1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_SUURBALLE_H
20 #define LEMON_SUURBALLE_H
22 ///\ingroup shortest_path
24 ///\brief An algorithm for finding arc-disjoint paths between two
25 /// nodes having minimum total length.
29 #include <lemon/bin_heap.h>
30 #include <lemon/path.h>
31 #include <lemon/list_graph.h>
32 #include <lemon/dijkstra.h>
33 #include <lemon/maps.h>
37 /// \brief Default traits class of Suurballe algorithm.
39 /// Default traits class of Suurballe algorithm.
40 /// \tparam GR The digraph type the algorithm runs on.
41 /// \tparam LEN The type of the length map.
42 /// The default value is <tt>GR::ArcMap<int></tt>.
44 template <typename GR, typename LEN>
46 template < typename GR,
47 typename LEN = typename GR::template ArcMap<int> >
49 struct SuurballeDefaultTraits
51 /// The type of the digraph.
53 /// The type of the length map.
54 typedef LEN LengthMap;
55 /// The type of the lengths.
56 typedef typename LEN::Value Length;
57 /// The type of the flow map.
58 typedef typename GR::template ArcMap<int> FlowMap;
59 /// The type of the potential map.
60 typedef typename GR::template NodeMap<Length> PotentialMap;
62 /// \brief The path type
64 /// The type used for storing the found arc-disjoint paths.
65 /// It must conform to the \ref lemon::concepts::Path "Path" concept
66 /// and it must have an \c addBack() function.
67 typedef lemon::Path<Digraph> Path;
69 /// The cross reference type used for the heap.
70 typedef typename GR::template NodeMap<int> HeapCrossRef;
72 /// \brief The heap type used for internal Dijkstra computations.
74 /// The type of the heap used for internal Dijkstra computations.
75 /// It must conform to the \ref lemon::concepts::Heap "Heap" concept
76 /// and its priority type must be \c Length.
77 typedef BinHeap<Length, HeapCrossRef> Heap;
80 /// \addtogroup shortest_path
83 /// \brief Algorithm for finding arc-disjoint paths between two nodes
84 /// having minimum total length.
86 /// \ref lemon::Suurballe "Suurballe" implements an algorithm for
87 /// finding arc-disjoint paths having minimum total length (cost)
88 /// from a given source node to a given target node in a digraph.
90 /// Note that this problem is a special case of the \ref min_cost_flow
91 /// "minimum cost flow problem". This implementation is actually an
92 /// efficient specialized version of the \ref CapacityScaling
93 /// "successive shortest path" algorithm directly for this problem.
94 /// Therefore this class provides query functions for flow values and
95 /// node potentials (the dual solution) just like the minimum cost flow
98 /// \tparam GR The digraph type the algorithm runs on.
99 /// \tparam LEN The type of the length map.
100 /// The default value is <tt>GR::ArcMap<int></tt>.
102 /// \warning Length values should be \e non-negative.
104 /// \note For finding \e node-disjoint paths, this algorithm can be used
105 /// along with the \ref SplitNodes adaptor.
107 template <typename GR, typename LEN, typename TR>
109 template < typename GR,
110 typename LEN = typename GR::template ArcMap<int>,
111 typename TR = SuurballeDefaultTraits<GR, LEN> >
115 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
117 typedef ConstMap<Arc, int> ConstArcMap;
118 typedef typename GR::template NodeMap<Arc> PredMap;
122 /// The type of the digraph.
123 typedef typename TR::Digraph Digraph;
124 /// The type of the length map.
125 typedef typename TR::LengthMap LengthMap;
126 /// The type of the lengths.
127 typedef typename TR::Length Length;
129 /// The type of the flow map.
130 typedef typename TR::FlowMap FlowMap;
131 /// The type of the potential map.
132 typedef typename TR::PotentialMap PotentialMap;
133 /// The type of the path structures.
134 typedef typename TR::Path Path;
135 /// The cross reference type used for the heap.
136 typedef typename TR::HeapCrossRef HeapCrossRef;
137 /// The heap type used for internal Dijkstra computations.
138 typedef typename TR::Heap Heap;
140 /// The \ref SuurballeDefaultTraits "traits class" of the algorithm.
145 // ResidualDijkstra is a special implementation of the
146 // Dijkstra algorithm for finding shortest paths in the
147 // residual network with respect to the reduced arc lengths
148 // and modifying the node potentials according to the
149 // distance of the nodes.
