3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_CAPACITY_SCALING_H
20 #define LEMON_CAPACITY_SCALING_H
22 /// \ingroup min_cost_flow_algs
25 /// \brief Capacity Scaling algorithm for finding a minimum cost flow.
29 #include <lemon/core.h>
30 #include <lemon/bin_heap.h>
34 /// \brief Default traits class of CapacityScaling algorithm.
36 /// Default traits class of CapacityScaling algorithm.
37 /// \tparam GR Digraph type.
38 /// \tparam V The number type used for flow amounts, capacity bounds
39 /// and supply values. By default it is \c int.
40 /// \tparam C The number type used for costs and potentials.
41 /// By default it is the same as \c V.
42 template <typename GR, typename V = int, typename C = V>
43 struct CapacityScalingDefaultTraits
45 /// The type of the digraph
47 /// The type of the flow amounts, capacity bounds and supply values
49 /// The type of the arc costs
52 /// \brief The type of the heap used for internal Dijkstra computations.
54 /// The type of the heap used for internal Dijkstra computations.
55 /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
56 /// its priority type must be \c Cost and its cross reference type
57 /// must be \ref RangeMap "RangeMap<int>".
58 typedef BinHeap<Cost, RangeMap<int> > Heap;
61 /// \addtogroup min_cost_flow_algs
64 /// \brief Implementation of the Capacity Scaling algorithm for
65 /// finding a \ref min_cost_flow "minimum cost flow".
67 /// \ref CapacityScaling implements the capacity scaling version
68 /// of the successive shortest path algorithm for finding a
69 /// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows,
70 /// \ref edmondskarp72theoretical. It is an efficient dual
73 /// Most of the parameters of the problem (except for the digraph)
74 /// can be given using separate functions, and the algorithm can be
75 /// executed using the \ref run() function. If some parameters are not
76 /// specified, then default values will be used.
78 /// \tparam GR The digraph type the algorithm runs on.
79 /// \tparam V The number type used for flow amounts, capacity bounds
80 /// and supply values in the algorithm. By default, it is \c int.
81 /// \tparam C The number type used for costs and potentials in the
82 /// algorithm. By default, it is the same as \c V.
83 /// \tparam TR The traits class that defines various types used by the
84 /// algorithm. By default, it is \ref CapacityScalingDefaultTraits
85 /// "CapacityScalingDefaultTraits<GR, V, C>".
86 /// In most cases, this parameter should not be set directly,
87 /// consider to use the named template parameters instead.
89 /// \warning Both number types must be signed and all input data must
91 /// \warning This algorithm does not support negative costs for such
92 /// arcs that have infinite upper bound.
94 template <typename GR, typename V, typename C, typename TR>
96 template < typename GR, typename V = int, typename C = V,
97 typename TR = CapacityScalingDefaultTraits<GR, V, C> >
103 /// The type of the digraph
104 typedef typename TR::Digraph Digraph;
105 /// The type of the flow amounts, capacity bounds and supply values
106 typedef typename TR::Value Value;
107 /// The type of the arc costs
108 typedef typename TR::Cost Cost;
110 /// The type of the heap used for internal Dijkstra computations
111 typedef typename TR::Heap Heap;
113 /// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm
118 /// \brief Problem type constants for the \c run() function.
120 /// Enum type containing the problem type constants that can be
121 /// returned by the \ref run() function of the algorithm.
123 /// The problem has no feasible solution (flow).
125 /// The problem has optimal solution (i.e. it is feasible and
126 /// bounded), and the algorithm has found optimal flow and node
127 /// potentials (primal and dual solutions).
