (*_excess)[n];
   575           int new_level = _level->maxLevel();
   576 
   577           for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   578             Value rem = (*_capacity)[e] - (*_flow)[e];
   579             if (!_tolerance.positive(rem)) continue;
   580             Node v = _graph.target(e);
   581             if ((*_level)[v] < level) {
   582               if (!_level->active(v) && v != _target) {
   583                 _level->activate(v);
   584               }
   585               if (!_tolerance.less(rem, excess)) {
   586                 _flow->set(e, (*_flow)[e] + excess);
   587                 (*_excess)[v] += excess;
   588                 excess = 0;
   589                 goto no_more_push_1;
   590               } else {
   591                 excess -= rem;
   592                 (*_excess)[v] += rem;
   593                 _flow->set(e, (*_capacity)[e]);
   594               }
   595             } else if (new_level > (*_level)[v]) {
   596               new_level = (*_level)[v];
   597             }
   598           }
   599 
   600           for (InArcIt e(_graph, n); e != INVALID; ++e) {
   601             Value rem = (*_flow)[e];
   602             if (!_tolerance.positive(rem)) continue;
   603             Node v = _graph.source(e);
   604             if ((*_level)[v] < level) {
   605               if (!_level->active(v) && v != _target) {
   606                 _level->activate(v);
   607               }
   608               if (!_tolerance.less(rem, excess)) {
   609                 _flow->set(e, (*_flow)[e] - excess);
   610                 (*_excess)[v] += excess;
   611                 excess = 0;
   612                 goto no_more_push_1;
   613               } else {
   614                 excess -= rem;
   615                 (*_excess)[v] += rem;
   616                 _flow->set(e, 0);
   617               }
   618             } else if (new_level > (*_level)[v]) {
   619               new_level = (*_level)[v];
   620             }
   621           }
   622 
   623         no_more_push_1:
   624 
   625           (*_excess)[n] = excess;
   626 
   627           if (excess != 0) {
   628             if (new_level + 1 < _level->maxLevel()) {
   629               _level->liftHighestActive(new_level + 1);
   630             } else {
   631               _level->liftHighestActiveToTop();
   632             }
   633             if (_level->emptyLevel(level)) {
   634               _level->liftToTop(level);
   635             }
   636           } else {
   637             _level->deactivate(n);
   638           }
   639 
   640           n = _level->highestActive();
   641           level = _level->highestActiveLevel();
   642           --num;
   643         }
   644 
   645         num = _node_num * 20;
   646         while (num > 0 && n != INVALID) {
   647           Value excess = (*_excess)[n];
   648           int new_level = _level->maxLevel();
   649 
   650           for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   651             Value rem = (*_capacity)[e] - (*_flow)[e];
   652             if (!_tolerance.positive(rem)) continue;
   653             Node v = _graph.target(e);
   654             if ((*_level)[v] < level) {
   655               if (!_level->active(v) && v != _target) {
   656                 _level->activate(v);
   657               }
   658               if (!_tolerance.less(rem, excess)) {
   659                 _flow->set(e, (*_flow)[e] + excess);
   660                 (*_excess)[v] += excess;
   661                 excess = 0;
   662                 goto no_more_push_2;
   663               } else {
   664                 excess -= rem;
   665                 (*_excess)[v] += rem;
   666                 _flow->set(e, (*_capacity)[e]);
   667               }
   668             } else if (new_level > (*_level)[v]) {
   669               new_level = (*_level)[v];
   670             }
   671           }
   672 
   673           for (InArcIt e(_graph, n); e != INVALID; ++e) {
   674             Value rem = (*_flow)[e];
   675             if (!_tolerance.positive(rem)) continue;
   676             Node v = _graph.source(e);
   677             if ((*_level)[v] < level) {
   678               if (!_level->active(v) && v != _target) {
   679                 _level->activate(v);
   680               }
   681               if (!_tolerance.less(rem, excess)) {
   682                 _flow->set(e, (*_flow)[e] - excess);
   683                 (*_excess)[v] += excess;
   684                 excess = 0;
   685                 goto no_more_push_2;
   686               } else {
   687                 excess -= rem;
   688                 (*_excess)[v] += rem;
   689                 _flow->set(e, 0);
   690               }
   691             } else if (new_level > (*_level)[v]) {
   692               new_level = (*_level)[v];
   693             }
   694           }
   695 
   696         no_more_push_2:
   697 
   698           (*_excess)[n] = excess;
   699 
   700           if (excess != 0) {
   701             if (new_level + 1 < _level->maxLevel()) {
   702               _level->liftActiveOn(level, new_level + 1);
   703             } else {
   704               _level->liftActiveToTop(level);
   705             }
   706             if (_level->emptyLevel(level)) {
   707               _level->liftToTop(level);
   708             }
   709           } else {
   710             _level->deactivate(n);
   711           }
   712 
   713           while (level >= 0 && _level->activeFree(level)) {
   714             --level;
   715           }
   716           if (level == -1) {
   717             n = _level->highestActive();
   718             level = _level->highestActiveLevel();
   719           } else {
   720             n = _level->activeOn(level);
   721           }
   722           --num;
   723         }
   724       }
   725     }
   726 
   727     /// \brief Starts the second phase of the preflow algorithm.