150 class ResidualDijkstra
154 const Digraph &_graph;
155 const LengthMap &_length;
156 const FlowMap &_flow;
163 std::vector<Node> _proc_nodes;
168 ResidualDijkstra(Suurballe &srb) :
169 _graph(srb._graph), _length(srb._length),
170 _flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred),
171 _s(srb._s), _t(srb._t), _dist(_graph) {}
173 // Run the algorithm and return true if a path is found
174 // from the source node to the target node.
176 return cnt == 0 ? startFirst() : start();
181 // Execute the algorithm for the first time (the flow and potential
182 // functions have to be identically zero).
184 HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
185 Heap heap(heap_cross_ref);
191 while (!heap.empty() && heap.top() != _t) {
192 Node u = heap.top(), v;
193 Length d = heap.prio(), dn;
194 _dist[u] = heap.prio();
195 _proc_nodes.push_back(u);
198 // Traverse outgoing arcs
199 for (OutArcIt e(_graph, u); e != INVALID; ++e) {
200 v = _graph.target(e);
201 switch(heap.state(v)) {
203 heap.push(v, d + _length[e]);
209 heap.decrease(v, dn);
213 case Heap::POST_HEAP:
218 if (heap.empty()) return false;
220 // Update potentials of processed nodes
221 Length t_dist = heap.prio();
222 for (int i = 0; i < int(_proc_nodes.size()); ++i)
223 _pi[_proc_nodes[i]] = _dist[_proc_nodes[i]] - t_dist;
227 // Execute the algorithm.
229 HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
230 Heap heap(heap_cross_ref);
236 while (!heap.empty() && heap.top() != _t) {
237 Node u = heap.top(), v;
238 Length d = heap.prio() + _pi[u], dn;
239 _dist[u] = heap.prio();
240 _proc_nodes.push_back(u);
243 // Traverse outgoing arcs
244 for (OutArcIt e(_graph, u); e != INVALID; ++e) {
246 v = _graph.target(e);
247 switch(heap.state(v)) {
249 heap.push(v, d + _length[e] - _pi[v]);
253 dn = d + _length[e] - _pi[v];
255 heap.decrease(v, dn);
259 case Heap::POST_HEAP:
265 // Traverse incoming arcs
266 for (InArcIt e(_graph, u); e != INVALID; ++e) {
268 v = _graph.source(e);
269 switch(heap.state(v)) {
271 heap.push(v, d - _length[e] - _pi[v]);
275 dn = d - _length[e] - _pi[v];
277 heap.decrease(v, dn);
281 case Heap::POST_HEAP:
287 if (heap.empty()) return false;
289 // Update potentials of processed nodes
290 Length t_dist = heap.prio();
291 for (int i = 0; i < int(_proc_nodes.size()); ++i)
292 _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
296 }; //class ResidualDijkstra
300 /// \name Named Template Parameters
303 template <typename T>
304 struct SetFlowMapTraits : public Traits {
308 /// \brief \ref named-templ-param "Named parameter" for setting
311 /// \ref named-templ-param "Named parameter" for setting
313 template <typename T>
315 : public Suurballe<GR, LEN, SetFlowMapTraits<T> > {
316 typedef Suurballe<GR, LEN, SetFlowMapTraits<T> > Create;
319 template <typename T>
320 struct SetPotentialMapTraits : public Traits {
321 typedef T PotentialMap;
324 /// \brief \ref named-templ-param "Named parameter" for setting
325 /// \c PotentialMap type.
327 /// \ref named-templ-param "Named parameter" for setting
328 /// \c PotentialMap type.
329 template <typename T>
330 struct SetPotentialMap
331 : public Suurballe<GR, LEN, SetPotentialMapTraits<T> > {
332 typedef Suurballe<GR, LEN, SetPotentialMapTraits<T> > Create;
335 template <typename T>
336 struct SetPathTraits : public Traits {
340 /// \brief \ref named-templ-param "Named parameter" for setting
343 /// \ref named-templ-param "Named parameter" for setting \c %Path type.
344 /// It must conform to the \ref lemon::concepts::Path "Path" concept
345 /// and it must have an \c addBack() function.
346 template <typename T>
348 : public Suurballe<GR, LEN, SetPathTraits<T> > {
349 typedef Suurballe<GR, LEN, SetPathTraits<T> > Create;
352 template <typename H, typename CR>
353 struct SetHeapTraits : public Traits {
355 typedef CR HeapCrossRef;
358 /// \brief \ref named-templ-param "Named parameter" for setting
359 /// \c Heap and \c HeapCrossRef types.
361 /// \ref named-templ-param "Named parameter" for setting \c Heap
362 /// and \c HeapCrossRef types with automatic allocation.
363 /// They will be used for internal Dijkstra computations.