129 /// The digraph contains an arc of negative cost and infinite
130 /// upper bound. It means that the objective function is unbounded
131 /// on that arc, however, note that it could actually be bounded
132 /// over the feasible flows, but this algroithm cannot handle
139 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
141 typedef std::vector<int> IntVector;
142 typedef std::vector<Value> ValueVector;
143 typedef std::vector<Cost> CostVector;
144 typedef std::vector<char> BoolVector;
145 // Note: vector<char> is used instead of vector<bool> for efficiency reasons
149 // Data related to the underlying digraph
156 // Parameters of the problem
160 // Data structures for storing the digraph
164 IntVector _first_out;
176 ValueVector _res_cap;
179 IntVector _excess_nodes;
180 IntVector _deficit_nodes;
188 /// \brief Constant for infinite upper bounds (capacities).
190 /// Constant for infinite upper bounds (capacities).
191 /// It is \c std::numeric_limits<Value>::infinity() if available,
192 /// \c std::numeric_limits<Value>::max() otherwise.
197 // Special implementation of the Dijkstra algorithm for finding
198 // shortest paths in the residual network of the digraph with
199 // respect to the reduced arc costs and modifying the node
200 // potentials according to the found distance labels.
201 class ResidualDijkstra
207 const IntVector &_first_out;
208 const IntVector &_target;
209 const CostVector &_cost;
210 const ValueVector &_res_cap;
211 const ValueVector &_excess;
215 IntVector _proc_nodes;
220 ResidualDijkstra(CapacityScaling& cs) :
221 _node_num(cs._node_num), _geq(cs._sum_supply < 0),
222 _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
223 _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
224 _pred(cs._pred), _dist(cs._node_num)
227 int run(int s, Value delta = 1) {
228 RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
229 Heap heap(heap_cross_ref);
235 while (!heap.empty() && _excess[heap.top()] > -delta) {
236 int u = heap.top(), v;
237 Cost d = heap.prio() + _pi[u], dn;
238 _dist[u] = heap.prio();
239 _proc_nodes.push_back(u);
242 // Traverse outgoing residual arcs
243 int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
244 for (int a = _first_out[u]; a != last_out; ++a) {
245 if (_res_cap[a] < delta) continue;
247 switch (heap.state(v)) {
249 heap.push(v, d + _cost[a] - _pi[v]);
253 dn = d + _cost[a] - _pi[v];
255 heap.decrease(v, dn);
259 case Heap::POST_HEAP:
264 if (heap.empty()) return -1;
266 // Update potentials of processed nodes
268 Cost dt = heap.prio();
269 for (int i = 0; i < int(_proc_nodes.size()); ++i) {
270 _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
276 }; //class ResidualDijkstra
280 /// \name Named Template Parameters
283 template <typename T>
284 struct SetHeapTraits : public Traits {
288 /// \brief \ref named-templ-param "Named parameter" for setting
291 /// \ref named-templ-param "Named parameter" for setting \c Heap
292 /// type, which is used for internal Dijkstra computations.
293 /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
294 /// its priority type must be \c Cost and its cross reference type
295 /// must be \ref RangeMap "RangeMap<int>".
296 template <typename T>
298 : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
299 typedef CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
306 /// \brief Constructor.
308 /// The constructor of the class.
310 /// \param graph The digraph the algorithm runs on.
311 CapacityScaling(const GR& graph) :
312 _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
313 INF(std::numeric_limits<Value>::has_infinity ?
314 std::numeric_limits<Value>::infinity() :
315 std::numeric_limits<Value>::max())
317 // Check the number types
318 LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
319 "The flow type of CapacityScaling must be signed");
320 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
321 "The cost type of CapacityScaling must be signed");
323 // Reset data structures
328 /// The parameters of the algorithm can be specified using these
333 /// \brief Set the lower bounds on the arcs.
335 /// This function sets the lower bounds on the arcs.
336 /// If it is not used before calling \ref run(), the lower bounds
337 /// will be set to zero on all arcs.
339 /// \param map An arc map storing the lower bounds.
340 /// Its \c Value type must be convertible to the \c Value type
341 /// of the algorithm.
343 /// \return <tt>(*this)</tt>
344 template <typename LowerMap>
345 CapacityScaling& lowerMap(const LowerMap& map) {
347 for (ArcIt a(_graph); a != INVALID; ++a) {
348 _lower[_arc_idf[a]] = map[a];
349 _lower[_arc_idb[a]] = map[a];
354 /// \brief Set the upper bounds (capacities) on the arcs.