   728     ///
   729     /// The preflow algorithm consists of two phases, this method runs
   730     /// the second phase. After calling one of the \ref init() functions
   731     /// and \ref startFirstPhase() and then \ref startSecondPhase(),
   732     /// \ref flowMap() returns a maximum flow, \ref flowValue() returns the
   733     /// value of a maximum flow, \ref minCut() returns a minimum cut
   734     /// \pre One of the \ref init() functions and \ref startFirstPhase()
   735     /// must be called before using this function.
   736     void startSecondPhase() {
   737       _phase = false;
   738 
   739       typename Digraph::template NodeMap<bool> reached(_graph);
   740       for (NodeIt n(_graph); n != INVALID; ++n) {
   741         reached[n] = (*_level)[n] < _level->maxLevel();
   742       }
   743 
   744       _level->initStart();
   745       _level->initAddItem(_source);
   746 
   747       std::vector<Node> queue;
   748       queue.push_back(_source);
   749       reached[_source] = true;
   750 
   751       while (!queue.empty()) {
   752         _level->initNewLevel();
   753         std::vector<Node> nqueue;
   754         for (int i = 0; i < int(queue.size()); ++i) {
   755           Node n = queue[i];
   756           for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   757             Node v = _graph.target(e);
   758             if (!reached[v] && _tolerance.positive((*_flow)[e])) {
   759               reached[v] = true;
   760               _level->initAddItem(v);
   761               nqueue.push_back(v);
   762             }
   763           }
   764           for (InArcIt e(_graph, n); e != INVALID; ++e) {
   765             Node u = _graph.source(e);
   766             if (!reached[u] &&
   767                 _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
   768               reached[u] = true;
   769               _level->initAddItem(u);
   770               nqueue.push_back(u);
   771             }
   772           }
   773         }
   774         queue.swap(nqueue);
   775       }
   776       _level->initFinish();
   777 
   778       for (NodeIt n(_graph); n != INVALID; ++n) {
   779         if (!reached[n]) {
   780           _level->dirtyTopButOne(n);
   781         } else if ((*_excess)[n] > 0 && _target != n) {
   782           _level->activate(n);
   783         }
   784       }
   785 
   786       Node n;
   787       while ((n = _level->highestActive()) != INVALID) {
   788         Value excess = (*_excess)[n];
   789         int level = _level->highestActiveLevel();
   790         int new_level = _level->maxLevel();
   791 
   792         for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   793           Value rem = (*_capacity)[e] - (*_flow)[e];
   794           if (!_tolerance.positive(rem)) continue;
   795           Node v = _graph.target(e);
   796           if ((*_level)[v] < level) {
   797             if (!_level->active(v) && v != _source) {
   798               _level->activate(v);
   799             }
   800             if (!_tolerance.less(rem, excess)) {
   801               _flow->set(e, (*_flow)[e] + excess);
   802               (*_excess)[v] += excess;
   803               excess = 0;
   804               goto no_more_push;
   805             } else {
   806               excess -= rem;
   807               (*_excess)[v] += rem;
   808               _flow->set(e, (*_capacity)[e]);
   809             }
   810           } else if (new_level > (*_level)[v]) {
   811             new_level = (*_level)[v];
   812           }
   813         }
   814 
   815         for (InArcIt e(_graph, n); e != INVALID; ++e) {
   816           Value rem = (*_flow)[e];
   817           if (!_tolerance.positive(rem)) continue;
   818           Node v = _graph.source(e);
   819           if ((*_level)[v] < level) {
   820             if (!_level->active(v) && v != _source) {
   821               _level->activate(v);
   822             }
   823             if (!_tolerance.less(rem, excess)) {
   824               _flow->set(e, (*_flow)[e] - excess);
   825               (*_excess)[v] += excess;
   826               excess = 0;
   827               goto no_more_push;
   828             } else {
   829               excess -= rem;
   830               (*_excess)[v] += rem;
   831               _flow->set(e, 0);
   832             }
   833           } else if (new_level > (*_level)[v]) {
   834             new_level = (*_level)[v];
   835           }
   836         }
   837 
   838       no_more_push:
   839 
   840         (*_excess)[n] = excess;
   841 
   842         if (excess != 0) {
   843           if (new_level + 1 < _level->maxLevel()) {
   844             _level->liftHighestActive(new_level + 1);
   845           } else {
   846             // Calculation error
   847             _level->liftHighestActiveToTop();
   848           }
   849           if (_level->emptyLevel(level)) {
   850             // Calculation error
   851             _level->liftToTop(level);
   852           }
   853         } else {
   854           _level->deactivate(n);
   855         }
   856 
   857       }
   858     }
   859 
   860     /// \brief Runs the preflow algorithm.