364 /// The heap type must conform to the \ref lemon::concepts::Heap "Heap"
365 /// concept and its priority type must be \c Length.
366 template <typename H,
367 typename CR = typename Digraph::template NodeMap<int> >
369 : public Suurballe<GR, LEN, SetHeapTraits<H, CR> > {
370 typedef Suurballe<GR, LEN, SetHeapTraits<H, CR> > Create;
377 // The digraph the algorithm runs on
378 const Digraph &_graph;
380 const LengthMap &_length;
382 // Arc map of the current flow
385 // Node map of the current potentials
386 PotentialMap *_potential;
387 bool _local_potential;
394 // Container to store the found paths
395 std::vector<Path> _paths;
401 // Data for full init
402 PotentialMap *_init_dist;
408 /// \brief Constructor.
412 /// \param graph The digraph the algorithm runs on.
413 /// \param length The length (cost) values of the arcs.
414 Suurballe( const Digraph &graph,
415 const LengthMap &length ) :
416 _graph(graph), _length(length), _flow(0), _local_flow(false),
417 _potential(0), _local_potential(false), _pred(graph),
418 _init_dist(0), _init_pred(0)
423 if (_local_flow) delete _flow;
424 if (_local_potential) delete _potential;
429 /// \brief Set the flow map.
431 /// This function sets the flow map.
432 /// If it is not used before calling \ref run() or \ref init(),
433 /// an instance will be allocated automatically. The destructor
434 /// deallocates this automatically allocated map, of course.
436 /// The found flow contains only 0 and 1 values, since it is the
437 /// union of the found arc-disjoint paths.
439 /// \return <tt>(*this)</tt>
440 Suurballe& flowMap(FlowMap &map) {
449 /// \brief Set the potential map.
451 /// This function sets the potential map.
452 /// If it is not used before calling \ref run() or \ref init(),
453 /// an instance will be allocated automatically. The destructor
454 /// deallocates this automatically allocated map, of course.
456 /// The node potentials provide the dual solution of the underlying
457 /// \ref min_cost_flow "minimum cost flow problem".
459 /// \return <tt>(*this)</tt>
460 Suurballe& potentialMap(PotentialMap &map) {
461 if (_local_potential) {
463 _local_potential = false;
469 /// \name Execution Control
470 /// The simplest way to execute the algorithm is to call the run()
472 /// If you need to execute the algorithm many times using the same
473 /// source node, then you may call fullInit() once and start()
474 /// for each target node.\n
475 /// If you only need the flow that is the union of the found
476 /// arc-disjoint paths, then you may call findFlow() instead of
481 /// \brief Run the algorithm.
483 /// This function runs the algorithm.
485 /// \param s The source node.
486 /// \param t The target node.
487 /// \param k The number of paths to be found.
489 /// \return \c k if there are at least \c k arc-disjoint paths from
490 /// \c s to \c t in the digraph. Otherwise it returns the number of
491 /// arc-disjoint paths found.
493 /// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is
494 /// just a shortcut of the following code.
499 int run(const Node& s, const Node& t, int k = 2) {
505 /// \brief Initialize the algorithm.
507 /// This function initializes the algorithm with the given source node.
509 /// \param s The source node.
510 void init(const Node& s) {
515 _flow = new FlowMap(_graph);
519 _potential = new PotentialMap(_graph);
520 _local_potential = true;
525 /// \brief Initialize the algorithm and perform Dijkstra.
527 /// This function initializes the algorithm and performs a full
528 /// Dijkstra search from the given source node. It makes consecutive
529 /// executions of \ref start() "start(t, k)" faster, since they
530 /// have to perform %Dijkstra only k-1 times.
532 /// This initialization is usually worth using instead of \ref init()
533 /// if the algorithm is executed many times using the same source node.
535 /// \param s The source node.
536 void fullInit(const Node& s) {
540 _init_dist = new PotentialMap(_graph);
543 _init_pred = new PredMap(_graph);
546 // Run a full Dijkstra
547 typename Dijkstra<Digraph, LengthMap>
548 ::template SetStandardHeap<Heap>
549 ::template SetDistMap<PotentialMap>
550 ::template SetPredMap<PredMap>
551 ::Create dijk(_graph, _length);
552 dijk.distMap(*_init_dist).predMap(*_init_pred);
558 /// \brief Execute the algorithm.
560 /// This function executes the algorithm.
562 /// \param t The target node.
563 /// \param k The number of paths to be found.
565 /// \return \c k if there are at least \c k arc-disjoint paths from
566 /// \c s to \c t in the digraph. Otherwise it returns the number of
567 /// arc-disjoint paths found.