356 /// This function sets the upper bounds (capacities) on the arcs.
357 /// If it is not used before calling \ref run(), the upper bounds
358 /// will be set to \ref INF on all arcs (i.e. the flow value will be
359 /// unbounded from above).
361 /// \param map An arc map storing the upper bounds.
362 /// Its \c Value type must be convertible to the \c Value type
363 /// of the algorithm.
365 /// \return <tt>(*this)</tt>
366 template<typename UpperMap>
367 CapacityScaling& upperMap(const UpperMap& map) {
368 for (ArcIt a(_graph); a != INVALID; ++a) {
369 _upper[_arc_idf[a]] = map[a];
374 /// \brief Set the costs of the arcs.
376 /// This function sets the costs of the arcs.
377 /// If it is not used before calling \ref run(), the costs
378 /// will be set to \c 1 on all arcs.
380 /// \param map An arc map storing the costs.
381 /// Its \c Value type must be convertible to the \c Cost type
382 /// of the algorithm.
384 /// \return <tt>(*this)</tt>
385 template<typename CostMap>
386 CapacityScaling& costMap(const CostMap& map) {
387 for (ArcIt a(_graph); a != INVALID; ++a) {
388 _cost[_arc_idf[a]] = map[a];
389 _cost[_arc_idb[a]] = -map[a];
394 /// \brief Set the supply values of the nodes.
396 /// This function sets the supply values of the nodes.
397 /// If neither this function nor \ref stSupply() is used before
398 /// calling \ref run(), the supply of each node will be set to zero.
400 /// \param map A node map storing the supply values.
401 /// Its \c Value type must be convertible to the \c Value type
402 /// of the algorithm.
404 /// \return <tt>(*this)</tt>
405 template<typename SupplyMap>
406 CapacityScaling& supplyMap(const SupplyMap& map) {
407 for (NodeIt n(_graph); n != INVALID; ++n) {
408 _supply[_node_id[n]] = map[n];
413 /// \brief Set single source and target nodes and a supply value.
415 /// This function sets a single source node and a single target node
416 /// and the required flow value.
417 /// If neither this function nor \ref supplyMap() is used before
418 /// calling \ref run(), the supply of each node will be set to zero.
420 /// Using this function has the same effect as using \ref supplyMap()
421 /// with such a map in which \c k is assigned to \c s, \c -k is
422 /// assigned to \c t and all other nodes have zero supply value.
424 /// \param s The source node.
425 /// \param t The target node.
426 /// \param k The required amount of flow from node \c s to node \c t
427 /// (i.e. the supply of \c s and the demand of \c t).
429 /// \return <tt>(*this)</tt>
430 CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
431 for (int i = 0; i != _node_num; ++i) {
434 _supply[_node_id[s]] = k;
435 _supply[_node_id[t]] = -k;
441 /// \name Execution control
442 /// The algorithm can be executed using \ref run().
446 /// \brief Run the algorithm.
448 /// This function runs the algorithm.
449 /// The paramters can be specified using functions \ref lowerMap(),
450 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
453 /// CapacityScaling<ListDigraph> cs(graph);
454 /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
455 /// .supplyMap(sup).run();
458 /// This function can be called more than once. All the given parameters
459 /// are kept for the next call, unless \ref resetParams() or \ref reset()
460 /// is used, thus only the modified parameters have to be set again.
461 /// If the underlying digraph was also modified after the construction
462 /// of the class (or the last \ref reset() call), then the \ref reset()
463 /// function must be called.
465 /// \param factor The capacity scaling factor. It must be larger than
466 /// one to use scaling. If it is less or equal to one, then scaling
467 /// will be disabled.