   861     ///
   862     /// Runs the preflow algorithm.
   863     /// \note pf.run() is just a shortcut of the following code.
   864     /// \code
   865     ///   pf.init();
   866     ///   pf.startFirstPhase();
   867     ///   pf.startSecondPhase();
   868     /// \endcode
   869     void run() {
   870       init();
   871       startFirstPhase();
   872       startSecondPhase();
   873     }
   874 
   875     /// \brief Runs the preflow algorithm to compute the minimum cut.
   876     ///
   877     /// Runs the preflow algorithm to compute the minimum cut.
   878     /// \note pf.runMinCut() is just a shortcut of the following code.
   879     /// \code
   880     ///   pf.init();
   881     ///   pf.startFirstPhase();
   882     /// \endcode
   883     void runMinCut() {
   884       init();
   885       startFirstPhase();
   886     }
   887 
   888     /// @}
   889 
   890     /// \name Query Functions
   891     /// The results of the preflow algorithm can be obtained using these
   892     /// functions.\n
   893     /// Either one of the \ref run() "run*()" functions or one of the
   894     /// \ref startFirstPhase() "start*()" functions should be called
   895     /// before using them.
   896 
   897     ///@{
   898 
   899     /// \brief Returns the value of the maximum flow.
   900     ///
   901     /// Returns the value of the maximum flow by returning the excess
   902     /// of the target node. This value equals to the value of
   903     /// the maximum flow already after the first phase of the algorithm.
   904     ///
   905     /// \pre Either \ref run() or \ref init() must be called before
   906     /// using this function.
   907     Value flowValue() const {
   908       return (*_excess)[_target];
   909     }
   910 
   911     /// \brief Returns the flow value on the given arc.
   912     ///
   913     /// Returns the flow value on the given arc. This method can
   914     /// be called after the second phase of the algorithm.
   915     ///
   916     /// \pre Either \ref run() or \ref init() must be called before
   917     /// using this function.
   918     Value flow(const Arc& arc) const {
   919       return (*_flow)[arc];
   920     }
   921 
   922     /// \brief Returns a const reference to the flow map.
   923     ///
   924     /// Returns a const reference to the arc map storing the found flow.
   925     /// This method can be called after the second phase of the algorithm.
   926     ///
   927     /// \pre Either \ref run() or \ref init() must be called before
   928     /// using this function.
   929     const FlowMap& flowMap() const {
   930       return *_flow;
   931     }
   932 
   933     /// \brief Returns \c true when the node is on the source side of the
   934     /// minimum cut.
   935     ///
   936     /// Returns true when the node is on the source side of the found
   937     /// minimum cut. This method can be called both after running \ref
   938     /// startFirstPhase() and \ref startSecondPhase().
   939     ///
   940     /// \pre Either \ref run() or \ref init() must be called before
   941     /// using this function.
   942     bool minCut(const Node& node) const {
   943       return ((*_level)[node] == _level->maxLevel()) == _phase;
   944     }
   945 
   946     /// \brief Gives back a minimum value cut.
   947     ///
   948     /// Sets \c cutMap to the characteristic vector of a minimum value
   949     /// cut. \c cutMap should be a \ref concepts::WriteMap "writable"
   950     /// node map with \c bool (or convertible) value type.
   951     ///
   952     /// This method can be called both after running \ref startFirstPhase()
   953     /// and \ref startSecondPhase(). The result after the second phase
   954     /// could be slightly different if inexact computation is used.
   955     ///
   956     /// \note This function calls \ref minCut() for each node, so it runs in
   957     /// O(n) time.
   958     ///
   959     /// \pre Either \ref run() or \ref init() must be called before
   960     /// using this function.
   961     template <typename CutMap>
   962     void minCutMap(CutMap& cutMap) const {
   963       for (NodeIt n(_graph); n != INVALID; ++n) {
   964         cutMap.set(n, minCut(n));
   965       }
   966     }
   967 
   968     /// @}
   969   };
   970 }
   971 
   972 #endif