569 /// \note Apart from the return value, <tt>s.start(t, k)</tt> is
570 /// just a shortcut of the following code.
572 /// s.findFlow(t, k);
575 int start(const Node& t, int k = 2) {
581 /// \brief Execute the algorithm to find an optimal flow.
583 /// This function executes the successive shortest path algorithm to
584 /// find a minimum cost flow, which is the union of \c k (or less)
585 /// arc-disjoint paths.
587 /// \param t The target node.
588 /// \param k The number of paths to be found.
590 /// \return \c k if there are at least \c k arc-disjoint paths from
591 /// the source node to the given node \c t in the digraph.
592 /// Otherwise it returns the number of arc-disjoint paths found.
594 /// \pre \ref init() must be called before using this function.
595 int findFlow(const Node& t, int k = 2) {
597 ResidualDijkstra dijkstra(*this);
600 for (ArcIt e(_graph); e != INVALID; ++e) {
604 for (NodeIt n(_graph); n != INVALID; ++n) {
605 (*_potential)[n] = (*_init_dist)[n];
609 while ((e = (*_init_pred)[u]) != INVALID) {
611 u = _graph.source(e);
615 for (NodeIt n(_graph); n != INVALID; ++n) {
616 (*_potential)[n] = 0;
621 // Find shortest paths
622 while (_path_num < k) {
624 if (!dijkstra.run(_path_num)) break;
627 // Set the flow along the found shortest path
630 while ((e = _pred[u]) != INVALID) {
631 if (u == _graph.target(e)) {
633 u = _graph.source(e);
636 u = _graph.target(e);
643 /// \brief Compute the paths from the flow.
645 /// This function computes arc-disjoint paths from the found minimum
646 /// cost flow, which is the union of them.
648 /// \pre \ref init() and \ref findFlow() must be called before using
651 FlowMap res_flow(_graph);
652 for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a];
655 _paths.resize(_path_num);
656 for (int i = 0; i < _path_num; ++i) {
659 OutArcIt e(_graph, n);
660 for ( ; res_flow[e] == 0; ++e) ;
661 n = _graph.target(e);
662 _paths[i].addBack(e);
670 /// \name Query Functions
671 /// The results of the algorithm can be obtained using these
673 /// \n The algorithm should be executed before using them.
677 /// \brief Return the total length of the found paths.
679 /// This function returns the total length of the found paths, i.e.
680 /// the total cost of the found flow.
681 /// The complexity of the function is O(e).
683 /// \pre \ref run() or \ref findFlow() must be called before using
685 Length totalLength() const {
687 for (ArcIt e(_graph); e != INVALID; ++e)
688 c += (*_flow)[e] * _length[e];
692 /// \brief Return the flow value on the given arc.
694 /// This function returns the flow value on the given arc.
695 /// It is \c 1 if the arc is involved in one of the found arc-disjoint
696 /// paths, otherwise it is \c 0.
698 /// \pre \ref run() or \ref findFlow() must be called before using
700 int flow(const Arc& arc) const {
701 return (*_flow)[arc];
704 /// \brief Return a const reference to an arc map storing the
707 /// This function returns a const reference to an arc map storing
708 /// the flow that is the union of the found arc-disjoint paths.
710 /// \pre \ref run() or \ref findFlow() must be called before using
712 const FlowMap& flowMap() const {
716 /// \brief Return the potential of the given node.
718 /// This function returns the potential of the given node.
719 /// The node potentials provide the dual solution of the
720 /// underlying \ref min_cost_flow "minimum cost flow problem".
722 /// \pre \ref run() or \ref findFlow() must be called before using
724 Length potential(const Node& node) const {
725 return (*_potential)[node];
728 /// \brief Return a const reference to a node map storing the
729 /// found potentials (the dual solution).
731 /// This function returns a const reference to a node map storing
732 /// the found potentials that provide the dual solution of the
733 /// underlying \ref min_cost_flow "minimum cost flow problem".
735 /// \pre \ref run() or \ref findFlow() must be called before using
737 const PotentialMap& potentialMap() const {
741 /// \brief Return the number of the found paths.
743 /// This function returns the number of the found paths.
745 /// \pre \ref run() or \ref findFlow() must be called before using
747 int pathNum() const {
751 /// \brief Return a const reference to the specified path.
753 /// This function returns a const reference to the specified path.
755 /// \param i The function returns the <tt>i</tt>-th path.
756 /// \c i must be between \c 0 and <tt>%pathNum()-1</tt>.
758 /// \pre \ref run() or \ref findPaths() must be called before using
760 const Path& path(int i) const {
772 #endif //LEMON_SUURBALLE_H