3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_HOWARD_H
20 #define LEMON_HOWARD_H
22 /// \ingroup min_mean_cycle
25 /// \brief Howard's algorithm for finding a minimum mean cycle.
29 #include <lemon/core.h>
30 #include <lemon/path.h>
31 #include <lemon/tolerance.h>
32 #include <lemon/connectivity.h>
36 /// \brief Default traits class of Howard class.
38 /// Default traits class of Howard class.
39 /// \tparam GR The type of the digraph.
40 /// \tparam LEN The type of the length map.
41 /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
43 template <typename GR, typename LEN>
45 template <typename GR, typename LEN,
46 bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
48 struct HowardDefaultTraits
50 /// The type of the digraph
52 /// The type of the length map
53 typedef LEN LengthMap;
54 /// The type of the arc lengths
55 typedef typename LengthMap::Value Value;
57 /// \brief The large value type used for internal computations
59 /// The large value type used for internal computations.
60 /// It is \c long \c long if the \c Value type is integer,
61 /// otherwise it is \c double.
62 /// \c Value must be convertible to \c LargeValue.
63 typedef double LargeValue;
65 /// The tolerance type used for internal computations
66 typedef lemon::Tolerance<LargeValue> Tolerance;
68 /// \brief The path type of the found cycles
70 /// The path type of the found cycles.
71 /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 /// and it must have an \c addBack() function.
73 typedef lemon::Path<Digraph> Path;
76 // Default traits class for integer value types
77 template <typename GR, typename LEN>
78 struct HowardDefaultTraits<GR, LEN, true>
81 typedef LEN LengthMap;
82 typedef typename LengthMap::Value Value;
83 #ifdef LEMON_HAVE_LONG_LONG
84 typedef long long LargeValue;
86 typedef long LargeValue;
88 typedef lemon::Tolerance<LargeValue> Tolerance;
89 typedef lemon::Path<Digraph> Path;
93 /// \addtogroup min_mean_cycle
96 /// \brief Implementation of Howard's algorithm for finding a minimum
99 /// This class implements Howard's policy iteration algorithm for finding
100 /// a directed cycle of minimum mean length (cost) in a digraph
101 /// \ref amo93networkflows, \ref dasdan98minmeancycle.
102 /// This class provides the most efficient algorithm for the
103 /// minimum mean cycle problem, though the best known theoretical
104 /// bound on its running time is exponential.
106 /// \tparam GR The type of the digraph the algorithm runs on.
107 /// \tparam LEN The type of the length map. The default
108 /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
109 /// \tparam TR The traits class that defines various types used by the
110 /// algorithm. By default, it is \ref HowardDefaultTraits
111 /// "HowardDefaultTraits<GR, LEN>".
112 /// In most cases, this parameter should not be set directly,
113 /// consider to use the named template parameters instead.
115 template <typename GR, typename LEN, typename TR>
117 template < typename GR,
118 typename LEN = typename GR::template ArcMap<int>,
119 typename TR = HowardDefaultTraits<GR, LEN> >
125 /// The type of the digraph
126 typedef typename TR::Digraph Digraph;
127 /// The type of the length map
128 typedef typename TR::LengthMap LengthMap;
129 /// The type of the arc lengths
130 typedef typename TR::Value Value;
132 /// \brief The large value type
134 /// The large value type used for internal computations.
135 /// By default, it is \c long \c long if the \c Value type is integer,
136 /// otherwise it is \c double.
137 typedef typename TR::LargeValue LargeValue;
139 /// The tolerance type
140 typedef typename TR::Tolerance Tolerance;
142 /// \brief The path type of the found cycles
144 /// The path type of the found cycles.
145 /// Using the \ref HowardDefaultTraits "default traits class",
146 /// it is \ref lemon::Path "Path<Digraph>".
147 typedef typename TR::Path Path;
149 /// The \ref HowardDefaultTraits "traits class" of the algorithm
154 TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
156 // The digraph the algorithm runs on
158 // The length of the arcs
159 const LengthMap &_length;
161 // Data for the found cycles
162 bool _curr_found, _best_found;
163 LargeValue _curr_length, _best_length;
164 int _curr_size, _best_size;
165 Node _curr_node, _best_node;
170 // Internal data used by the algorithm
171 typename Digraph::template NodeMap<Arc> _policy;
172 typename Digraph::template NodeMap<bool> _reached;
173 typename Digraph::template NodeMap<int> _level;
174 typename Digraph::template NodeMap<LargeValue> _dist;
176 // Data for storing the strongly connected components
178 typename Digraph::template NodeMap<int> _comp;
179 std::vector<std::vector<Node> > _comp_nodes;
180 std::vector<Node>* _nodes;
181 typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
183 // Queue used for BFS search
184 std::vector<Node> _queue;
187 Tolerance _tolerance;
190 const LargeValue INF;
194 /// \name Named Template Parameters
197 template <typename T>
198 struct SetLargeValueTraits : public Traits {
199 typedef T LargeValue;
200 typedef lemon::Tolerance<T> Tolerance;
203 /// \brief \ref named-templ-param "Named parameter" for setting
204 /// \c LargeValue type.