469 /// \return \c INFEASIBLE if no feasible flow exists,
470 /// \n \c OPTIMAL if the problem has optimal solution
471 /// (i.e. it is feasible and bounded), and the algorithm has found
472 /// optimal flow and node potentials (primal and dual solutions),
473 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
474 /// and infinite upper bound. It means that the objective function
475 /// is unbounded on that arc, however, note that it could actually be
476 /// bounded over the feasible flows, but this algroithm cannot handle
480 /// \see resetParams(), reset()
481 ProblemType run(int factor = 4) {
483 ProblemType pt = init();
484 if (pt != OPTIMAL) return pt;
488 /// \brief Reset all the parameters that have been given before.
490 /// This function resets all the paramaters that have been given
491 /// before using functions \ref lowerMap(), \ref upperMap(),
492 /// \ref costMap(), \ref supplyMap(), \ref stSupply().
494 /// It is useful for multiple \ref run() calls. Basically, all the given
495 /// parameters are kept for the next \ref run() call, unless
496 /// \ref resetParams() or \ref reset() is used.
497 /// If the underlying digraph was also modified after the construction
498 /// of the class or the last \ref reset() call, then the \ref reset()
499 /// function must be used, otherwise \ref resetParams() is sufficient.
503 /// CapacityScaling<ListDigraph> cs(graph);
506 /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
507 /// .supplyMap(sup).run();
509 /// // Run again with modified cost map (resetParams() is not called,
510 /// // so only the cost map have to be set again)
512 /// cs.costMap(cost).run();
514 /// // Run again from scratch using resetParams()
515 /// // (the lower bounds will be set to zero on all arcs)
516 /// cs.resetParams();
517 /// cs.upperMap(capacity).costMap(cost)
518 /// .supplyMap(sup).run();
521 /// \return <tt>(*this)</tt>
523 /// \see reset(), run()
524 CapacityScaling& resetParams() {
525 for (int i = 0; i != _node_num; ++i) {
528 for (int j = 0; j != _res_arc_num; ++j) {
531 _cost[j] = _forward[j] ? 1 : -1;
537 /// \brief Reset the internal data structures and all the parameters
538 /// that have been given before.
540 /// This function resets the internal data structures and all the
541 /// paramaters that have been given before using functions \ref lowerMap(),
542 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
544 /// It is useful for multiple \ref run() calls. Basically, all the given
545 /// parameters are kept for the next \ref run() call, unless
546 /// \ref resetParams() or \ref reset() is used.
547 /// If the underlying digraph was also modified after the construction
548 /// of the class or the last \ref reset() call, then the \ref reset()
549 /// function must be used, otherwise \ref resetParams() is sufficient.
551 /// See \ref resetParams() for examples.
553 /// \return <tt>(*this)</tt>
555 /// \see resetParams(), run()
556 CapacityScaling& reset() {
558 _node_num = countNodes(_graph);
559 _arc_num = countArcs(_graph);
560 _res_arc_num = 2 * (_arc_num + _node_num);
564 _first_out.resize(_node_num + 1);
565 _forward.resize(_res_arc_num);
566 _source.resize(_res_arc_num);
567 _target.resize(_res_arc_num);
568 _reverse.resize(_res_arc_num);
570 _lower.resize(_res_arc_num);
571 _upper.resize(_res_arc_num);
572 _cost.resize(_res_arc_num);
573 _supply.resize(_node_num);
575 _res_cap.resize(_res_arc_num);
576 _pi.resize(_node_num);
577 _excess.resize(_node_num);
578 _pred.resize(_node_num);
581 int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
582 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
586 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
588 for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
592 _target[j] = _node_id[_graph.runningNode(a)];
594 for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
598 _target[j] = _node_id[_graph.runningNode(a)];
611 _first_out[_node_num] = k;
612 for (ArcIt a(_graph); a != INVALID; ++a) {
613 int fi = _arc_idf[a];
614 int bi = _arc_idb[a];
626 /// \name Query Functions
627 /// The results of the algorithm can be obtained using these
629 /// The \ref run() function must be called before using them.
633 /// \brief Return the total cost of the found flow.
635 /// This function returns the total cost of the found flow.
636 /// Its complexity is O(e).
638 /// \note The return type of the function can be specified as a
639 /// template parameter. For example,
641 /// cs.totalCost<double>();
643 /// It is useful if the total cost cannot be stored in the \c Cost
644 /// type of the algorithm, which is the default return type of the
647 /// \pre \ref run() must be called before using this function.
648 template <typename Number>
649 Number totalCost() const {
651 for (ArcIt a(_graph); a != INVALID; ++a) {
653 c += static_cast<Number>(_res_cap[i]) *
654 (-static_cast<Number>(_cost[i]));
660 Cost totalCost() const {
661 return totalCost<Cost>();
665 /// \brief Return the flow on the given arc.
667 /// This function returns the flow on the given arc.
669 /// \pre \ref run() must be called before using this function.
670 Value flow(const Arc& a) const {
671 return _res_cap[_arc_idb[a]];
674 /// \brief Return the flow map (the primal solution).
676 /// This function copies the flow value on each arc into the given
677 /// map. The \c Value type of the algorithm must be convertible to
678 /// the \c Value type of the map.
680 /// \pre \ref run() must be called before using this function.
681 template <typename FlowMap>
682 void flowMap(FlowMap &map) const {
683 for (ArcIt a(_graph); a != INVALID; ++a) {
684 map.set(a, _res_cap[_arc_idb[a]]);
688 /// \brief Return the potential (dual value) of the given node.
690 /// This function returns the potential (dual value) of the
693 /// \pre \ref run() must be called before using this function.
694 Cost potential(const Node& n) const {
695 return _pi[_node_id[n]];
698 /// \brief Return the potential map (the dual solution).
700 /// This function copies the potential (dual value) of each node
701 /// into the given map.
702 /// The \c Cost type of the algorithm must be convertible to the
703 /// \c Value type of the map.
705 /// \pre \ref run() must be called before using this function.
706 template <typename PotentialMap>
707 void potentialMap(PotentialMap &map) const {
708 for (NodeIt n(_graph); n != INVALID; ++n) {
709 map.set(n, _pi[_node_id[n]]);
717 // Initialize the algorithm
719 if (_node_num <= 1) return INFEASIBLE;
721 // Check the sum of supply values
723 for (int i = 0; i != _root; ++i) {
724 _sum_supply += _supply[i];
726 if (_sum_supply > 0) return INFEASIBLE;
728 // Initialize vectors
729 for (int i = 0; i != _root; ++i) {
731 _excess[i] = _supply[i];
734 // Remove non-zero lower bounds
735 const Value MAX = std::numeric_limits<Value>::max();
738 for (int i = 0; i != _root; ++i) {
739 last_out = _first_out[i+1];
740 for (int j = _first_out[i]; j != last_out; ++j) {
744 _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
746 _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
749 _excess[_target[j]] += c;
756 for (int j = 0; j != _res_arc_num; ++j) {
757 _res_cap[j] = _forward[j] ? _upper[j] : 0;
761 // Handle negative costs
762 for (int i = 0; i != _root; ++i) {
763 last_out = _first_out[i+1] - 1;
764 for (int j = _first_out[i]; j != last_out; ++j) {
765 Value rc = _res_cap[j];
766 if (_cost[j] < 0 && rc > 0) {
767 if (rc >= MAX) return UNBOUNDED;
769 _excess[_target[j]] += rc;
771 _res_cap[_reverse[j]] += rc;
776 // Handle GEQ supply type
777 if (_sum_supply < 0) {
779 _excess[_root] = -_sum_supply;
780 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
781 int ra = _reverse[a];
782 _res_cap[a] = -_sum_supply + 1;