206 /// \ref named-templ-param "Named parameter" for setting \c LargeValue
207 /// type. It is used for internal computations in the algorithm.
208 template <typename T>
210 : public Howard<GR, LEN, SetLargeValueTraits<T> > {
211 typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create;
214 template <typename T>
215 struct SetPathTraits : public Traits {
219 /// \brief \ref named-templ-param "Named parameter" for setting
222 /// \ref named-templ-param "Named parameter" for setting the \c %Path
223 /// type of the found cycles.
224 /// It must conform to the \ref lemon::concepts::Path "Path" concept
225 /// and it must have an \c addBack() function.
226 template <typename T>
228 : public Howard<GR, LEN, SetPathTraits<T> > {
229 typedef Howard<GR, LEN, SetPathTraits<T> > Create;
236 /// \brief Constructor.
238 /// The constructor of the class.
240 /// \param digraph The digraph the algorithm runs on.
241 /// \param length The lengths (costs) of the arcs.
242 Howard( const Digraph &digraph,
243 const LengthMap &length ) :
244 _gr(digraph), _length(length), _best_found(false),
245 _best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false),
246 _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
247 _comp(digraph), _in_arcs(digraph),
248 INF(std::numeric_limits<LargeValue>::has_infinity ?
249 std::numeric_limits<LargeValue>::infinity() :
250 std::numeric_limits<LargeValue>::max())
255 if (_local_path) delete _cycle_path;
258 /// \brief Set the path structure for storing the found cycle.
260 /// This function sets an external path structure for storing the
263 /// If you don't call this function before calling \ref run() or
264 /// \ref findMinMean(), it will allocate a local \ref Path "path"
265 /// structure. The destuctor deallocates this automatically
266 /// allocated object, of course.
268 /// \note The algorithm calls only the \ref lemon::Path::addBack()
269 /// "addBack()" function of the given path structure.
271 /// \return <tt>(*this)</tt>
272 Howard& cycle(Path &path) {
281 /// \brief Set the tolerance used by the algorithm.
283 /// This function sets the tolerance object used by the algorithm.
285 /// \return <tt>(*this)</tt>
286 Howard& tolerance(const Tolerance& tolerance) {
287 _tolerance = tolerance;
291 /// \brief Return a const reference to the tolerance.
293 /// This function returns a const reference to the tolerance object
294 /// used by the algorithm.
295 const Tolerance& tolerance() const {
299 /// \name Execution control
300 /// The simplest way to execute the algorithm is to call the \ref run()
302 /// If you only need the minimum mean length, you may call
303 /// \ref findMinMean().
307 /// \brief Run the algorithm.
309 /// This function runs the algorithm.
310 /// It can be called more than once (e.g. if the underlying digraph
311 /// and/or the arc lengths have been modified).
313 /// \return \c true if a directed cycle exists in the digraph.
315 /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
317 /// return mmc.findMinMean() && mmc.findCycle();
320 return findMinMean() && findCycle();
323 /// \brief Find the minimum cycle mean.
325 /// This function finds the minimum mean length of the directed
326 /// cycles in the digraph.
328 /// \return \c true if a directed cycle exists in the digraph.
330 // Initialize and find strongly connected components
334 // Find the minimum cycle mean in the components
335 for (int comp = 0; comp < _comp_num; ++comp) {
336 // Find the minimum mean cycle in the current component
337 if (!buildPolicyGraph(comp)) continue;
340 if (!computeNodeDistances()) break;
342 // Update the best cycle (global minimum mean cycle)
343 if ( _curr_found && (!_best_found ||
344 _curr_length * _best_size < _best_length * _curr_size) ) {
346 _best_length = _curr_length;
347 _best_size = _curr_size;
348 _best_node = _curr_node;
354 /// \brief Find a minimum mean directed cycle.
356 /// This function finds a directed cycle of minimum mean length
357 /// in the digraph using the data computed by findMinMean().
359 /// \return \c true if a directed cycle exists in the digraph.
361 /// \pre \ref findMinMean() must be called before using this function.