790 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
791 int ra = _reverse[a];
799 // Initialize delta value
802 Value max_sup = 0, max_dem = 0, max_cap = 0;
803 for (int i = 0; i != _root; ++i) {
804 Value ex = _excess[i];
805 if ( ex > max_sup) max_sup = ex;
806 if (-ex > max_dem) max_dem = -ex;
807 int last_out = _first_out[i+1] - 1;
808 for (int j = _first_out[i]; j != last_out; ++j) {
809 if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
812 max_sup = std::min(std::min(max_sup, max_dem), max_cap);
813 for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
822 ProblemType start() {
823 // Execute the algorithm
826 pt = startWithScaling();
828 pt = startWithoutScaling();
830 // Handle non-zero lower bounds
832 int limit = _first_out[_root];
833 for (int j = 0; j != limit; ++j) {
834 if (!_forward[j]) _res_cap[j] += _lower[j];
838 // Shift potentials if necessary
839 Cost pr = _pi[_root];
840 if (_sum_supply < 0 || pr > 0) {
841 for (int i = 0; i != _node_num; ++i) {
849 // Execute the capacity scaling algorithm
850 ProblemType startWithScaling() {
851 // Perform capacity scaling phases
853 ResidualDijkstra _dijkstra(*this);
855 // Saturate all arcs not satisfying the optimality condition
857 for (int u = 0; u != _node_num; ++u) {
858 last_out = _sum_supply < 0 ?
859 _first_out[u+1] : _first_out[u+1] - 1;
860 for (int a = _first_out[u]; a != last_out; ++a) {
862 Cost c = _cost[a] + _pi[u] - _pi[v];
863 Value rc = _res_cap[a];
864 if (c < 0 && rc >= _delta) {
868 _res_cap[_reverse[a]] += rc;
873 // Find excess nodes and deficit nodes
874 _excess_nodes.clear();
875 _deficit_nodes.clear();
876 for (int u = 0; u != _node_num; ++u) {
877 Value ex = _excess[u];
878 if (ex >= _delta) _excess_nodes.push_back(u);
879 if (ex <= -_delta) _deficit_nodes.push_back(u);
881 int next_node = 0, next_def_node = 0;
883 // Find augmenting shortest paths
884 while (next_node < int(_excess_nodes.size())) {
885 // Check deficit nodes
887 bool delta_deficit = false;
888 for ( ; next_def_node < int(_deficit_nodes.size());
890 if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
891 delta_deficit = true;
895 if (!delta_deficit) break;
898 // Run Dijkstra in the residual network
899 s = _excess_nodes[next_node];
900 if ((t = _dijkstra.run(s, _delta)) == -1) {
908 // Augment along a shortest path from s to t
909 Value d = std::min(_excess[s], -_excess[t]);
913 while ((a = _pred[u]) != -1) {
914 if (_res_cap[a] < d) d = _res_cap[a];
919 while ((a = _pred[u]) != -1) {
921 _res_cap[_reverse[a]] += d;
927 if (_excess[s] < _delta) ++next_node;
930 if (_delta == 1) break;
931 _delta = _delta <= _factor ? 1 : _delta / _factor;
937 // Execute the successive shortest path algorithm
938 ProblemType startWithoutScaling() {
940 _excess_nodes.clear();
941 for (int i = 0; i != _node_num; ++i) {
942 if (_excess[i] > 0) _excess_nodes.push_back(i);
944 if (_excess_nodes.size() == 0) return OPTIMAL;
947 // Find shortest paths
949 ResidualDijkstra _dijkstra(*this);
950 while ( _excess[_excess_nodes[next_node]] > 0 ||
951 ++next_node < int(_excess_nodes.size()) )
953 // Run Dijkstra in the residual network
954 s = _excess_nodes[next_node];
955 if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
957 // Augment along a shortest path from s to t
958 Value d = std::min(_excess[s], -_excess[t]);
962 while ((a = _pred[u]) != -1) {
963 if (_res_cap[a] < d) d = _res_cap[a];
968 while ((a = _pred[u]) != -1) {
970 _res_cap[_reverse[a]] += d;
980 }; //class CapacityScaling
986 #endif //LEMON_CAPACITY_SCALING_H