363 if (!_best_found) return false;
364 _cycle_path->addBack(_policy[_best_node]);
365 for ( Node v = _best_node;
366 (v = _gr.target(_policy[v])) != _best_node; ) {
367 _cycle_path->addBack(_policy[v]);
374 /// \name Query Functions
375 /// The results of the algorithm can be obtained using these
377 /// The algorithm should be executed before using them.
381 /// \brief Return the total length of the found cycle.
383 /// This function returns the total length of the found cycle.
385 /// \pre \ref run() or \ref findMinMean() must be called before
386 /// using this function.
387 LargeValue cycleLength() const {
391 /// \brief Return the number of arcs on the found cycle.
393 /// This function returns the number of arcs on the found cycle.
395 /// \pre \ref run() or \ref findMinMean() must be called before
396 /// using this function.
397 int cycleArcNum() const {
401 /// \brief Return the mean length of the found cycle.
403 /// This function returns the mean length of the found cycle.
405 /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
408 /// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
411 /// \pre \ref run() or \ref findMinMean() must be called before
412 /// using this function.
413 double cycleMean() const {
414 return static_cast<double>(_best_length) / _best_size;
417 /// \brief Return the found cycle.
419 /// This function returns a const reference to the path structure
420 /// storing the found cycle.
422 /// \pre \ref run() or \ref findCycle() must be called before using
424 const Path& cycle() const {
436 _cycle_path = new Path;
438 _queue.resize(countNodes(_gr));
442 _cycle_path->clear();
445 // Find strongly connected components and initialize _comp_nodes
447 void findComponents() {
448 _comp_num = stronglyConnectedComponents(_gr, _comp);
449 _comp_nodes.resize(_comp_num);
450 if (_comp_num == 1) {
451 _comp_nodes[0].clear();
452 for (NodeIt n(_gr); n != INVALID; ++n) {
453 _comp_nodes[0].push_back(n);
455 for (InArcIt a(_gr, n); a != INVALID; ++a) {
456 _in_arcs[n].push_back(a);
460 for (int i = 0; i < _comp_num; ++i)
461 _comp_nodes[i].clear();
462 for (NodeIt n(_gr); n != INVALID; ++n) {
464 _comp_nodes[k].push_back(n);
466 for (InArcIt a(_gr, n); a != INVALID; ++a) {
467 if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
473 // Build the policy graph in the given strongly connected component
474 // (the out-degree of every node is 1)
475 bool buildPolicyGraph(int comp) {
476 _nodes = &(_comp_nodes[comp]);
477 if (_nodes->size() < 1 ||
478 (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
481 for (int i = 0; i < int(_nodes->size()); ++i) {
482 _dist[(*_nodes)[i]] = INF;
486 for (int i = 0; i < int(_nodes->size()); ++i) {
488 for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
491 if (_length[e] < _dist[u]) {
492 _dist[u] = _length[e];
500 // Find the minimum mean cycle in the policy graph
501 void findPolicyCycle() {
502 for (int i = 0; i < int(_nodes->size()); ++i) {
503 _level[(*_nodes)[i]] = -1;
509 for (int i = 0; i < int(_nodes->size()); ++i) {
511 if (_level[u] >= 0) continue;
512 for (; _level[u] < 0; u = _gr.target(_policy[u])) {
515 if (_level[u] == i) {
517 clength = _length[_policy[u]];
519 for (v = u; (v = _gr.target(_policy[v])) != u; ) {
520 clength += _length[_policy[v]];
524 (clength * _curr_size < _curr_length * csize) ) {
526 _curr_length = clength;
534 // Contract the policy graph and compute node distances
535 bool computeNodeDistances() {
536 // Find the component of the main cycle and compute node distances
538 for (int i = 0; i < int(_nodes->size()); ++i) {
539 _reached[(*_nodes)[i]] = false;
541 _qfront = _qback = 0;
542 _queue[0] = _curr_node;
543 _reached[_curr_node] = true;
544 _dist[_curr_node] = 0;
547 while (_qfront <= _qback) {
548 v = _queue[_qfront++];
549 for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
552 if (_policy[u] == e && !_reached[u]) {
554 _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
555 _queue[++_qback] = u;
560 // Connect all other nodes to this component and compute node
561 // distances using reverse BFS
563 while (_qback < int(_nodes->size())-1) {
564 v = _queue[_qfront++];
565 for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
571 _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
572 _queue[++_qback] = u;
577 // Improve node distances
578 bool improved = false;
579 for (int i = 0; i < int(_nodes->size()); ++i) {
581 for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
584 LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length;
585 if (_tolerance.less(delta, _dist[u])) {
601 #endif //LEMON_HOWARD_H